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Dept. of Computer Science, Background: Diabetic retinopathy (DR), the most common cause of vision loss, is
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Donaghey Ave, Conway, AR, 72035 caused by damage to the small blood vessels in the retina. If untreated, it may result in
USA varying degrees of vision loss and even blindness. Since DR is a silent disease that may

cause no symptoms or only mild vision problems, annual eye exams are crucial for early
detection to improve chances of effective treatment where fundus cameras are used to
capture retinal image. However, fundus cameras are too big and heavy to be
transported easily and too costly to be purchased by every health clinic, so fundus
cameras are an inconvenient tool for widespread screening. Recent technological
developments have enabled to use of smartphones in designing small-sized,
low-power, and affordable retinal imaging systems to perform DR screening and
automated DR detection using image processing methods. In this paper, we
investigate the smartphone-based portable retinal imaging systems available on the
market and compare their image quality and the automatic DR detection accuracy
using a deep learning framework.

Results: Based on the results, iNview retinal imaging system has the largest field of
view and better image quality compared with iExaminer, D-Eye, and Peek Retina
systems. The overall classification accuracy of smartphone-based systems are sorted as
61%, 62%, 69%, and 75% for iExaminer, D-Eye, Peek Retina, and iNview images,
respectively. We observed that the network DR detection performance decreases as
the field of view of the smartphone-based retinal systems get smaller where iNview is
the largest and iExaminer is the smallest.

Conclusions: The smartphone-based retina imaging systems can be used as an
alternative to the direct ophthalmoscope. However, the field of view of the
(Continued on next page)
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smartphone-based retina imaging systems plays an important role in determining the
automatic DR detection accuracy.

Keywords: Retinal imaging, Diabetic retinopathy, Deep learning, iExaminer, D-Eye,
Peek retina, iNview

Background

The World Health Organization estimates that 347 million people have diabetes world-
wide and the number will increase to 552 million by the year 2030. In the United States,
more than 9 percent of Americans (29 million) have the disease and 8 million of those are
undiagnosed. A diabetic person is at high risk of eye disease including diabetic retinopa-
thy, diabetic macular edema, cataract, and glaucoma. The most common cause of vision
loss is the diabetic retinopathy (DR) that is caused by bleeding of the small blood vessels in
the retina. If the these bloody retina veins are untreated, it may cause to varying degrees of
vision loss and even blindness. In the US, more than 4.4 million people aged 40 and older
had DR problem at different stages. Due to the its silent nature, DR may cause no symp-
toms or only mild vision problems [1]. Since early detection could improve the chances of
effective treatment to prevent blindness, doctors suggest the regular annual eye exams for
diabetic patients. With early diagnosis and accurate evaluation of DR severity, it is pos-
sible to coordinate diabetic eye care and prompt appropriate treatment for prevention of
blindness and visual loss [2]. However, current studies shows that access to such medical
care in developed countries ranges between 60% and 90%, with significantly lower rates in
developing countries [3]. Patients without eye care access do not benefit from the poten-
tial of early detection and getting effective treatment in a timely manner. Among rural
and minority populations, there exist a significant disparity in early diagnosis and access
to eye care.

In the retina examination, doctors use special optical devices such as an ophthalmo-
scope, 20D lens, and fundus camera. Due to the easier storage, better image quality, and
faster electronic transfer, fundus cameras are widely used to detect eye diseases with
their digital imaging features. However, retinal imaging with a fundus camera is a time-
consuming and manual process. An expertise is required to capture a retinal image and
an expert evaluation report may take a few days to submit. Since fundus cameras are also
too big and heavy to be transported easily and too costly to be purchased by every health
clinic, fundus cameras are inconvenient tools for widespread screening. In addition, it is
very hard to find the equipment and expertise in rural areas that have a high diabetes rate
[4]. The need of infrastructure for DR screening will become even more insufficient as
the number of diabetic people increases. Therefore, there is a growing demand for small,
portable, and inexpensive retinal imaging systems to perform DR screening.

Recent technological developments have enabled use of smartphones in design-
ing small-sized, low-power, and affordable biomedical imaging devices. These systems
are capable of imaging, onboard processing, and wireless communication. Therefore,
smartphone-based systems are very popular in several applications ranging from health
care to entertainment since they make existing systems small and portable. Since fun-
dus cameras are large-size, heavy-weight, and high-price devices, they are good candidate
to be transformed into a portable device to perform fast DR screening. Developing
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new portable retinal imaging systems using smartphones is an emerging research and
technology area that attracts several universities and companies.

