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Abstract

Background: The detection of known human papillomaviruses (PVs) from targeted
wet-lab approaches has traditionally used PCR-based methods coupled with Sanger
sequencing. With the introduction of next-generation sequencing (NGS), these
approaches can be revisited to integrate the sequencing power of NGS. Although
computational tools have been developed for metagenomic approaches to search
for known or novel viruses in NGS data, no appropriate tool is available for the
classification and identification of novel viral sequences from data produced by
amplicon-based methods.

Results: We have developed PVAmpliconFinder, a data analysis workflow designed
to rapidly identify and classify known and potentially new Papillomaviridae
sequences from NGS amplicon sequencing with degenerate PV primers. Here, we
describe the features of PVAmpliconFinder and its implementation using biological
data obtained from amplicon sequencing of human skin swab specimens and oral
rinses from healthy individuals.

Conclusions: PVAmpliconFinder identified putative new HPV sequences, including
one that was validated by wet-lab experiments. PVAmpliconFinder can be easily
modified and applied to other viral families. PVAmpliconFinder addresses a gap by
providing a solution for the analysis of NGS amplicon sequencing, increasingly used
in clinical research. The PVAmpliconFinder workflow, along with its source code, is
freely available on the GitHub platform: https://github.com/IARCbioinfo/
PVAmpliconFinder.
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Background
Papillomaviruses (PVs) are widely distributed across vertebrates. PVs are classified into

genera, species, and types based on the nucleotide sequence identity of the major cap-

sid protein L1. Human PVs (HPVs) have a tropism for the skin and mucosal epithelia

of different anatomical sites and are organized into five major genera: alpha, beta,

gamma, mu, and nu [1, 2]. HPV infection is responsible for various diseases, including

several types of cancer [3, 4]. To date, more than 200 HPVs have been fully character-

ized [1, 5]. Recent studies have provided evidence that many more HPV types exist [6,

7]. Thus, it is important to comprehensively describe the family of HPV types and

evaluate their role in human diseases.

Traditionally, single-step or nested PCR amplification using consensus or de-

generate primers has been used for the identification and characterization of

novel HPVs [8–10]. This approach is time-consuming and laborious and has limi-

tations in terms of sensitivity, especially in samples with low viral DNA load or

in the case of co-infections with multiple HPV types. More recently, several PCR-

based strategies using degenerate primers have been combined with the use of

next-generation sequencing (NGS) to characterize PV virome composition or to

search for new viruses [11–13]. We have recently developed a novel approach

that enabled the description of 105 putative new PV types in skin and oral sam-

ples [7]. This approach required the development of a specific bioinformatics

workflow, because no existing tools were adapted to our protocol design. Several

bioinformatics tools have been developed to analyze NGS data for the detection

of viruses, but most of them are designed to analyze the virome composition of

known viruses in clinical settings, or to discover new viruses from DNA or RNA

shotgun sequencing [14–21].

Here, we describe a new bioinformatics workflow, PVAmpliconFinder, specifically de-

signed to rapidly identify and classify known and potentially novel viruses from the

Papillomaviridae family from amplicon NGS using degenerate PV primers. PVAmpli-

conFinder is based on alignment similarity metrics, but also considers molecular evolu-

tion time for improved identification and taxonomic classification of novel PVs. The

final output of the tool includes a list of fully characterized putative new Papillomaviri-

dae sequences together with a graphical representation of the relative abundance and

diversity of HPV sequence diversity in the tested samples.

Methods
Details of the workflow can be found in Supplementary Data 2. Briefly, PVAmplicon-

Finder takes paired-end FastQ files as input and applies common data preprocessing

steps for quality control and filtering (Fig. 1a). Then, data complexity is reduced before

the identification of the PV-related sequences (Fig. 1b). Groups of sequences are de-

fined based on similarity between identified sequences and available PV sequences in

the NCBI database (Fig. 1c). De novo assembly is then performed to reconstruct the full

amplified region covered by several primer systems (Fig. 1d). Finally, the reconstructed

sequences are taxonomically classified based on two independent methodologies, which

are alignment-based and homology-based, respectively, before the generation of diverse

output reports (Fig. 1e and f).
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Results
We applied the PVAmpliconFinder workflow (Fig. 1) to the data obtained from ampli-

con sequencing of human skin swab specimens and oral rinses from healthy individ-

uals, aiming to identify new PVs (the detailed protocol is in Supplementary Data 4).

