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Abstract

Background: Given a binary tree T of n leaves, each leaf labeled by a string of length
at most k, and a binary string alignment function ⊗, an implied alignment can be
generated to describe the alignment of a dynamic homology for T . This is done by first
decorating each node of T with an alignment context using ⊗, in a post-order
traversal, then, during a subsequent pre-order traversal, inferring on which edges
insertion and deletion events occurred using those internal node decorations.

Results: Previous descriptions of the implied alignment algorithm suggest a technique
of “back-propagation” with time complexityO

(
k2 ∗ n2

)
. Here we describe an implied

alignment algorithm with complexityO
(
k ∗ n2

)
. For well-behaved data, such as

molecular sequences, the runtime approaches the best-case complexity of �(k ∗ n).

Conclusions: The reduction in the time complexity of the algorithm dramatically
improves both its utility in generating multiple sequence alignments and its heuristic
utility.

Keywords: Dynamic homology, Implied alignment, Multiple string alignment,
Phylogenetics, Sequence alignment, Tree alignment

Background
Implied Alignment (IA) was proposed by [1] as an adjunct to Direct Optimization (DO)
[2, 3] to be used in phylogenetic tree search to provide both verification and more rapid
heuristic analysis. The method was originally implemented in later versions of MALIGN
[4] and has been a component of POY [5–9] since its inception. Amore formal description
of the algorithm was presented in [6] and [2]. Although originally designed for alignment-
free phylogenetic analysis (dynamic homology, [10]), the procedure was first used as a
stand-alone multiple sequence alignment (MSA) tool by [11] in their analysis of skink
systematics.
IA was originally described in the context of parsimony-based phylogenetic analysis

and was later extended to probabilistic model-based approaches by [12] and its imple-
mentations were described by [9, 13]. Similar MSA approaches also based in probabilistic
analysis have been described e.g by [14] and [15], and implemented in PRANK [16].
Whiting et al. found that IA was superior (in terms of tree optimality score) to other
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MSA methods in both parsimony and likelihood analyses. This observation has been
repeatedmultiple times (e.g. [17–20]; summarized in [21]). The use of IA as anMSA algo-
rithm as well as its use in the “static approximation” procedure [22] benefits greatly from
improvements in the time complexity we present in this paper.
In a broader context, IA is a heuristic solution to the NP-hard Tree Alignment Problem

(TAP) defined by [23]. As such, any individual IA is not guaranteed to be either optimal
or unique, with potentially an exponential number of equally optimal implied alignments
for any given binary tree.
The IA algorithm presented in this paper takes a different intellectual approach to deriv-

ing alignments than earlier versions of IA. Previous algorithmic approaches relied on DO
assigning median sequences to the graph vertices. These sequences were then consumed
by IA to produce the full alignment. Here, we describe IA as assigning “preliminary con-
texts” to the graph vertices, and later consuming these contexts to produce the median
sequences and the full alignment.
The algorithm uses the repeated application of a pairwise string alignment function

to perform an efficient MSA for a given binary tree whose leaves are labeled by strings,
i.e. the tree describes the relationship of those strings. The more similar the initial leaf
labelings the better the algorithm performs. Thus, while this algorithm has general use for
performing an MSA, it is especially well-suited for the alignment of biological sequences
where the strings are highly similar and a binary tree describing the strings’ relationships
can be provided. Below, we provide an example of the IA algorithm’s performance on
biological data.

Definition of the heuristic function
In order for an MSA to be inferred, there are constraints on the heuristic alignment func-
tion used to decorate the tree prior to performing the IA algorithm. As long as these
constraints are satisfied, the implementation details of the function are agnostic to the IA
algorithm presented here.
Let � be a finite alphabet of symbols such that |�| ≥ 3. Let (−) ∈ � be a gap symbol,

which will have a special meaning in the context of an alignment. Let P≥1(X) denote the
powerset of X, minus the empty set. Let �� be the alphabet of the following symbols:

�� = BOTH P≥1(�) P≥1(�)

| LEFT P≥1(�)

| RIGHT P≥1(�)

| GAPPED

That is, �� contains all pairs of elements of P≥1(�) tagged as BOTH, all elements of
P≥1(�) tagged as LEFT, all elements of P≥1(�) tagged as RIGHT, and an additional
element GAPPED. This construction of �� extends the original alphabet � to preserve
alignment information in the algorithms presented below. Note that if |�| = x then
|��| = 22x. This follows from the fact that |P≥1(�)| is equal to one less than the size of
the power set of �, due to P≥1(�) disallowing the empty set.
Let �∗

