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Abstract

Background: Obtaining data from single-cell transcriptomic sequencing allows for
the investigation of cell-specific gene expression patterns, which could not be
addressed a few years ago. With the advancement of droplet-based protocols the
number of studied cells continues to increase rapidly. This establishes the need for
software tools for efficient processing of the produced large-scale datasets. We address
this need by presenting RainDrop for fast gene-cell count matrix computation from
single-cell RNA-seq data produced by 10x Genomics Chromium technology.

Results: RainDrop can process single-cell transcriptomic datasets consisting of 784
million reads sequenced from around 8.000 cells in less than 40 minutes on a standard
workstation. It significantly outperforms the established Cell Ranger pipeline and the
recently introduced Alevin tool in terms of runtime by a maximal (average) speedup of
30.4 (22.6) and 3.5 (2.4), respectively, while keeping high agreements of the generated
results.

Conclusions: RainDrop is a software tool for highly efficient processing of large-scale
droplet-based single-cell RNA-seq datasets on standard workstations written in C++. It
is available at https://gitlab.rlp.net/stnieble/raindrop.
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Background
Droplet-based single-cell RNA-seq (dscRNA-seq) protocols have gained increasing atten-
tion due to their ability to profile the transcriptome of thousands of cells in a single assay.
Information about gene expression in terms of cDNA counts within certain cells is a cru-
cial processing step for further analysis such as clustering [1, 2] or imputation [3]. The
gained knowledge can be key to many biological research areas; e.g. the identification
of genetic differences between cancerous and non-cancerous cells [4] or finding connec-
tions between different cell types [5, 6]. Thus, the creation of gene-cell-count matrices
from dscRNA-seq data is of high technical importance. For each cell this matrix shows
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the estimated count of genes within that cell based on the number of reads mapping
to corresponding transcript sequences. Since the number of studied cells continues to
increase this can be an enormously time-consuming task. Thus, efficient processing of
the generated data is critical.
However, existing software tools often suffer from scalability issues due to the mas-

sive amounts of reads. For example, calculating a gene-cell expression matrix (also called
feature-barcode matrix) with the popular Cell Ranger pipeline [7] can take several hours
even for a medium-sized input read dataset. This pipeline is based on alignments using
STAR [8] which are expensive to calculate. Srivastava et al. [9] recently used a different
approach in their tool Alevin by relying on quasi-mappings using a suffix array based
structure [10]. They showed that this approach produces similar results while only requir-
ing a fraction of the time compared to Cell Ranger. However, for larger datasets Alevin
still needs a significant amount of time. Since the number of studied cells continues
to increase, corresponding runtime and memory requirements will become even more
severe, especially for ultra-large datasets such as the recently published 1.3 million-cell
dataset [11].
We present RainDrop, a fast tool for the computation of gene-cell count matrices from

dscRNA-seq data produced by 10x Genomics Chromium v2 protocols. Our approach
avoids compute-intensive alignments by employing fast k-mer lookups to a subsampled
precomputed hash table based on minhashing. This allows RainDrop to process droplet-
based sequence datasets in a fraction of the time needed by state-of-the-art tools while
maintaining high agreements on expressed genes per cell with established methods like
Cell Ranger and Alevin. RainDrop also shows high Spearman correlation compared to
bulk RNA-seq data. Moreover, index creation in RainDrop is significantly faster and
more memory efficient in comparison to Alevin. Similar subsampling strategies have
already been successfully applied in metagenomics; e.g. [12, 13]. We are the first to apply
such a method in the area of mapping single-cell sequencing reads, whereby RainDrop
is based on the scheme used by MetaCache [13]. The classification method has been
adjusted to work with transcriptomic data in order to account for the higher amount of
k-mer ambiguity caused by alternative splicing. We have additionally inserted the map-
ping of transcripts to their corresponding genes into the database. Further important
enhancements include the processing of Chromium v2 protocols, whitelisting of valid cell
identifiers, and deduplication.

