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Abstract

Background: Metagenomics studies provide valuable insight into the composition
and function of microbial populations from diverse environments; however, the data
processing pipelines that rely on mapping reads to gene catalogs or genome
databases for cultured strains yield results that underrepresent the genes and
functional potential of uncultured microbes. Recent improvements in sequence
assembly methods have eased the reliance on genome databases, thereby allowing
the recovery of genomes from uncultured microbes. However, configuring these
tools, linking them with advanced binning and annotation tools, and maintaining
provenance of the processing continues to be challenging for researchers.

Results: Here we present ATLAS, a software package for customizable data processing
from raw sequence reads to functional and taxonomic annotations using state-of-the-
art tools to assemble, annotate, quantify, and bin metagenome data. Abundance
estimates at genome resolution are provided for each sample in a dataset. ATLAS is
written in Python and the workflow implemented in Snakemake; it operates in a Linux
environment, and is compatible with Python 3.5+ and Anaconda 3+ versions. The
source code for ATLAS is freely available, distributed under a BSD-3 license.

Conclusions: ATLAS provides a user-friendly, modular and customizable Snakemake
workflow for metagenome data processing; it is easily installable with conda and
maintained as open-source on GitHub at https://github.com/metagenome-atlas/atlas.
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Background
Metagenomics has transformed microbial ecology studies with the ability to generate

genome sequence information from environmental samples, yielding valuable insight

into the composition and functional potential of natural microbial populations from di-

verse environments [1, 2]. Despite the prevalence of metagenome data, there are few

broadly accepted standard methods, either for the generation of that data [3–5] or for

its processing [6, 7]. In particular, processing metagenome data in an efficient and
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reproducible manner is challenging because it requires implementation of several dis-

tinct tools, each designed for a specific task.

The most direct and frequently used way to analyze metagenome data is to map the se-

quence reads to reference genomes, when a suitable genome database from cultivated mi-

crobes is available (e.g. Humann2 [8]). However, these methods do not capture

uncultivated species; studies using single-copy phylogenetic marker genes have improved

estimates of species richness in metagenome data by expanding the representation of un-

cultivated species [9]. To truly characterize a natural microbial community and examine

its functional potential, assembly-based metagenome analyses are needed. This has been

demonstrated by recent studies that have recovered thousands of new genomes using co-

abundance patterns among samples to bin contigs into clusters [10–13].

A number of assembly-based metagenome pipelines have been developed, each pro-

viding a subset of the required tools needed to carry out a complete analysis process

from raw data to annotated genomes [14–17]. For example, MOCAT2 [16] relies on

gene catalogs to evaluate the functional potential of the metagenome as a whole, but

without directly relating functions to individual microbes. Metagenome processing

pipelines commonly default to co-assembly of the samples rather than assembly of indi-

vidual samples, resulting in more fragmented assemblies [18]. Only some applications

(e.g., IMP [17]) permit the co-assembly of metagenomes and metatranscriptomes for

individual samples. Furthermore, the configuration and technical constraints to user

control often limit the adoption of these tools in the research community.

Here we present an entirely new version of ATLAS [19], an assembly-based pipeline

for the recovery of genes and genomes from metagenomes, that produces annotated

and quantified genomes from multiple samples in one run with as little as three com-

mands. The pipeline integrates state-of-the art tools for quality control, assembly and

binning. The installation of ATLAS is automated: it depends only on the availability of

Anaconda and installs all dependencies and databases on the fly. The internal use of

Snakemake [20] allows efficient and automated deployment on a computing cluster.

Implementation

The ATLAS framework organizes sequence data processing tools into four distinct ana-

lysis modules: [1] quality control, [2] assembly, [3] genome binning and [4] annotation

(Fig. 1); each module can be run independently, or all four modules combined in a

complete analysis workflow. ATLAS is implemented in Python and uses the Snakemake

[20] workflow manager for extensive control of external tools, including versioning of

configurations and environments, provenance capabilities, and scalability on high-

performance computing clusters. ATLAS uses Anaconda [21] to simplify initial deploy-

ment and environment set-up, and dependencies are handled by Bioconda [22] at run-

time. Complete usage and user options are outlined in the ATLAS documentation

(https://metagenome-atlas.rtfd.io).

Quality control

Quality control of raw sequence data, in the form of single- or paired-end FASTQ files,

is performed using utilities in the BBTools suite [23]. Specifically, clumpify is used re-

move PCR duplicates and compress the raw data files, followed by BBduk to remove
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known adapters, trim and filter reads based on their quality and length (respectively), and

error-correct overlapping paired-end reads where applicable. BBSplit is used to remove

contaminating reads using reference sequences: PhiX is provided as a default or can be re-

placed by user-specified fasta-format sequences. To optimize data use, reads that lose

their mate during these steps are seamlessly integrated into the later steps of the pipeline.

Assembly

Prior to metagenome assembly, ATLAS uses additional BBTools utilities [23] to per-

form an efficient error correction based on k-mer coverage (Tadpole) and paired-end

read merging (bbmerge). If paired-end reads do not overlap, bbmerge can extend them

using read-derived overlapping k-mers. ATLAS uses metaSPAdes [24] or MEGAHIT

Fig. 1 The ATLAS workflow. This high-level overview of the protocol captures the primary goal of the sub-
commands that can be executed by the workflow. Individual modules can be accessed via the command
line or the entire protocol can be run starting from raw sequence data in the form of single- or paired-end
FASTQ files
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[25, 26] for de novo assembly, with the ability to control parameters such as k-mer

lengths and k-mer step size for each assembler, as well as hybrid-assembly of paired

short- and long-read libraries. The quality-controlled reads are mapped to the assem-

bled contigs, and bam files are generated to facilitate downstream calculations that may

be of interest (e.g., calculating contig coverage). The assembled contigs shorter than a

minimal length, or without mapped reads, are filtered out to yield high-quality contigs.