Different sets of degenerate primers targeting the L1 region of HPVs [7] were used to

amplify 47 DNA samples and the amplification products were pooled in 8 DNA sample

Fig. 1 Workflow of PVAmpliconFinder
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pools for sequencing (see detail in Supplementary Data 4). The 8 DNA sample pools

were subjected to paired-end sequencing on the Illumina MiSeq system, generating

about 2.65 million raw reads in total (331,359 raw reads on average per sample pool)

(Table 1). PVAmpliconFinder was run with an info file describing the characteristics of

each sample pool to enable the output of data stratified by tissue type and primer sys-

tem (Supplementary Table S1).

Preprocessing and complexity reduction analysis

The first step of the analysis, consisting of quality trimming, had a small impact on the

total numbers of reads, removing less than 2% of the reads in the 8 DNA sample pools

(Table 1). Merging the paired reads (step 2) reduced by at least two-fold the total num-

ber of sequences but extended their length. Although more than 90% of the reads were

merged for most samples, about 40% of the reads were not successfully merged at this

step for DNA sample pool 6 (Table 1). A quality check of this sample pool with the

FastQC report generated in step 2 enabled the identification of primer contamination

in about 10% of the reads, explaining a sub-optimal reconstruction of the full insert

(data not shown).

The following step, de-replication, consisted of collapsing identical sequences into a

single template but keeping the information on the number of reads used to form the

final template. For the 8 DNA sample pools, the different amplicons were highly repre-

sented, as shown by the substantial decrease in the number of unique sequences

remaining after this step (about 5% of the total number of sequences after merging of

the mate reads) (Table 1). Less than 1% of the sequences were identified as potentially

chimeric (Table 1). Then, a de novo clustering of highly related sequences was per-

formed to correct for sequencing and/or polymerase errors present at low frequency at

each position. A user-defined threshold had been set to 98% of identity for two se-

quences to cluster together. This clustering step drastically reduced the number of

unique sequences retained, decreasing the number of sequences from about 8 to 1% of

the overall sequences considered in the preceding step (Table 1). Overall, for the entire

run, about 28.5% (756,506/2,650,877) of the total raw reads were retained for the Mega-

Blast step (Supplementary Table S5A).

Identification of PV-related sequences and definition of groups

To identify the sequences in an unbiased manner, the sequences were aligned against

the complete NCBI “nt” nucleotide sequence database, which includes all sequences

from all species (Fig. 1c). Subsequently, groups of sequences were defined based on two

characteristics: the best MegaBlast subject sequence for each query, and the percentage

of similarity of each sequence with its corresponding best subject sequence (Fig. 1c).

Identification of PV-related sequences

On average, more than 90% of the centroid-clustered unique sequences of the 5

pools from skin swab specimens (S1-S5) matched against a Papillomaviridae family

sequence, highlighting the specificity of the amplification using partially degenerate

primers (Table 1). This represented a mean of 99.5% of Papillomaviridae-related
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reads among all reads submitted to MegaBlast from those 5 skin sample pools

(Supplementary Table S5A).

For the 3 pools from oral rinses (S6-S8), about 86.5% of the centroid-clustered unique

sequences had their best match against a Papillomaviridae family sequence (Table 1),

representing a mean of 18.5% of Papillomaviridae-related reads among all reads sub-

mitted to MegaBlast from those 3 oral sample pools (Supplementary Table S5A).

A total of 549,280 reads (72.6%) of the sequences subjected to MegaBlast matched

against Papillomaviridae family sequences (Supplementary Table S5A).

Definition of groups

When all the PV-related sequences identified above were grouped based on the best

match and percentage of similarity, a total of 139 groups of PV sequences were found

in the overall NGS run, including 136 known PVs or putative known PV variants (pre-

senting less than 10% of dissimilarity with an already characterized PV) and 3 putative

new PVs (Table 1). The known PV sequences corresponded to 549,273 raw reads, and

the putative new PV sequences were supported by 7 raw reads (Supplementary Tables

S5 E and G).