Implementation
RainDrop accepts a set of reads sequenced under a 10x Genomics Chromium v2 protocol
as input and generates a gene-cell count matrix showing gene expression for individual
cells within the sample. In this protocol, cells are distinguished by tagging with a so-called
cellular barcode (CB). In general, the capture rate of mRNA in dscRNA-seq experiments
is relatively low [14]. This can be compensated for by performing many rounds of PCR
amplification, which may in turn skew the distribution of molecules per cell. As a coun-
termeasure, each molecule is also tagged by a unique molecular identifier (UMI). Similar
to the CB this can be used to identify unique molecules and to correct PCR amplification
bias. Input reads are in paired-end format with the first mate containing a fixed length
CB and UMI string. These two codes can be used to assign a read to a unique cell and to
a molecule within that cell. The second mate contains the actual read data which can be
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mapped to a gene. While CBs and UMIs are drawn from a predetermined set of possi-
ble codes only a fraction of those will ultimately appear in a dataset. The true set of valid
codes is therefore unknown during processing and has to be extracted from the data in
order to ensure correct mapping of reads.
RainDrop requires a transcript database for querying together with a correspond-

ing mapping of transcripts to genes in form of a two-level taxonomy. This database
(stored as a hash table) is created in a preprocessing step from a given FASTA file
containing all reference transcripts of a transcriptome. Furthermore, the transcript-to-
gene mapping needs to be generated by extracting this information from corresponding
GTF files.
The overall workflow of RainDrop is illustrated in Fig. 1. It consists of three processing

stages as well as an output stage. In the first stage a whitelist of valid CBs is created by
extracting all CBs which occur above a certain threshold. In the second stage each read
is mapped to a cell using its CB before mapping it to genes using the transcript-to-gene
mapping information. Furthermore, reads whose CB cannot be matched within an edit
distance of one to a whitelisted CB are discarded. In the third stage all mappings within
a cell are deduplicated using the directional method [15] and the output is generated. A
total of three output files is written to disk. One file contains the gene-cell count matrix
in sparse COO format while the other two files contain a mapping from genes/cells to
coordinates of the matrix.
In the following we will present the individual stages in more detail.

Fig. 1 General workflow of RainDrop
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Database creation

Reads are mapped to a set of transcripts by adapting an approach based on minhashing
of k-mers, a strategy previously applied to metagenomic read classification [13] As shown
in Fig. 2, a hash table (key-value store) containing a subset of k-mers (keys) from each
transcript is created. Each transcript is distributed into m windows Wm with a certain
stride t and size w. The union of all windows covers the whole transcript. In general we
recommend choosing a stride and size such that neighboring windows are not disjoint
either. As default the stride is chosen to be t = w− k + 1. This way each possible k-mer is
considered, however, windows only share a k-mer if it occurs on different positions within
the same transcript. To reduce memory consumption, each window is represented by a
so-called sketch consisting of a small number of features which are based on a subset of all
k-mers within that window. A sketch is created by first applying a suitable hash function
h1 to all k-mers within a window and then selecting the s smallest k-mer hash values as
features. The sketch of each window is inserted into a hash map using a secondary hash-
function h2. As a feature may occur in multiple transcripts or windows this results in a
multi-value hash table. Features that occur in too many transcripts or windows may be
discarded to avoid overflowing the hash table value store and to improve performance
during the read mapping phase.
The resulting hash table is written to disk together with auxiliary data structures to

form a database that allows for the mapping of features to transcripts and transcripts to
genes. Transcript-to-gene mapping is enabled by a two-level taxonomy generated from a
GTF annotation file.

Whitelist generation

A whitelist of CBs is generated at the beginning of each sample analysis in order to esti-
mate the amount of cells in the sample and to determine which CBs represent these cells.