In the literature, using 20D Lens with a smartphone is one of the early designs to record
video on human and rabbit eyes [5] as shown in Fig. 1a. This early design used the Filmic
Pro mobile application to adjust focus, exposure, and light intensity manually. This allows
having better quality fundus images in clinic settings for both under anesthesia and awake
conditions. Another very simple smartphone-based design is the iExaminer system of
Welch Allyn [6]. It is developed by attaching a smartphone to a PanOptic ophthalmo-
scope as shown in Fig. 1b. These systems require attaching the smartphone to an existing
medical device. Recently, new smartphone-based retinal imaging systems are released to
the market including D-Eye, Peek Retina, and iNview. These smartphone-based retinal
imaging systems are bundled with associated secure HIPPA-compliant mobile application
for image capture and transmission. In addition, iExaminer, D-Eye, and iNview have the
Food and Drug Administration (FDA) approval for their devices. However, Peek Retina is
currently waiting for the approval from FDA.

Russo et al. [7] developed the D-Eye, a small, portable, and inexpensive retinal imaging
system to capture retina images as an attachment to a smartphone. Using the cross-
polarization technique to reduce corneal reflections and integrated with smartphone’s
autofocus feature to prevent patient’s refractive error, D-Eye allows retinal eye screening
even for undilated eyes. To illuminate the retina, D-Eye reflects the smartphone flashlight
as shown in Fig. 1c. Peek Retina imaging system [8] includes its own light to illuminate the
retina and the image is captured by a smartphone as shown in Fig. 1d. To capture wide-
angle retinal images, Volk Optical developed iNview smartphone-based retinal imaging
system [9] as shown in Fig. le. It illuminates the retina by reflecting the smartphone flash-
light and does not require pupil dilation to acquire 50 degrees of retinal view to visualize

(d) (e)

Fig. 1 Smartphone-based retinal imaging systems available in the market, a Fundus photography method
used by Harvard Medical School b iExaminer developed by Welch Allyn, ¢ D-Eye, d Peek Retina, and e iNview
by Volk
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the entire posterior pole in a single image. All these smartphone-based imaging systems
are capable of capturing retina images, but none of these smartphone-based systems offer
a way to analyze and evaluate eye disease by using image processing techniques.

In addition, there exist several telemedicine solutions for retinal image analysis for
diabetic retinopathy screening [10]. These solutions in literature need manual grading.
However, they have to be fully automated to accelerate the diagnosis of retinal diseases
using predictive models especially for patients in rural areas. Researchers presented auto-
matic retinal image analysis (ARIA) tools including iGradingM [11], The TRIAD Network
[12, 13], IDx-DR [14], RetmarkerDR [15], and Retianalyze [16]. However, these methods
are semi-automated and require some expert control to decide the existence of the retinal
disorder. This is the main obstacle to apply them automatically for large datasets.

Kaggle’s competition is one of attempts to attract researchers to present solutions for
diabetic retinopathy detection providing the EyePACS retinal images. EyePACS contains
78685 retinal images to assess the DR existence and severity recommendation in different
studies. This competition gives opportunity to researchers to design their deep learning
networks and try them with a publicly available dataset. It also accelerates the research
findings for automatic DR detection and usage of the deep networks for classification
based medical research with higher detection performance. Graham is the winner achiev-
ing the accuracy score of 0.84957. He first preprocessed the retina images to remove
the illumination difference and used a convolutional neural network, SparseConvNet and
random forest for classification by augmenting the retina images to increase number of
images in training set [17].

With the improvement of computational power and advances in neural network, deep
learning algorithms, especially Convolutional Neural Networks (CNNs), have been widely
used in different applications including retinal imaging. Rajalakshmi et al. [18] proposed
using Remidio Fundus on Phone (FOP) device to capture high-quality retina images com-
pared with the traditional fundus devices. The FOP is a high quality portable fundus
camera that is capable of capturing 4 field retinal color photography covering macula,
disc and nasal to the optic disc, superior-temporal and inferior-temporal quadrants. After
data capturing, retina images are graded with EyeArt [19], a deep learning method to
determine the existence of the diabetic retinopathy. It is a cloud-based retinal image
assessment tool to grade DR development using deep learning methods that were trained
with EyePACS dataset [20]. The EyeArt system also offers image processing and machine
learning techniques such as image gradability, image enhancement, image restoration,
interest region detection, and descriptor computation. Compared with manually graded
results by two ophthalmologists, deep artificial neural network method shows high sen-
sitivity and specificity for retina images captured by FOP device. FOP proves the concept
of smartphone-based designs and shows the technological and economic feasibility of the
portable retinal imaging systems. However, due to their fewer controllable parameters
and inexpensive lenses, smartphone-based systems have a lower image quality compared
to the fundus camera and FOP. Therefore, the existing algorithms could not be applied
directly to the retinal images captured with smartphone-based retinal imaging systems
because the quality of captured retina images plays an important role at the accuracy of
the deep learning techniques.