� be the set of all finite strings over the alphabet �� . Let ⊗ : �∗
� × �∗

� →
(
R≥0, �∗

�

)
be a heuristic function that returns a nonnegative alignment cost and an align-

ment result in �∗
� . It is required that ⊗ be commutative but it need not be associative.
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Both of these constraints will be explored later in the “Discussion” Section. These con-
straints are necessary but not sufficient for a heuristically optimal implied alignment to
be inferred on the alignment function.
It is worth noting the motivation of the constructions defined above. Most pairwise

string alignment functions take two finite strings of symbols from the original alphabet
and supply a new finite string of symbols from the original alphabet.We can represent this
class of pairwise string alignment functions by letting�∗ be the set of all finite strings over
the alphabet P≥1(�) and letting � : �∗ × �∗ → (

R≥0, �∗). The results of � can con-
tain cases of ambiguity where it cannot be inferred which input elements correspond to
which output elements, but the construction of⊗ never produces these cases of ambiguity
due to the tagging of each element. The preservation of this non-ambiguous relationship
between input and output is required for the algorithmic improvements presented below.

Overview of the implied alignment algorithm
The IA algorithm provides an MSA for a binary tree T of n leaves, each leaf containing a
string with symbols in� and length at most k. To generate this alignment, we will traverse
T twice. First, we perform a post-order traversal—from the leaves to the root—assigning
the results of ⊗ as a “preliminary context” decoration to each node. Second, we perform a
pre-order traversal—from the root to the leaves—aligning each preliminary context with
its parent to assign a “final alignment” decoration to each node.
Using a binary string alignment function (like ⊗) to produce an MSA efficiently relies

on the output of binary operations combined across the “global scope” of T . However, at
each step in the post-order traversal, the only information known at a given node is the
information contained in its subtree. Therefore, information for the entirety of T is only
known at completion of the post-order traversal. When performing the subsequent pre-
order traversal, we take the “complete” scope available at the root node and thread the
information towards the leaves. At each pre-order step, we take the “complete” context
threaded from the root and combine it with the preliminary context derived during the
post-order pass to assign the final alignment on that node. Thus, we collect all requisite
information for an MSA during the post-order traversal and then apply that information
during the pre-order traversal to derive the MSA.
As noted above, the time complexity of the IA algorithm’s pre-order traversal in pre-

vious work was O
(
k2 ∗ n2

)
. We are able to improve this by, during the post-order pass,

tagging each element of a string on a node vx with information that notates on which
subtree of vx that element originated. We can lift each symbol in � into �� through
the alignment process. Upon completion of the post-order traversal, each node in T will
have a string in �∗

� . Each element of said strings are tagged with one of four options
enumerated above, representing from which child node the information of that element
originated, relative to that node. Those tagged BOTH originated from both subtrees, those
tagged LEFT originated from the left subtree, those tagged RIGHT originated from the
right subtree, and those tagged GAPPED originated from neither subtree (i.e., elsewhere
in T ). Because elements tagged GAPPED originated from neither subtree, GAPPED those
elements cannot be created during the post-order, only derived during the pre-order.
This tag on each element provides contextual information that allows for an efficient

processing of the elements in the pre-order traversal. During the pre-order traversal, a
node’s preliminary context is “zipped” with the parent’s alignment in order to derive its
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final alignment. We will show that this tagging and “zipping” process is a substantial
improvement over previous work, reducing the time complexity from quadratic to linear
in the length of the strings. It is worth noting that this tagging can be represented as a
succinct data structure per [24], requiring only two additional bits per element.

An example heuristic function
We will provide an example definition of ⊗ in Algorithm 1 sufficient for the IA algo-
rithm, though there are other sufficient definitions of ⊗. The candidate function fitting
the description of ⊗ we present will be defined as a extension of the Needleman-
Wunsch [25] algorithm for pairwise string alignment. The algorithm is modified along
the same the lines that DO modified the dynamic programming technique of [26],
with an additional step taken to produce the tagged elements in the output alignment.
Algorithm 1 (described below) is used to generate the results presented in the
“Methods” section.

First, we decide deterministically which of the two input strings is assigned to the top
(columns) of the alignment matrix and which string is assigned to the left side (rows).
We assign the input strings based on the data they contain. The longer string is assigned
to the columns of the alignment matrix, the shorter string to the rows. If the strings are
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the same length, we take the first string under the lexical ordering of their elements and
assign it to the columns and assign the second string to the rows of the alignment matrix.
In the case that the strings are identical, the alignment is trivial. If the first string sup-
plied to ⊗ was not assigned to the rows of the matrix, then we must swap the LEFT and
RIGHT tags of the resulting string alignment before returning the result. This consistency
in assignment ensures the commutativity of ⊗, which is necessary to enforce consistency
of the IA algorithm. Commutativity of ⊗ ensures that the IA algorithm provides the same
alignment results for isomorphic tree labeling (i.e. ensures label invariance).
We now apply a memoized update procedure [27], a common element of dynamic