Fig. 2 Pre-processing stage of RainDrop
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A CB consists of several predefined nucleotides and serves as a unique identifier for the
cell of origin. As CBs are sequenced along with the read data, they might be affected by
sequencing errors, resulting in altered barcodes. As a consequence reads may be assigned
to wrong cells which in turn would lead to a distorted gene cell matching result. As the
true CBs are unknownwe need to rely on heuristics to identify them.We assume that truly
expressed CBs will be present multiple times and we can therefore estimate the list of all
valid CBs, called the whitelist, by discarding rare CBs. Barcodes are sorted by how often
they occur in descending order and a prefix sum over the number of occurrences is calcu-
lated. All CBs whose prefix sum is below a predefined fraction of all reads are considered
valid and will be added to the whitelist of this sample. The remaining bar codes are con-
sidered faulty. In the mapping stage, we will try to assign them to one of the whitelisted
CBs by searching for a match within an edit distance of one.

Mapping stage

During mapping, both mates of the sequencing data are read from disk and CBs are
matched with the whitelist to identify cells of origin. If a CB cannot be found in the
whitelist, RainDrop looks for a match within an edit distance of one. If such a match
is found the corresponding read is assigned to the corresponding cell. If no match is
found the CB is considered erroneous and the whole read is discarded. After selecting a
cell the read is mapped to a set of transcripts. A given read is split into m windows Wi,
i < m, i ∈ N and for each window k-mers are extracted as a sketch using hash function
h1 (see Fig. 3). These extracted features are looked up in the database to locate transcript
windows that contain similar features. We assume that a read consists of consecutive base
pairs within a transcript. As a result hits in consecutive windows within a predefined
range of size r are accumulated. Hits that are spread out too far will not be aggregated in
order to avoid spurious hits. The resulting maximum count of shared features within any
range of consecutive windows is the mapping score of the given read to a certain tran-
script. If this score exceeds a given threshold we consider the transcript to be a mapping
candidate.

Fig. 3 Mapping stage of RainDrop
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Candidate transcripts are mapped to corresponding genes. Due to spurious hits and
alternative splicing, a read may have several candidate transcripts. Multiple transcripts
identified as candidates create conflicts. There are two possible cases that can occur:

1 All identified transcripts map to the same gene. In this case the conflict can be
resolved by simply mapping the read to this gene. The reported mapping score for
this gene is set to the maximum mapping score for each candidate transcript.

2 A read maps to multiple transcripts that correspond to different genes. While it
might be possible to assign the read to all identified genes with certain weights, we
decided to discard these ambiguous reads instead. As a result we only output
counts for reads that map to a single gene.

Figure 3 summarizes the read mapping stage.

Deduplication

In the final stage we deduplicate the identified genes in each cell to correct for PCR ampli-
fication bias which may lead to certain genes being over-expressed. We deduplicate all
valid matches per unique cell using the directional approach proposed by UMI-tools [15].
With this method we can determine reads originating from the same molecule. As we do
not want to count a molecule within a cell multiple times we can merge those genes into a
single one such that the distribution of genes per cells is less prone to PCR amplification
bias. As UMIs may also be erroneous, we match all UMIs within an edit distance of one.
In this case we only consider them to be the same UMI if we find one UMI in this match-
ing that has a higher occurrence by a given factor. This means that similar UMIs are kept
separate if there is no clear indication that one is only created through sequencing errors
as a faulty UMI should be expressed significantly fewer times than the correct UMI on
which it is based.

Output

RainDrop outputs a gene-cell-count matrix in sparse coordinate (COO) format. A coor-
dinate pair (i, j) indicates that the gene corresponding to column j is expressed in the
cell corresponding to row i. RainDrop provides two additional output files mapping cell
names and gene names to rows and columns, respectively. The order of genes is given by
the order of which they appear in the provided taxonomy. The order in which the cells are
written is random and influenced by the execution order of the threads.