In this paper, we first investigate the smartphone-based portable retinal imaging sys-
tems available on the market. We compare their image quality to determine if they are
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suitable for DR detection during a general health screening in urban areas, remote health
clinics, nursing homes, pharmacies, schools, and even by individuals in their own homes.
Then, we compare the DR detection accuracy of smartphone-based portable retinal

imaging systems using a deep learning framework.

Methods

In this section, we first present the details of smartphone-based portable retinal imag-
ing systems available on the market to compare their features and image qualities.
Second, we introduce the layout of the adopted deep learning architecture for DR

detection.

Smartphone-based portable retinal imaging systems

There are four smartphone-based retinal imaging systems available in the market includ-
ing iExaminer, D-Eye, Peek Retina, and iNview. First, we attach each smartphone-based
retinal imaging devices to the smartphone to capture retinal images. Since the retina is
located at the back of the eye and light does not reflect back through the retina, it is
not possible to take a picture of the retina directly without any external illumination.
Therefore, these imaging systems attached to the smartphone needs to illuminate the
dark retina by reflecting the smartphone flashlight on the retina or using its own light to
brighten the retina. Figure 2 shows the general optical design of the smartphone-based
retinal imaging devices. Based on their optical design, each smartphone-based portable
retinal imaging system has different degrees in angles of retinal views (AoV) to capture
retinal images. It suggests that this difference in angles determines the field of view of dif-
ferent imaging systems. For example, the distance of the device to eye, (i.e, x), the length
of the device (i.e, y), number of lenses in the optic design, determines the angles of retinal
views in different imaging systems.

Even in a controlled environment, pupil dilation level of the human subject and the
eye gaze between a human subject and the retinal imaging system changes easily. Since
the visible portions of the retina will change, the retina images captured from a human
subject changes over time for different smartphone-based retinal imaging systems. To
fix the visible retina, a synthetic eye model can be used. For our experimental setup, we
used the synthetic eye model box provided with Peek Retina smartphone-based retinal
imaging system as shown in Fig. 3a. It replicates the eye structures including pupil, lens,
and retina. The dimensions of the synthetic eye model are 53 mm x 53 mm x 22 mm in
width, length, and depth. The opening on the box replicates the pupil of the eye. Under
the pupil opening, there is a lens to illustrate the lens of the eye. Since the distance from
the front surface of the cornea to the retina is approximately 24 mm on average, a printed
test image is placed inside the box at the bottom that gives the same distance. As shown
in Fig. 3b-c, the printed real retina images show related retina tissues including the optic
nerve, macula, and blood vessel. There are eight different high-quality printed real retina
images provided with Peek Retina system including (1) normal retina, (2) glaucoma, (3)
age-related macular degeneration, (4) diabetic retinopathy - clinically significant macu-
lar oedema, (5) branch retinal vein occlusion, (6) diabetic retinopathy - ghost vessel, (7)
papilloedema optic disc swelling, and (8) diabetic retinopathy - proliferative.

In the following subsections, we present the details about the publicly avail-
able smartphone-based portable retinal imaging systems and their features. Table 1
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Fig. 2 The general optical design of the smartphone-based retinal imaging devices

summarizes and compares the important features of smartphone-based retinal imaging
systems publicly available in the market including their price, size, weight, compatible
smartphones, illumination source, pupil dilation dependency, degree of retinal view, type
of captured data with its own mobile application, image size, and the maximum number

of images.

(a) (b)

Fig. 3 a Peek Retina Synthetic Eye Box for data collection and b-c Synthetic Retina Images
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Table 1 Comparison of smartphone-based retinal imaging systems available in the market

iExaminer D-Eye Peek Retina  iNview 20D Lens

Compatible Smartphones iPhone 6 iPhone 6/7  Universal iPhone 5/6/6S  Universal
lllumination Source Inside Flashlight Inside Flashlight Flashlight
Dilation dependency Not Required  Required Required Not Required Required
Degree of Retinal View 25 6-20 20-30 50 46
Working Distance (mm) 22 22 22 65 50

Size (mm) 70/220/162 68/135/7 25/75/35 180/76/180 50/50/10
Weight (g) 390 25 43 332 50