De novo assembly of grouped sequences

The grouped sequences for each sample pool were then de novo assembled to extend

the sequence lengths in order to cover the full L1 region targeted by the different pri-

mer systems used in the PCRs (Fig. 1d).

Taxonomic classification of PV sequences

The taxonomic classification of each PV sequence was then assigned to the extended

sequences using two methods, one based on the taxonomic classification of the best

subject match (using the e-value computed by BlastN) when aligned against a compre-

hensive database of PV sequences, and the other based on molecular evolution using

the Randomized Axelerated Maximum Likelihood-Evolutionary Placement Algorithm

(RaxML-EPA) (Fig. 1e). For details, see Supplementary Data 2.

The results of the classification for DNA sample pool S5 (skin samples pool; CUT

primer) are described in Table 2. In this sample pool, 2 putative new PV sequences

Table 2 Taxonomic classification of Papillomaviridae-related reads from Sample 5

Putative New Putative Known

N total sequences N = 2 (5 reads) N = 39 (60,892 reads)

N sequence showen N = 1 (3 reads) N = 1 (4211 reads)

Megablast BlastN RaxML-EPA Megablast BlastN RaxML-EPA

Alpha – – – – – –

Beta – – – – – –

Gamma 3 (100%) 3 (100%) 3 (100%) – 4211 (100%) –

Unclassified – – – 4211 (100%) – 4211 (100%)

Lambda – – – – – –

Tau – – – – – –
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represented by 5 reads and 39 putative known PV sequences represented by 60,892

reads were identified (Tables 1 and 2; Supplementary Tables S5 E and G).

One of the putative new PV sequences in this pool was represented by 3 reads (PV_

2). The MegaBlast algorithm (using the full “nt” database) aligned it against “Gamma-

papillomavirus 13 isolate Gamma13_HIVGc158, complete genome” (MF588722.1) with

81.25% of identity. Of note, although the Gamma13_HIVGc158 is a complete genome,

this sequence is not reported in the Papillomavirus Episteme (PaVE) database. The

BlastN algorithm (using the PaVE database) aligned this sequence against HPV-

mEV03c45 (MF588721), an unreferenced Gamma PV genome, with 78.69% of identity.

RaxML-EPA found the best position of this putative new sequence in the reference tree

close to HPV213 (MF509818), also a potential Gamma PV, but with pending approval

of its classification by the International Committee on Taxonomy of Viruses (ICTV)

(Tables 2 and 3). Although the three methodologies agreed on classifying this sequence

as a putative Gamma PV, the two alignment methods did not perfectly align the puta-

tive new PV sequence (less than 85% similarity against known PVs).

Among the 39 putative known PV sequences identified in this sample pool, one was

represented by about 7% of the total reads (4211 raw reads out of 60,892 reads) (Table 2;

Supplementary Table S6: Sequence identifier “69VIRUSput”). The MegaBlast algorithm

aligned this sequence to a partial cds (342 bp) of a major capsid protein L1 gene (isolate

GC12_1; FJ969907.1) with nearly 99% of identity. In comparison, the BlastN alignment

against the PaVE database aligned this sequence against a Gamma-10 referenced PV gen-

ome (HPV130; GU117630), with a percentage of identity below 10% (86.12%). When

aligning the isolate GC12_1 partial cds and the HPV130 full genome with the MegaBlast

algorithm, the two sequences presented 86.01% of identity on 98% coverage. Finally,

RaxML-EPA found homology with EdPV2 (MH376689), an unclassified Erethizon dorsa-

tum PV species (Table 2; Supplementary Table S6). EdPV2 was proposed to represent a

new genus in the family Papillomaviridae [22]. From these results, this 352 bp sequence

may represent a novel PV type, although it remains to be fully characterized.