programming algorithms such as the Needleman-Wunsch alignment. The subsequent
“traceback,” however, is notably modified from the original Needleman-Wunsch pro-
cedure. The upward, leftward, and diagonal directional arrows used to produce the
alignment are additionally used to tag each element as LEFT, RIGHT, or BOTH, respec-
tively. These tagged pairwise alignments will be consumed on the subsequent pre-order
traversal of T when merging preliminary contexts. Storing this information for each ele-
ment of the pairwise alignment allows a more efficient generation of the subsequent
multiple string alignment, allowing for an asymptotic improvement over the previous IA
algorithm. This additional tagging detail is the key difference between previous alignment
methods and the one presented in this paper.
The example⊗ presented in Algorithm 1 is of�

(
k2

)
complexity in both time and space,

where k is the length of the longer string. For clarity, while this example function is pre-
sented as a modification of the well understood Needleman-Wunsch algorithm (without
explicit memoization), this tagging approach can be incorporated into more sophisti-
cated pairwise string alignment algorithms. For instance, by using the method described
by [28], this algorithm’s time complexity could be improved to O (k ∗ s), where s is the
edit distance between the strings. Alternatively, by using the method described by [29],
this algorithm could be improved to use O (k) space. Affine gap models [30] can also be
incorporated via the method of [2].
The operator σ : P≥1(�) × P≥1(�) → (

R≥0, P≥1(�)
)
presented in Algorithms 1, 3,

and 4 represents a metric for determining the transition cost between symbols inP≥1(�).
The metrics used in our data sets can be found in Table 1. The metrics presented in
Table 1 show the transition cost between elements of �. However, these metrics can
be expanded to define the transition costs between elements of P≥1(�) in the manner
described by [2]. Note that σ can also be a more complex metric than those presented
here, for instance a metric with affine or logarithmic affine gap costs, and be compatible
with the IA algorithm. For usage of σ , see Algorithms 1, 3, and 4.

Table 1Metric costs of σ0, σ1, and σ2

σ0 A C G T – σ1 A C G T – σ3 A C G T –

A 0 1 1 1 2 A 0 3 3 3 1 A 0 1 1 1 1

C 1 0 1 1 2 C 3 0 3 3 1 C 1 0 1 1 1

G 1 1 0 1 2 G 3 3 0 3 1 G 1 1 0 1 1

T 1 1 1 0 2 T 3 3 3 0 1 T 1 1 1 0 1

– 2 2 2 2 0 – 1 1 1 1 0 – 1 1 1 1 0

Expansion of the metrics presented in Table 1 is described by [2]
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Description of post-order traversal
The post-order traversal (leaves to the root) of the binary tree T is a straightforward
procedure, see Algorithm 6. We assign preliminary contexts and costs to each node, vx,
of T . These preliminary contexts will be consumed to assign a final alignment in the
subsequent pre-order traversal of the tree. The post-order traversal described here is very
similar to the DO post-order traversal described by [1], differing only in the use of ⊗
which captures the preliminary context of a subtree, instead of generating a preliminary
median string assignment.
First, for each leaf node, vx, we set vx.cost to 0. Additionally, if vx is of type �∗ and not

of type �∗
�—i.e. if it has been decorated with a finite string of symbols from the alphabet

�, and it is not decorated with a finite string of preliminary contexts over the alphabet
��—then we call INITIALIZESTRING(vx.prelimString) to apply the transformation �∗ →
�∗

� .
On each internal node, vy with children vl and vr , of T , we call vl ⊗ vr . The resultant

prelimString is assigned to vy.prelimString, and the sum of the vl.cost, vr .cost, and the
alignment cost of vl ⊗ vr is assigned to vy.cost. By performing this operation in a post-
order traversal over T , we propagate the preliminary contexts and costs returned from
the calls to ⊗ from the leaves to the root.
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Upon completion of the post-order traversal, each internal node contains the prelimi-
nary context information and the cost for the corresponding subtree. Consequently, when
the post-order traversal is complete, the root node contains the preliminary context infor-
mation of the full leaf set of strings and the alignment cost for the entire tree T . In the
pre-order traversal, we will consume this preliminary context to perform an (efficient)
alignment on the strings.
Because the post-order traversal can be performed using any valid definition of ⊗, the

complexity of the post-order traversal is dependent on the complexity of the heuristic
alignment function used. Let the complexity of ⊗ be defined as H(k), where k is the
maximum string length of the leaf labels of the tree T . Then post-order traversal runs
in O(H(k) ∗ n) time and space, where n is the number of leaves in the binary tree T . If
we were to use Ukkonen’s method with the ⊗ described in Algorithm 1, the post-order
traversal would run inO(k ∗ s ∗ n) time and space, where s is the maximum edit distance
between any two strings.