Price ($) 693 400 235 799 113

Type of captured data Image Video Image/Video  Image N/A

# of Image / Duration of Video 5 images 30seconds  N/A 9images N/A

Size of Images/Video 320x280 640x480 640x480 640x480 N/A

20D Lens

One of the early and simple design for smartphone-based retinal imaging is developed
using 20D lens at Harvard Medical School and the Massachusetts Eye Hospital [5]. As
shown in Fig. 1a, an operator holds the 20D lens directly in front of the eye and captures
the retinal images with a smartphone. The flashlight of the smartphone or an external
light source attached to the doctor’s head is used to illuminate the retina. After capturing
images using any smartphone application, retinal images are extracted using the virtue of
MovieTolmage and Video2Photo applications. In addition, light intensity, focusing, and
exposure can be adjusted before data capture. In order to acquire the retinal images for
optimal quality, not only the pupil dilation is suggested but also it requires a certain level
of expertise to capture retinal images.

iExaminer

[Examiner is the another simple early design for fundus photography method using a
smartphone [6]. It is developed by attaching a smartphone to a Welch Allyn PanOptic
ophthalmoscope. PanOptic Ophthalmoscope has been used for several years by ophthal-
mologists to provide convenient eye exams and detect eye diseases, including diabetic
retinopathy (DR). In the iExaminer system, the eyecup of the ophthalmoscope where the
doctor looks is removed and the smartphone is attached using a special attachment to
capture the retina images using the smartphone’s camera. The iExaminer system involves
three main pieces, including a smartphone application, iExaminer adapter, and PanOptic
Ophthalmoscope. However, tt is only compatible with the iPhone 4 and 6 since there is
no smartphone adapter available in the market for other devices.

To capture retina images, iExaminer provides up to 25-degree field-of-view for dilated
eyes and allows adjusting focus ranging from -20 to +20 diopter. It offers several apertures
and filter options including small spot, large spot, microspot, slit aperture, red-free filter,
cobalt blue filter, half-moon, and fixation aperture. Its optic design generates its own light,
converges it to a point at the cornea, and diverges around the retina. This allows easy
entry into small pupils and wide area illumination of the fundus. Therefore, it does not
require pupil dilation for retinal imaging. The operator can also control the amount of
illumination manually. It also has an eyecup at the patient side that helps stabilization for
the view and occludes ambient light to prevent the interference from outside light. The

smartphone application allows capturing up to five images from a patient. After capturing
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retina images, the iExaminer system can send them to the doctor via an e-mail without
applying any image processing algorithms.

To capture images with iExaminer, we attached the phone to the adapter on the PanOp-
tic Ophthalmoscope. Since iExaminer uses its own light, we disabled the flashlight of the
phone and set the carousel settings for large light in the ophthalmoscope. Then, we posi-
tioned the iExaminer on the synthetic eye model box and touched the eyecup to the box
as shown in Fig. 4a. In order to use the auto-focus property, we set the diopter to zero and
waited for a few seconds before capturing the images.

D-Eye

D-Eye retinal imaging system [21] illuminates the retina by reflecting the smartphone
flashlight to capture magnified retinal images up to 20 degrees in angle using its optics
design and the smartphone camera. The D-Eye adapter is designed to attach it to various
compatible iPhone models using compatible bumpers to magnetically attach. Since D-Eye
reflects the flashlight of the smartphone to the retina using its optic design with mirrors

(d)

Fig. 4 Experimental setup retinal imaging with a iExaminer, b D-Eye, ¢ Peek Retina, and d Volk iNview
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and lenses, it does not require additional external power and light sources. Due to this
design constraint, D-Eye is compatible with iPhone 5, 5s, 6, 6Plus, 6s, 6s Plus, and 7. D-Eye
also provides an iOS application that gives the opportunity to both recording videos and
shooting multiple images. Even if the system does not require pupil dilation to capture
retina images, pupil dilation might be helpful where a larger field of view is needed such
as analyzing retinal tissue structures and screening complete retina. For undilated eyes,
D-Eye system can capture retina up to a 6-degree angle of view, while dilated eyes allow
the 20-degree angle of view. To capture images with D-Eye, we position the D-Eye on the
synthetic eye model box as close as possible as shown in Fig. 4b.

Peek retina
Peek Retina is another plug-in imaging system [8] that has its own adjustable light and
power source to illuminate the retina. Users can change the amount of light to illuminate
the retina by choosing one level out of three. Since it has its own light source, Peek Retina
has a universal clip to attach any smartphone. It also has own Android application, named
Peek Retina Camera that enables to capturing photos and recording videos. However,
we can use any camera application with iPhone and Windows Phone models to capture
images by adjusting manual settings in terms of autofocusing, clarity, and brightness.
Since Peek Retina system still waiting for approval from the Food and Drug Adminis-
tration in the US, it can only be used for educational purposes not for medical purposes.
However, there is a synthetic eye model box in its package for synthetic data capture.
Therefore, we can only collect synthetic data provided in its package with eight different
retina images that have different eye disease conditions from the normal eye to prolif-
erative diabetic retinopathy. For data capture with Peek Retina, we positioned the Peek
Retina adapter to align with the camera and tighten the knob to hold the device in the cor-
rect position as shown in Fig. 4c. Since Peek Retina has its own light source, we disabled
the flashlight of the smartphone.