Relative unnormalized abundance of Papillomaviridae-related sequence: differences

based on the methodology

The relative unnormalized abundance of Papillomaviridae-related sequences identified

by MegaBlast, BlastN, and RaxML-EPA for all samples is shown in Figs. 2, 3, and 4, re-

spectively, and Supplementary Tables S2, S3, and S4 provide the detailed taxonomic as-

signation based on MegaBlast, BlastN, and RaxML-EPA, respectively. Beta-3 species

were the most represented species identified by the three methods, with 42% of beta-3-

related sequences identified by MegaBlast, and 62% identified by both BlastN and

RaxML-EPA (Supplementary Tables S2, S3, and S4). The second most represented

group was the “unclassified” sequences for MegaBlast (28% of the sequences), due to

the incomplete taxonomic classification of a proportion of Papillomaviridae-related se-

quences present in the NCBI database. The third most represented genus based on

MegaBlast was the gamma genus, with about 24% of the sequence, followed by the

alpha genus (2%) and a small proportion of Lambdapapillomavirus (0.03%) due to the

identification of a feline PV partial cds sequence (EF535004.1) in sample pools 1 and 2

(Supplementary Tables S2 and S6).
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The second most represented group based on BlastN and RaxML-EPA was the

unreferenced PVs, with a major subset putatively classified as unreferenced Gam-

mapapillomavirus sequences (about 17%) and a small subset as unreferenced Beta-

papillomavirus sequences (about 1%). Of note, unreferenced sequences represented

about 40% of the total entries available in the PaVE database version used (version

of May 23, 2019). The third and fourth most represented genera were the refer-

enced gamma and alpha PVs by both BlastN and RaxML-EPA (Figs. 3 and 4).

BlastN could not classify 0.008% of the sequences, due to a best subject sequence

associated with an e-value under the threshold defined as 1e-1 (Supplementary

Table S3). RaxML-EPA also classified 0.8% of the sequences as “Unclassified” be-

cause those sequences presented homology to a newly described Erethizon dorsa-

tum PV (EdPV2; MH376689), not yet classified by the ICTV, and potentially the

first representative genome of a new PV genus [22]. Interestingly, the 46 reads that

were unclassified by BlastN (due to the e-value threshold) were classified as Tau-

papillomavirus by RaxML-EPA, with homology to Felis catus PV type 4 and 5

(Supplementary Table S4).

Fig. 2 Graphical representation of the unnormalized abundance of PV genera and species in terms of
number of reads based on MegaBlast alignment
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Discovery and characterization of putative new PV-related sequences

Overall, from the entire run, a total of 3 putative new sequences belonging to the Papil-

lomaviridae family were identified by the algorithm (Table 3). Based on MegaBlast,

“PV_1” is close to an unreferenced Gamma-12 complete genome, also present in the

PaVE database (MF588716). However, it shows a higher percentage of identity with

HPV-mSK197 (MH777339) based on BlastN alignment against the PaVE database.

RaxML-EPA was in agreement with BlastN results, finding homology with the unrefer-

enced Gammapapillomavirus HPV-mSK197. “PV_2” presented similarity (based on

MegaBlast) with an unreferenced Gamma-13 complete genome (MF588722), which is

absent from the PaVE database. BlastN found similarity with HPV-mEV03c45

(MF588721), an unreferenced Gammapapillomavirus genome, and RaxML-EPA found

homology to HPV213 (MF509818), a referenced but unofficially classified Gammapa-

pillomavirus genome. “PV_3” presented similarity with an unclassified partial cds of the

isolate GC04 (FJ969896), but presented a higher similarity with the unreferenced HPV-

mSK014 (MH777162) when aligned using BlastN. RaxML-EPA also found homology

with the same HPV-mSK014 unreferenced Gammapapillomavirus genome. The se-

quence sizes ranged from 160 to 372 nucleotides, and all sequences presented more

Fig. 3 Graphical representation of the unnormalized abundance of PV genera and species in terms of
number of reads based on BlastN alignment
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than 15% of dissimilarity with non-referenced PV sequences based on MegaBlast. All

were amplified from skin DNA samples, using FAP and CUT primers [8, 9].