Parallelization

Participating CPU threads read batches consisting of the first mate of the reads and create
local maps counting how often a CB appears within their batch. Individual results are
then merged into a global CB-count map and the thread reads the next batch, if available.
Once all batches are processed a single thread sorts the resulting map and calculates the
threshold to determine the whitelist.
In the mapping stage, data is again read from file and each thread maps its batch

independently of other threads before merging it into a global buffer. This buffer is dis-
tributed among all threads such that each thread deduplicates a batch of cells identified
by their CBs. The final result is written to disk. As each step depends on the results
of the previous step synchronization barriers are necessary in-between individual stages
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(whitelisting, mapping, deduplication). Reading/writing and processing phases of the data
are interleaved to minimize idle CPU time during disk IO.

Results
We compared the performance and accuracy of RainDrop to Cell Ranger v.3.1.0 [7]
and Alevin v.0.13.1 [9]. All methods were evaluated on four different datasets, down-
loaded from the 10x Genomics website created under the 10x Chromium v2 protocol
sequenced by an Illumina HiSeq4000 (Illumina HiSeq2500) with a read length of 98. Two
of the datasets originate from mouse brain cells (neurons_900, neuron_9k) and two from
human (t_4k, pbmc8k). Reference transcriptomes were generated from the mm10-3.0.0
genome formouse and the GRCh38-3.0.0 genome for human using RSEM (rsem-prepare-
reference) [16]. RSEM creates the transcriptome by combining the information from a
given genome and genome transcript annotation file. Additionally RSEM is able to create
index structures for common aligners such as Bowtie2.
RainDrop uses a sketch size s = 16 and k = 16 as default. The window size for

a read of length R is determined as w = (R + k − 1)/2 (56 for the given datasets).
Additionally, we limit each feature to a maximum of 1000 locations within the refer-
ence to remove unnecessary overhead from processing highly ambiguous features. The
mapping threshold parameter is set to 28. We run Alevin during indexing with the
--keepDuplicates flag. Apart from that Alevin was executed using default parame-
ters and the --dumpCsvCounts flag to write the output while for Cell Ranger we chose
parameters according to the proposed values supplied with the datasets and additionally
provided the flags --localmem=128 to limit the memory used by Cell Ranger to 128GB
and --no-secondary, which excludes all secondary analysis which is usually performed
by Cell Ranger. The limitation of memory should not affect the runtime of Cell Ranger as
it is more than the measured maximum memory required by Cell Ranger to evaluate the
data sets.
All tests have been performed on a system with an Intel Xeon E5-2683v4 CPU with

256GB of DDR4 RAM running Ubuntu 16.4. Input files are read from SSD. All methods
were executed using 16 threads.

Runtime and scalability

Table 1 shows the runtimes of each method for the four tested datasets. Note that prepro-
cessing for index or database creation is excluded from these runtimes (as this only needs
to be done once per reference transcriptome). RainDrop is fastest in all cases with a max-
imum (average) speedup of 30.4 (22.6) compared to Cell Ranger and 3.5 (2.4) compared
to Alevin.

Table 1 Runtime for different datasets and 16 threads. Datasets are ordered by genome and size

Dataset neurons_900 neuron_9k t_4k pbmc8k

# Reads 52.8M 383.4M 335.2M 784.1M

Filesize 18.3GB 145GB 117GB 273GB

RainDrop 1m59s 19m24s 14m50s 36m10s

Alevin 6m55 32m15s 33m31s 84m36s

Cell Ranger 60m23s 350m26s 291m21s 804m17s
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We further investigated the scalability of RainDrop with respect to the number of
CPU threads for the neurons_900 and neurons_9k datasets (see Table 2). Starting from
2 Threads the scaling of RainDrop is close to linear. Compared to the single thread vari-
ant RainDrop scales less well as our parallelization requires locks and synchronization
barriers which generate an additional overhead.
Table 3 compares database/index creation times and corresponding memory consump-

tion of RainDrop and Alevin for the two utilized transcriptomes. RainDrop’s indexing
structure (hash table) can be build three time faster than the suffix array used by Alevin
while consuming only half the amount of memory.