Volk iNview
The Volk iNview [9] smartphone-based retinal imaging system is developed by Volk Opti-
cal to capture wide-angle retinal images. It has three core components, including a mobile
application, indirect ophthalmoscopy lens, and attachment adaptor for iPhone or iPod.
This system captures the high-resolution retinal images using the camera and flashlight
of the smartphone. The system does not require pupil dilation and it is able to capture 50
degrees of retinal view to visualize the entire posterior pole in a single image. In order to
magnify the retina and to visualize it in a wider field of view, iNview Retinal Imager used
25D (diopter) lens as the primary imaging lens in its design. Its optical design generates
a working distance of approximately 65mm. Due to the size of the 25D lens in the opti-
cal design, it has a large end tube size that requires to the operator to use the patient’s
forehead as a steady reference to stabilize the device.

iNview provides the widest field of view compared to other smartphone-based retinal
imaging systems but it is also the biggest and heaviest design (see Table 1). iNview is
compatible with iPhone 5s, 6, 6s and iPod Touch. The free mobile application provides
automatic retinal image capture and good auto-focus features. It also allows the user to
encrypt the captured images using a password key for data security. This adds an extra
layer of security to send the retinal images through an e-mail. Since iNview does not have
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its own light, we enabled the phone flashlight and positioned the iNview on the synthetic
eye model box. In order to use the auto-focus property, we placed the iNview to about
150mm away from the box and make it closer to box to set the distance around 65mm (the
best distance for data acquisition) as shown in Fig. 4d. Waiting for a few seconds before
data capture helps the auto-focus feature to stabilize the image.

Deep learning architecture for diabetic retinopathy detection

This section provides the layout of the utilized deep learning framework. For image clas-
sification, Convolution Neural Network (CNN) is one of the most popular deep learning
frameworks so this work adopts the CNN based AlexNet [22] using the transfer learn-
ing. Due to its simple design and high classification accuracy compared with other CNNss,
AlexNet is very popular in different research communities and used in several appli-
cations. Since 1.2 million high-resolution images are used to train AlexNet, it classifies
images into 1000 different classes with a very low error rate.

AlexNet first uses five convolutional layers to extract low-level features. Then, it maps
the final features to the set of the pre-determined number of classes using three fully
connected layers and a softmax layer. In order to transfer the network knowledge, we
use the general purpose features learned previously to retrain the softmax layer on a
different dataset with different classes. In each layer, network architecture contains dif-
ferent layers such as convolutions, fully connected, activation functions, dropouts, and
max-pooling. More complex features are extracted gradually in each convolution layer
using the features from previous layers in the network. To introduce nonlinearity into
the network, we use Rectified Linear Units (ReLU) as an activation function after each
convolutional layer and fully-connected layer. Max pooling layers are used to keep the
number of parameters required to be learned by outputting the maximum value of each
square kernel and discarding the rest. This helps to reduce the redundancies among
the features learned by the network. Dropout layers are introduced after the last two
ReLU activations during training to force the network learning more robust features
from training samples and avoid the overfitting problem. Using the output of the last
fully connected layer, softmax classify images into different classes based on the highest
probability.

Since AlexNet contains nearly 60 million parameters in its architecture, training it from
scratch requires a very large amount of input images and computational power. When we
do not have millions of labeled image, the best approach is to use transfer learning. In this
paper, we removed the last three layers of the AlexNet (i.e., 1000-class fully connected,
softmax, and classification). Then, we replaced them with new two-class fully connected
layer, softmax, and classification layers for transfer learning. Finally, we retrained the new
network with the retina images from EyePACS dataset using Stochastic gradient descent
(SGD) algorithm with a minibatch size of 2 examples, the learning rate of 1e — 5, and
a momentum of 0.9. During the retraining, the network updates the parameters of each
layer for every iteration with each training sample.