A previous analysis of the same data had led to the characterization of the full gen-

ome sequence of a novel Gamma-8 PV (Table 3, “37VIRUSput“) [23]. In the current

analysis, this sequence appeared in the putative known PV sequence, because it is now

included in the NCBI database (MF356498.1) as well as in the PaVE database. However,

this sequence is still assigned to an unclassified group by the BlastN algorithm because

the taxonomy has not yet been updated in the PaVE database (Supplementary Table

S6, “37VIRUSput”). The official number of this novel PV, named “HPV isolate ICB1” in

the NCBI database, is HPV224.

Performances

The PVAmpliconFinder execution time on this dataset was less than 150min when

using an indexed NCBI database (Table 4). The most time-consuming step was the

MegaBlast search against the full “nt” NCBI database (more than 95% of total time).

When using a non-indexed NCBI “nt” database, the MegaBlast computational time was

reduced to less than 5 min (Supplementary Table S7). For most of the steps,

Fig. 4 Graphical representation of the unnormalized abundance of PV genera and species in terms of
number of reads based on RaxML-EPA
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parallelization at the sample level was implemented to reduce the total computation

time.

Discussion
We developed PVAmpliconFinder, a complete workflow enabling the discovery and

identification of viral sequences related to the Papillomaviridae family from targeted

amplicon sequencing by NGS. PVAmpliconFinder is an easy single-line command

workflow that takes FastQ files as input files and generates tabular and graphical output

files that describe the nature and abundance of PV-related sequences present in a com-

plex mixture of host, phage, bacterial, and viral DNA. The data output discriminates

between putative new and previously known Papillomaviridae-related sequences.

Furthermore, it includes sequencing metrics and sequence details, enabling the design

of subsequent laboratory experiments for confirming the in silico findings (Supplemen-

tary Data 3).

In contrast to read-subtraction methods, PVAmpliconFinder performs an alignment

step against the entire NCBI database. This is a deliberate choice because removing

host sequences may remove potentially new viral sequences that present some similar-

ity to the host. Indeed, viruses are the fastest mutating DNA element on Earth [24], so

the chance of random sequence similarity between a large host genome and a small

viral sequence is high. Moreover, the use of degenerate primer leads to the amplifica-

tion of more diverse pieces of DNA and finding the best match against a Papillomaviri-

dae sequence when aligning against a multi-organism database provides more robust

results.

Several steps of the workflow are specifically tailored to deal with the specificity of

NGS amplicon sequencing: the merging of the read pairs, enabling the reconstruction

of the full insert; the de-replication step, to reduce data complexity and keep only one

copy of identical sequences; and the elimination of chimeric sequences (PCR-derived

sequences should be represented by at least two copies during the de-replication step;

thus, single copies are probably sequences without biological significance). The number

of de-replicated sequences corresponding to each template is saved in memory by the

program to compute an unnormalized abundance. A step of clustering of highly related

sequences is applied to correct for PCR amplification and sequencing errors. Because

2% of dissimilarity from any known L1 gene is enough to define a new PV variant [25],

the tool uses a 98% identity threshold for clustering by default. When searching for

new PV types (at least 10% of dissimilarity on the L1 gene), this threshold is a good

compromise between sensitivity and specificity, because the potential loss of precision

at the variant taxonomic level may be counterbalanced by an increased specificity of

the reconstructed sequence.

To identify sequences in an unbiased manner, the sequences are aligned against the

entire “nt” NCBI database. Although this step is time-consuming due to the large size

of the database, it reduces the false-positive discovery rate. Indeed, querying a database

with reduced diversity (such as a virus database) using the e-value as a threshold could

increase the chances of getting a hit even if the subject sequence has a low identity with

the queried sequence. Considering only the sequences that have their best match

against a Papillomaviridae family sequence produces an unbiased result.
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PVAmpliconFinder includes a grouping step to separate sequences that are putative

new PVs from those that are already known PVs, using the threshold of 10% of dissimi-

larity. This grouping is done before the de novo assembly and classification steps be-

cause, although they are partially degenerate, the primers favor the amplification of

known PV sequences. Because the tool is focused on the discovery of new PVs, it is im-

portant to separate potential new sequences at the earliest possible stage. A de novo as-

sembly step is performed because of the possibility of using several primer sets that

have different hybridization positions along the L1 gene. The objective is to reconstruct

the longest possible sequence for each potential PV sequence.