Genome binning

The prediction of metagenome-assembled genomes (MAGs) allows organism-specific

analyses of metagenome datasets. In ATLAS, two binning methods are implemented

(Fig. 1): metabat2 [27] and maxbin2 [28]. These methods use tetra-nucleotide frequen-

cies, differential abundance, and/or the presence of marker genes as criteria. ATLAS

supports assembly and binning for each sample individually, which produces more con-

tinuous genomes than co-assembly [29]. Definition of which samples are likely to con-

tain the same bacterial species, via a group attribute in the Snakemake configuration

file, supports binning based on co-abundance patterns across samples. Reads from all

of the samples defined in a group are then aligned to the individual sample assemblies,

to obtain the co-abundance patterns needed for efficient binning. The bins produced

by the different binning tools can be combined using the dereplicate, aggregate and

score tool (DAS Tool, [30]), to yield MAGs for each sample. Finally, the completeness

and contamination of each MAG are assessed using CheckM [31].

Because the same genome may be identified in multiple samples, dRep [29] is used to

obtain a non-redundant set of MAGs for the combined dataset by clustering genomes to

a defined average nucleotide identity (ANI, default 0.95) and returning the representative

with the highest dRep score in each cluster. dRep first filters genomes based on genome

size (default > 5000 bp) and quality (default > 50% completeness, < 10% contamination),

then clusters the genomes using Mash [32], followed by MUMmer [33], thereby benefit-

ting from their combined speed (Mash) and accuracy (MUMmer). The abundance of each

genome can then be quantified across samples by mapping the reads to the non-

redundant MAGs and determining the median coverage across each the genome.

Taxonomic and functional annotation

For annotation, ATLAS supports the prediction of open reading frames (ORFs) using

Prodigal [34]. The translated gene products are then clustered using linclust [35] or

mmseqs [36] to generate non-redundant gene and protein catalogs, which are mapped

to the eggNOG catalogue v5 [37, 38]. Robust taxonomic annotation is performed using

the genome taxonomy database tool kit (GTDB-tk, [39]). In addition, phylogenetic trees

are built based on the markers from GTDB and CheckM.

Output

The ATLAS output for each sample includes the quality-controlled reads, assem-

bled contigs, bam files (reads mapped to contigs), and predicted genome bins, to-

gether with summary statistics in an HTML report. The final output includes

results from all samples, including the raw and normalized counts for the set of

non-redundant, high-quality MAGs, with a quality report and their inferred
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taxonomy. From the annotation stage, two fasta files are produced containing the

nucleotide and amino acid sequences of the representative genes in the non-

redundant gene catalog, together with a table containing the gene annotations

summarized at the genome level.

Figure 2 shows examples of ATLAS output in which we analyzed the metagenome

data from paired feces and cecum samples of 8 mice fed ad libitum (PRJNA480387

[40];). On average, the sample data contained 3.5 Gbp, and produced assemblies of 108

Mbp per sample. There were 374 MAGS predicted (completeness > 50% and contamin-

ation < 10%), that formed 69 non-redundant clusters (ANI > 99%; Fig. 2A). These ge-

nomes account for 75% of the reads (Fig. 2B). In general, Bacteroides were more

abundant than Firmicutes, in both cecum and feces (Fig. 2C,D). A principal coordinates

analysis based on the functional annotation revealed two functionally distinct clusters

of Firmicutes (Fig. 2E). Details of these results are provided on GitHub (https://github.

com/metagenome-atlas/supp_data_atlas).

Conclusions
ATLAS is easy to install and provides documented and modular workflows for the ana-

lysis of metagenome data. The internal codes utilized by the workflow are highly

Fig. 2 Example output from the ATLAS workflow. Fecal microbiome data (PRJNA480387 [40];) processed by
ATLAS show: A) the completeness and contamination of dereplicated MAGs, with high-quality genomes
highlighted; B) the fraction of reads mapped to genomes; C) a phylogenetic tree of MAGs with average
abundance in feces and cecum on a centered log2 scale; D) a heatmap of abundance on a centered log2
scale in which MAGs were clustered by phylogenetic distance and samples by Euclidian distance; E) a
principle components analysis of the MAGs based on functional annotation
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configurable using either a configuration file or via the command line. ATLAS provides

a robust bioinformatics framework for high-throughput sequence data, where raw

FASTQ files can be fully processed into annotated tabular files for downstream analysis

and visualization. ATLAS fills a major analysis gap, namely the integration of tools for

quality control, assembly, binning and annotation, in a manner that supports robust

and reproducible analyses. ATLAS provides these analysis tools in a command-line

interface amenable to high-performance computing clusters.

The source code for ATLAS is distributed under a BSD-3 license and is freely avail-

able at https://github.com/metagenome-atlas/atlas, with example data provided for test-

ing. Software documentation is available at https://metagenome-atlas.rtfd.io, which

describes the installation and use of ATLAS including a Docker container (https://hub.

docker.com/r/metagenomeatlas/atlas).

Availability Project name: ATLAS.

Project home page: https://github.com/metagenome-atlas/atlas

Archived version: https://doi.org/10.1101/737528

Operating system(s): Linux.

Programming language: Snakemake/Python.

Other requirements: Miniconda.

License: BSD-3.

Any restrictions to use by non-academics: None.
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