For all our experiments, we developed our programs and CNN frameworks using the
MatConvNet and image processing toolboxes in MATLAB 2018. The experiments are
performed on a DELL Alienware Aurora R8 workstation with 8 core Intel Core i7 9700K
processor at 4.6GHz, NVIDIA GeForce RTX 2080 with 8GB GPU, and 32GB memory.
Training time for transfer learning is around 117 sec for 686 images.
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Results and discussion

To compare the smartphone-based retinal imaging systems, we set up two sets of exper-
iments using synthetic retina images and real fundus images. We first collected retina
images and videos using iExaminer, D-Eye, Peek Retina, and iNview. To make the fair
comparison between different retinal imaging systems, we captured retinal images with
iPhone 6 using their compatible adapters and bumpers. In order to capture an image of
the dark retina, we first needed to use a light source for illumination. For this purpose,
we reflected the smartphone flashlight to the retina for D-Eye and iNview or use its own
light source on iExaminer and Peek Retina. The smartphone’s camera was used to capture
retina images and images were saved to smartphone’s memory.

Retinal imaging with smartphone-based systems

In our first set of experiments, we captured images from the printed retina in the retina
box using different smartphone-based retinal imaging systems. We placed the printed real
retina images at the bottom of the Peek Retina synthetic eye model box as shown in Fig. 3.
Then, we captured retina images from the optimum distance of each device in order to
get the largest field of view as shown in Fig. 4. With this set of experiments, we compared
the image quality and field of view of smartphone-based retinal imaging systems.

Figure 5 shows the captured printed real retina images using iExaminer, D-Eye, Peek
Retina, iNview. The original printed real retina images are shown in the first row. The
image at the top left corner is a normal retina image where there is no abnormality is
visible. The image at the middle of the top row belongs to a diabetic retinopathy patient
where there is clinically significant macular edema. The image on the right of the top
row belongs to a proliferative diabetic retinopathy patient where there are several visible
abnormalities. The rest of the images on each row are captured using smartphone-based
retinal imaging systems from retina box for each original printed real retina images at the
first row. Images at the second row are captured using iExaminer. We observe that the
image quality is good and the optic nerve and some central blood veins are visible. Since
some macula edema can be seen, these images can be used for diabetic retinopathy detec-
tion. Images on the third row are captured using D-Eye where the illumination does not
distribute evenly. However, we can still visualize the macular edema so they are helpful
for diabetic retinopathy detection. Images on the fourth row of Fig. 5 shows the captured
using Peek Retina. We observed that the field of view of Peek Retina is larger than iExam-
iner. The optic nerve and its surrounding vessels are visible, so these images can be used to
detect diabetic retinopathy. The images at the last in Fig. 5 are captured using iNview. We
observe that its field of view is the largest compared with other smartphone-based retinal
imaging systems. The image quality is very good with evenly distributed illumination.

To compare the field of view of the retinal imaging systems, Fig. 6 shows the captured
printed retina images using iExaminer, D-Eye, Peek Retina, and iNview, respectively. Even
if the printed retina image shows a larger portion of the retina, none of the smartphone-
based retinal imaging systems can capture the entire printed retina pattern. Fig. 6 shows
the printed image from a normal retina with the markers for the field of view of each
imaging system. We observed that the radius of field of views for iExaminer, D-Eye, Peek
Retina, and iNview are 32%, 40%, 45%, and 94% of the radius of printed fundus image,
respectively. iNview has the largest field of view compared with others where its field of
view is marked with the solid black line. D-Eye has the second largest field of view that
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Normal Retina DR - macular oedema DR - proliferative

Original Image|

iExaminer

D-Eye

Peek Retina

iNview

Fig. 5 Retinaimages. (1st row) Original printed real retina images, and their captured versions using (2nd
row) iExaminer, (3rd row) D-Eye, (4th row) Peek Retina, (5th row) iNview

is marked with a green dashed-dotted line. Peek Retina has almost the same size field of
view with D-Eye marked with a purple dashed line. However, their field of view is almost
half of the iNview. The smallest field of view belongs to iExaminer where it is only possible
to capture fovea and its surroundings that is marked with a red dotted line.

Diabetic retinopathy detection with deep learning

In our second set of experiments, we design several experiments for each smartphone-
based retinal imaging device to analyze the DR detection performance of the deep
learning framework for smartphone-based systems and compare them with the accuracy
of original retina images. The original retina images in the dataset are originally color
images and their resolution vary since they captured by different fundus cameras. How-
ever, AlexNet Deep Learning framework requires the inputs to have 227x227x3 pixels as
color images. Therefore, we first cropped pixels from right and left sides of each original
image to make it square shape. Then, we down-sampled the cropped square images into
227x227x3 as shown in Fig. 7a.