Mapping quality

We evaluated mapping quality in terms of

1 Agreement between different tools (RainDrop, Cell Ranger, Alevin) and
2 Spearman correlation of identified genes compared to a bulk dataset processed by

RSEM and Bowtie2.

Cell-agreement between two tools is calculated as the average count of genes found
present within a cell by both tools divided by the amount of genes found present in a cell
by at least one tool. For this test we first determined all cells identified by both meth-
ods and calculated the corresponding confusion matrices. We additionally filtered these
matrices such that genes on which the tools disagree on the occurrence in a cell, only
those remain that express a hit count greater than 1.0. Table 4 shows the resulting con-
fusion matrices for the comparison between RainDrop to Alevin and between RainDrop
and Cell Ranger. Agreement values were derived from these filtered matrices. Compared
to Cell Ranger (Alevin) an agreement of at least 98.3% (95.2%) is achieved for all datasets.
It can be seen that RainDrop and Cell Ranger identify almost the same genes in a cell
while Alevin identifies slightly more.
We additionally show agreement on gene level (gene-agreement) in Table 5. For this

we calculate for each method which genes are assigned to which cells (identified by their
UMI). When creating the confusion matrix of two methods we identify all genes found by
bothmethods. As with the cell-agreementmatrices we filter any disagreements, where the
expressed hit count does not exceed 1.0. Similar to the cell-agreement the gene-agreement
is calculated as the count of cells found to contain a gene by both methods divided by the
count of cells where at least one method found the gene present within a cell. Further-
more, in Table 6 the mean and standard deviation of the agreement matrices at cell-level
and gene-level are listed for the different methods compared to RainDrop.

Table 2 Runtimes (Speedup) of RainDrop for different numbers of CPU threads on the neurons_900
and neurons_9k dataset

Method RainDrop

Dataset neurons_900 neurons_9k

1 Threads 18m42s (1) 189m15s (1)

2 Threads 10m58s (1.67) 128m12s (1.48)

4 Threads 5m42s (3.21) 59m34s (3.18)

8 Threads 3m16s (5.62) 31m55s (5.94)

16 Threads 1m59s (9.25) 19m24s (9.76)
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Table 3 Runtime and memory consumption for database/index creation

Method RainDrop Alevin

Dataset mm10-3.0.0 GRCh38-3.0.0 mm10-3.0.0 GRCh38-3.0.0

Time 0m54s 1m03s 2m55s 3m35s

Size 1.3GB 1.5GB 2.6GB 3.2GB

To further emphasize that identified gene counts are biologically meaningful we have
performed another test where we aggregated the genes of all cells and compared this
distribution to an abundance estimation of bulk data from the same category (Acces-
sion numbers SRR1303990, SRR1373442, SRR1644186, SRR5074291 [17–20] for human
and SRR327047, SRR3532922, SRR6753775 [21–23] for mouse). To process the bulk data
we used RSEM (rsem-calculate-expression) which applies Bowtie2 for read mapping. To
compare the single-cell data with the bulk mapping results we adopted the strategy pro-
posed by Srivastava et al. [9]. For each single-cell result we aggregated the individual
count of each individual gene over all cells to obtain the total gene count observed from
the data. To quantify this count we calculated the Spearman correlation of the aggregated
gene count distribution with the gene count distribution obtained from RSEM (Bowtie2).
We excluded all genes that were found neither in the bulk nor in the single-cell data
as this would unnecessarily increase correlation level for datasets with only a few genes
present, overshadowing differences in the correlation of the identified data. The resulting
correlation coefficients are shown in Table 7. We can see that a higher amount of data of
the same species increases correlation levels. Overall correlations are very similar for the
three tested tools, whereby RainDrop is highest on average.