PVAmpliconFinder uses an advanced identification and taxonomic classification of

the sequences using both sequence similarity and homology. For the sequence similar-

ity, the BlastN algorithm is used against the PaVE database [5]. This database is the

most complete PV database. It includes PV sequences validated by full genome rese-

quencing, but also several “non-referenced” genomes that are not classified taxonomic-

ally. Currently, non-referenced PV genomes in the PaVE database represent more than

37% of the overall available PV genomes (244/649), and this percentage continues to in-

crease [26, 27]. PVAmpliconFinder presents the results based on the initial MegaBlast

step and those obtained based on BlastN alignment against the PaVE database, but a

huge number of sequences remain unclassified using the former approach because they

match against incomplete L1 cds. Moreover, pairwise alignment with a low percentage

of similarity raises a concern about the pertinence of the results obtained. This is espe-

cially true for the 3 putative new sequences identified in the application example re-

ported here, because all sequences had at least 15% of dissimilarity against their best

match. To circumvent this limitation, we use a complementary approach in parallel

based on a molecular evolution method: RaxML-EPA [28]. A multiple sequence align-

ment is used to infer evolutionary time and to reconstruct a phylogenetic reference tree

of selected species. Then, the Parsimony-based Phylogeny-Aware Read alignment

(PaPaRa) algorithm is used to find the best position of the sequence into the reference

multiple sequence alignment [29]. RaxML-EPA is subsequently used to find the best

position of those sequences in the reference tree. The accuracy of the PaPaRa align-

ment is critical for the correct positioning of the query sequence into the reference

tree.

Some limitations of the PVAmpliconFinder workflow are due to the inherent limita-

tions of the methods implemented. Evolutionary based methods such as RaxML suffer

from long-branch attraction errors. Long-branch attraction is an error where distant

lineages are inferred to be close relatives because both have undergone a large number

of changes. This is what is suspected to happen for the classification by EPA of the

Erethizon dorsatum sequences identified in our experiment. They are inferred to be

close to EdPV2 (MH376689), a recently referenced but unclassified Erethizon dorsatum

PV [22], presenting large differences from other known PVs on its L1 gene, and

thought to represent a new genus in the family Papillomaviridae. Although this led to

an incomplete classification, these sequences may represent new species or virus

features. Finally, PVAmpliconFinder does not control for potential contamination.

Cross-contamination between samples during library preparation, amplification, and se-

quencing, or environmental contamination are difficult to detect using in silico

methods. Low-abundance sequences may truly be present in the samples but may also
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come from cross-contamination from another sample. PVAmpliconFinder will report

sequences represented by only 2 reads. These low-abundance sequences should be con-

sidered with caution. Defining an empirical abundance threshold could be considered.

Environmental contamination may explain the presence of non-human PV in human

samples. However, cross-contamination between species has recently been described

[30, 31] and thus cannot be excluded.

While there is an increasing use of NGS amplicon sequencing in the clinical research

setting, only few bioinformatics methods are available for the sensitive detection of

HPV, and they are often restricted to a panel of already well characterized PV types

[32]. The use of degenerated primers and PVAmpliconFinder may thus provide a solu-

tion for the detection and discovery of a broad range of HPV types.

In summary, we have developed the first bioinformatics tool for the identification of

novel viruses of the Papillomaviridae family from amplicon sequencing data. This tool

addresses a gap because no other tool exists for the analysis of this type of data. PVAm-

pliconFinder uses an advanced identification and taxonomic classification of the viral

sequences extracted, which combines methodologies based on sequence similarity and

homology. PVAmpliconFinder produces several tabular and graphical outputs that pro-

vide the necessary information to select the most promising putative new PV sequences

that may be validated by further wet-lab approaches. Furthermore, PVAmpliconFinder

can be easily modified and applied to other viral families, because this would only re-

quire a change in the interrogated databases and the reconstruction of a reference tree

for the viral family considered. As no other tool exist for the analysis of NGS amplicon

sequencing data of PV, PVAmpliconFinder addresses a gap with potential application

in clinical research settings.
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