In order to train and test the deep learning network, we need to feed the CNN frame-
works with retina images captured by different smartphone-based devices. However,
there is no available real data captured by the smartphone-based retinal imaging device
in the literature. Therefore, we generate retina images by simulating the field of view for
each device using the retina images from EyePACS dataset as illustrated in Fig. 7b. We
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Fig. 6 Comparison of the field of view of each smartphone-based retinal imaging system using printed
normal retina image with field of view markers where the solid black line is for iNview, the green
dashed-dotted line is for D-Eye, purple dashed line is for Peek Reting, the red dotted line is for iExaminer

first segment the boundary of the original retina images in EyePACS and fit a circle to
its boundary using circular Hough transform. Second, the optic nerve is detected using
thresholding and morphological filters since the optic nerve is the brightest area in the
retina. Then, we generate a circular mask of each smartphone-based device using the
center of optic nerve as a circle center. The mask radius is calculated by multiplying the
radius of the original image boundary and the percentage of the radius of field of views in
Fig. 6. Finally, the original image is masked and cropped with respect to the mask center.
Examples of synthetic retina images for iExaminer, D-Eye, Peek Retina, iNview are shown
in Fig. 7c-g, respectively.

In the original image dataset, we have 13624 retina images from five different gradings
(i.e., 0:No DR, 1:Mild, 2:Moderate, 3:Severe, and 4:Proliferative DR) where their distribu-
tions are 9898, 920, 2108, 424, and 262, respectively. In order to simplify the problem, we
dropped the grade 1 and 2 and merged grade 3 and 4. Since no DR images are more than
other labels in the dataset, we randomly selected 686 no DR images and removed the rest
from the dataset in order to remove the data bias. As a result, we had 686 no DR and 686
DR images remaining in each subset as shown in Fig. 8. Then, we split our customized
dataset with a ratio of 1/9 into two subsets where the testing subset has 1234 images and

the training set has 138 images. We selected the bigger subset of original retina images



Karakaya and Hacisoftaoglu BMC Bioinformatics 2020, 21(Suppl 4):259 Page 14 of 18

Resize

Output
Image

Original Image Circle Detection Fovea Detection Mask Generation Output Image

(b)

(c) (d) (e) () (2)
Fig. 7 a Flow chart of original retina conversion images for AlexNet, b Flow chart of synthetic retina image

generation for smartphone-based retinal imaging systems. Example of images, ¢ Original image from
EyePACS dataset and generated synthetic images for d iExaminer, e D-Eye, f Peek Retina, g iNview

as a training set and the second subset from each synthetic retina subsets are used as
testing sets. After training the network with 1234 original retinal images, we tested the
network with 138 retinal images from each datasets including original, iExaminer, D-Eye,
Peek Retina, and iNview images. In total, we used 690 retinal images from five different
datasets.

Table 2 compares the classification accuracy of the deep learning network for different
testing images from original and synthetic smartphone-based retinal images. We repeated
the test with different sub-sampling rates of test images and their mean and standard
deviation values are given in Table 2. Since the network is trained with original images, it
shows the highest overall accuracy (82% with a standard deviation of 0.0258) for testing
with original images, as expected. The overall classification accuracies of smartphone-
based systems are sorted as 61%, 62%, 69%, and 75% for iExaminer, D-Eye, Peek Retina,
and iNview images, respectively. We observed that the overall network performance
increases as the field of view of the smartphone-based retinal systems get bigger where
their radius of printed fundus image are 32%, 40%, 45%, and 94% for iExaminer, D-Eye,
Peek Retina, and iNview, respectively. We also observed that the accuracy of detecting
healthy retina (No DR) is higher than retina with DR, especially for iExaminer, D-Eye,
and Peek Retina images. In addition, the accuracy of both labels is close to each other
for iNview images. The main reason is that iExaminer, D-Eye, and Peek Retina systems
can capture smaller areas of the retina and mainly their images are focused on the optic
disk and its surroundings. However, lesions generally appear on areas away from the optic
disk. Since iNview captures a wider field of view, where it is more probable to include
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Retinal Fundus Images: 13624 |

Label 0: No DR Label 1: Mild Label 2: Moderate Label 3: Severe Label 4: Proliferative
9898 920 2108 424 262

‘Merge Label 3&4‘
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Label 3&4: 686
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Label 3&4: 69 Label 3&4: 69 Label 3&4: 69 Label 3&4: 69

Fig. 8 Generation of customized dataset of retinal fundus images and its label distribution

lesions, it detects DR better than other smartphone-based retinal imaging systems. For
better visualization, we also show the overall, No DR, and DR classification accuracies in
Fig. 9 for original, iExaminer, D-Eye, Peek Retina, and iNview images.