Threshold evaluation

We additionally varied the values for the threshold parameter and the window size used
by RainDrop to evaluate their influence on the results. We used the neurons_900 dataset
and tested different thresholds for window sizes of 56 and 34 with a constant sketch size
of 16. The window size is applied to the reference as well as the read sequence to ensure
a consistent sketching. In the first case the maximum amount of k-mers extracted as fea-
tures in a read is 33 while in the second case this number increases to 70. Note that we
therefore need different thresholds to accommodate for the different count of possible
hits. To measure the results we used the average cell-agreement value (Fig. 4) and Spear-
man correlation with bulk data (Fig. 5). The results show that a low threshold only slightly
reduces the agreement while the Spearman correlation is more affected. However, the
overall gradient indicates that underestimation of the threshold near the peak is tolerable

Table 4 Cell-agreement matrix (C) of each method compared to RainDrop for different datasets.
Datasets are ordered by genome and size. Columns of the matrices show the average value of genes
present (left) or absent (right) in cells calculated by RainDrop. Rows show the average gene count
present (top) or absent (bottom) in cells calculated by CellRanger (Alevin)

Method Cneurons_900 Cneuron_9k Ct_4k Cpbmc8k

Alevin

[
2197 56

12 28788

] [
2151 42

15 28846

] [
965 39

6 32528

] [
1321 60

6 32151

]

CellRanger

[
2205 31

14 28802

] [
2160 21

15 28856

] [
937 5

8 32588

] [
1281 6

10 32240

]

Reference used mm10-3.0.0 mm10-3.0.0 GRCh38-3.0.0 GRCh38-3.0.0
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Table 5 Gene-agreement matrix (G) of each method compared to RainDrop for different datasets.
Datasets are ordered by genome and size. Columns of the matrices show the average value of cells
containing (left) or not containing (right) a gene calculated by RainDrop. Rows show the average
count of cells containig (top) or not containing (bottom) a gene calculated by CellRanger (Alevin)

Method Gneurons_900 Gneuron_9k Gt_4k Gpbmc8k

Alevin

[
179 8

1 1951

] [
1136 22

9 10414

] [
237 11

1 5207

] [
469 38

2 9361

]

CellRanger

[
180 3

1 1954

] [
1158 14

10 10398

] [
236 3

2 5216

] [
466 18

3 9383

]

Reference used mm10-3.0.0 mm10-3.0.0 GRCh38-3.0.0 GRCh38-3.0.0

as the gradient here is not steep. However, choosing a threshold that is too high results
in a drastic and more sudden drop of both agreement and correlation. In our tests this
is only happening when the k-mer threshold is set very close to the maximum (32 or 70
respectively). Our results indicate that a threshold of approximately 80% of the maximal
number of k-mers is a good choice.

Discussion
Recent advances in single-cell transcriptomic sequencing have resulted in the produc-
tion of large-scale NGS datasets that allow for the investigation of a number of biological
questions. Parallelization of existing methods on compute clusters [24, 25] or GPUs [26]
has been proposed to reduce corresponding runtimes. However, by applying efficient
algorithmic techniques – like it is done in RainDrop – it is possible to perform impor-
tant computational tasks such as the cell-to-gene count matrix generation on standard
workstations without the need for specialized hardware platforms.
RainDrop is able to perform this task in substantially shorter time than its competi-

tors by relying on exact substring matching with hash tables, subsampling of k-mers,
and CPU multi-threading. Our performance evaluation further reveals that RainDrop
achieves comparable mapping quality to both Cell Ranger and Alevin. Further attractive
features of our implementation include thread scalability, low index memory consump-
tion, and fast database creation times which allow for efficient execution on modern
laptops and systems with large core counts.
Corresponding runtimes and memory requirements can be even further reduced by

using smaller sketch sizes since this reduces both database size and lookups. However,
this usually leads to a slightly lower sensitivity. The default parameters of RainDrop offer
a good trade-off.