Figure 10 compares the performance analysis of deep learning network using receiver
operating characteristic (ROC) curve for different testing images from original and syn-
thetic smartphone-based retinal images. To plot the ROC curve, we calculated the true
positive rate (TPR) and the false positive rate (FPR) by changing the threshold value for
the probability output of deep learning network. TPR is the probability of detecting No
DR images as No DR, also known as sensitivity and recall. FPR is the probability of false
alarm where No DR image is classified as DR and it is calculated as (1- specificity). ROC
analysis helps to select optimal threshold value for a specific dataset discarding the sub-
optimal solutions due to the class distributions. As threshold value changes, the TPR and
FPR change accordingly. Based on the specific system requirement, we can select any
threshold value to lower the false alarm rate or increase the detection accuracy.

A specific threshold value in ROC generates an equal error value for false positive and
false negative rate that is also known as equal error rate (EER). For lower EER, the over-
all accuracy is higher. For original, iExaminer, D-Eye, Peek Retina, and iNview datasets
respectively, EERs are calculated as 16.92%, 35.09%, 39.52%, 31.37%, and 23.44% for the
following threshold values, 0.6283, 0.3915, 0.3007, 0.2625, and 0.7029. The area under the

Table 2 Classification accuracy of deep learning network

Overall No DR DR
Original 0.81644+0.0258 0.709440.0431 0.923440.0372
iExaminer 0.6144+0.0552 0.7661£0.0582 0.446440.0894
D-Eye 0.621140.0593 0.7371£0.0566 0.48274+0.0784
Peek Retina 0.688940.0353 0.839740.0451 0.514040.0539
iNview 0.7531£0.0311 0.609440.0491 0.896940.0394

Note that each result shows the mean and its standard deviation as mean=std

Page 15 0of 18
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Fig. 9 Classification accuracy of deep learning network for different testing images from original and
synthetic smartphone-based retinal images

curve (AUC) values for the ROC curves are 0.8835, 0.6536, 0.6826, 0.7318, and 0.8649
for original, iExaminer, D-Eye, Peek Retina, and iNview datasets, respectively as shown
in Table 3. As can be seen in ROC curves, original retina images marked with solid
blue line presents the best result compared with other smartphone-based retinal image
datasets where all retinal structures are included in the input images, including the optic
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False Positive Rate (FPR)

Fig. 10 Performance analysis using ROC for different testing images from original and synthetic
smartphone-based retinal images
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Table 3 Area under the curve (AUCQ), Equal Error Rate (EER), and Selected Threshold for EER
parameters at ROC curve for different testing images from original and synthetic smartphone-based
retinal images

AUC Equal Error Rate Threshold for ERR
Original 0.8835 0.1692 0.6283
iExaminer 0.6536 0.3509 0.3915
D-Eye 0.6826 0.3962 0.3007
Peek Retina 0.7318 0.3137 0.2625
iNview 0.8649 0.2344 0.7029

nerve, fovea, macula, and blood vessels. Since the network is trained with retina images
that have a large field of view, where almost 100 degree of the retina is visible. However,
smartphone-based retinal systems can visualize a smaller area from the retina. iNview
shows the best among others and close the results with original images because iNview
covers almost the same amount of area (94%) compared to the fundus camera. When the
smaller area is captured from the retina, the network performance is the lower as shown
in Fig. 10. We observed that the performance of the network depends on the field of view
of the retinal imaging system.

Conclusions

This paper first investigated the smartphone-based portable retinal imaging systems,
namely iExaminer, D-Eye, Peek Retina, and iNview to compare their image quality. Then,
we adapted a deep learning framework using transfer learning. Using smartphones is an
emerging research area in designing small-sized, low-power, and affordable retinal imag-
ing systems to perform DR screening and automated DR detection due to the size, weight,
and price of fundus cameras. Smartphone-based portable retinal imaging systems avail-
able on the market are capable of capturing and saving retina images without analyzing
them using any image processing techniques to detect diabetic retinopathy development.
Based on the results, iNview retinal imaging system has the largest field of view and
better image quality compared with iExaminer, D-Eye, and Peek Retina systems. The
overall classification accuracies of smartphone-based systems are sorted as 61%, 62%,
69%, and 75% for iExaminer, D-Eye, Peek Retina, and iNview images, respectively. We
observed that the network DR detection performance decreases as the field of view of
the smartphone-based retinal systems get smaller, where iNview is the largest and iEx-
aminer is the smallest. The smartphone-based retina imaging systems can be used as an
alternative to the direct ophthalmoscope. However, the field of view of the smartphone-
based retina imaging systems plays an important role in determining the automatic DR
detection accuracy.
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