Table 6Mean ± standard deviation of Cell-agreement (rows 1 and 2) and Gene-agreement (rows 3
and 4) of each method compared to RainDrop for different datasets. Datasets are ordered by
genome and size

Method Cneurons_900 Cneuron_9k Ct_4k Cpbmc8k

Alevin 0.97 ± 0.010 0.97 ± 0.010 0.96 ± 0.013 0.95 ± 0.012

CellRanger 0.98 ± 0.006 0.98 ± 0.005 0.99 ± 0.005 0.99 ± 0.003

Method Gneurons_900 Gneuron_9k Gt_4k Gpbmc8k

Alevin 0.95 ± 0.19 0.95 ± 0.19 0.93 ± 0.22 0.92 ± 0.23

CellRanger 0.96 ± 0.14 0.95 ± 0.17 0.95 ± 0.18 0.94 ± 0.19

Reference used mm10-3.0.0 mm10-3.0.0 GRCh38-3.0.0 GRCh38-3.0.0
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Table 7 Spearman correlation against bulk datasets

Method #Reads RainDrop Alevin Cell Ranger

neurons_900 52.8M 0.793 0.790 0.790

neuron_9k 383.4M 0.834 0.831 0.820

t_4k 335.2M 0.741 0.722 0.740

pbmc_8k 784.1M 0.815 0.799 0.811

Choosing a low threshold to decide whether or not a read has enough hits to be con-
sidered to originate from a transcript can lead to a notable drop in accuracy as ambiguity
increases which in return results in discarding lots of reads. Furthermore, choosing a very
high threshold can also lead to a drastic decrease in accuracy as too many reads are dis-
carded. Our results indicate that the latter is only a problem, when choosing a threshold
that enforces a near 100% match of features. Thus, we have chosen a moderately high
threshold. In general we propose a threshold of around 80% of the maximum k-mer count
of a read. A larger window size decreases runtime as fewer features per read are detected
at the cost of being a worse descriptor of the read leading to a lower accuracy. As a trade-
off following the results of this paper we chose a window size of 56. This ensures that a
read is only discarded if all candidate genes have a high probability of being the read’s ori-
gin, i.e., all candidate genes have a region that shares a very similar sketch with regions
of another candidate gene. However, discarding these reads may in fact not drastically
decrease the abundance estimation accuracy if enough reads are present since a truly
expressed gene may be covered by other reads originating from different, less ambiguous
regions of the gene.
Our results show that simply discarding ambiguous reads does not lead to notably lower

mapping quality. We observed that RainDrop expresses similar or even slightly higher
Spearman correlation compared to the bulk datasets than both Cell Ranger and Alevin.
Furthermore, agreement matrices between different tools indicate high similarities for
reads with a hit count greater than 1. Some of the differences can be explained by the
utilized methods for whitelist generation.

Fig. 4 Mean Cell-Agreement for different thresholds and window sizes
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Fig. 5 Spearman Correlation of RainDrop (dataset: neurons_900) against bulk-dataset (SRR3532922) for
different thresholds and window sizes

Conclusion
We have presented RainDrop – amethod for fast gene-cell activationmatrix computation
from dscRNA-seq data together with a corresponding publicly available implementation.
By relying on a big data approach based on k-mer subsampling we can scale effi-
ciently towards large collections of single-cell transcriptomic sequencing data on standard
workstations.

Availability and requirements
Project name: RainDrop
Project home page: https://gitlab.rlp.net/stnieble/raindrop
Operating system(s): Linux
Programming language: C++
Other requirements: gcc
License: GPL-3
Any restrictions to use by non-academics: according to license
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CB: Cellular bar code; UMI: Unique molecular identifier; dscRNA-seq - Droplet-based single-cell RNA-seq; COO:
Coordinate format
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