Description of pre-order traversal for final alignments
The pre-order traversal (from the root to the leaves) of the binary tree T consumes the
preliminary context decorations on each node created in the post-order traversal in order
to assign final alignment decorations of �∗

� to each node, see Algorithm 7. First, the root
node must be initialized for the pre-order traversal by assigning the root’s preliminary
context to the root’s final alignment. By initializing the root node in this manner, the root
node is consistent with the treatment of any other parent node when deriving the internal
node alignments in Algorithm 8.
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For each non-root node, vc, we first determine whether vc is the left or right child of its
parent. This is required because LEFT-tagged elements originate from alignments of the
left subtree and RIGHT-tagged elements originate from alignments of the right subtree,
and we must use this information when deriving the final alignment of vc.
The final alignment of the parent of vc, vp, will necessarily be of greater than or equal

length to vp’s preliminary context, because vp’s final alignment contains all the informa-
tion from the contexts of vp’s subtrees as well as the information from the rest of the tree,
that is, the contexts of all of the subtrees of every ancestor node to vp. The preliminary
context of vp is also of greater than or equal length to preliminary context of vc, due to
the vp’s context containing all information from vc’s context, plus the addition of vc’s sis-
ter subtree. The resulting value assigned to vc’s final alignment will have the same length
as the final alignment assigned to vp. Since this invariant length is maintained from the
root node to the leaf nodes’ final alignment assignments, all alignments will have the same
length. This constitutes a simple inductive argument that the final alignment assignment
of each node will be of equal length and constitute a genuine string alignment.
The final alignment for vc is derived by performing a “sliding zip” over vp’s final align-

ment, vp’s preliminary context, and vc’s preliminary context. vp’s final alignment is used
as the basis of the zip. The inputs to this alignment are the preliminary contexts of vp
and vc and the final alignment of vp. At each step of the “sliding zip,” one element of vp’s
final alignment will be consumed and one element of vc’s final alignment will be defined.
Additionally, at each step of the zip, one of: an element from vp’s preliminary context,
elements from both vp’s and vc’s preliminary contexts, or no elements from either node’s
context, will be consumed. Finally, we define an element of vc’s final alignment to be
either an element from vc’s preliminary context or a gap. The process is called a “sliding
zip” because, due to the varying lengths of the three inputs, the elements of vp’s and vc’s
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preliminary contexts do not have an immediately apparent index with which they corre-
spond to vp’s final alignment, which is used as the basis of the zip. Rather, the elements
of vp’s and vc’s preliminary contexts “slide” through the zipping process, and their corre-
sponding indices with vp’s final assignment is deduced dynamically. The logic applied in
the “sliding zip” is to propagate gaps from the final alignment of vp, which contains the
gaps of the entire tree above vc, down to vc, and when not dealing with a gap propagated
from an ancestor node to vc, to align the non-gap elements or introduce a new gap to be
propagated. The “sliding zip” process is often easier to understand by stepping through
the algorithm. An example alignment of this “sliding zip” process for two internal nodes
is shown in Fig. 1.
There are five cases determining the derivation of each index of vc’s final alignment. The

cases are presented in the pseudocode of Algorithm 8, in Fig. 1, and described below.

• Case 0: When the element of vp’s final alignment is “GAPPED,” then the next element
of vc’s final alignment is “GAPPED.”

• Case 1: When the sliding zip has consumed all elements of the vc’s preliminary
context, then the next element of vc’s final alignment is “GAPPED.” Because we only
define the next element of vc’s final alignment to be either an element from vc’s
preliminary context or a gap, the latter is the only choice.

• Case 2: When the element of vp’s final alignment is “BOTH,” then we consume the
next elements of both vp’s and vc’s preliminary contexts, and the next element of vc’s
final alignment is vc’s consumed preliminary context element. Because vp’s final
alignment element was marked as an alignment event, we know that vc was aligned
with its sister subtree at this index, and that vc’s preliminary context element is the
correct element for this index of the alignment.

• Case 3: When both vp’s final alignment element and vp’s preliminary context element
are “LEFT,” and vc is the left child of vp, then we consume the next element of each
of vp’s and vc’s preliminary contexts, and the next element of vc’s final alignment is
vc’s consumed preliminary context element. Because LEFT-tagged elements
originate from the left subtree of a node, and vc is the left child of vp, vc’s preliminary
context element is the correct element for this index of the alignment. If the same
LEFT-tagged elements were encountered but vc was the right child of vp, then vc’s
preliminary context element would not be the correct element for this index of the
alignment, because LEFT-tagged elements originate from the left subtree of vp and
the LEFT-tagged element under consideration was encountered in vp’s right subtree.
In the case that a LEFT-tagged element is encountered in the right subtree of vp, we
introduce a new gap into all the alignments of the subtree at this index to account for
the aligned element in the vc’s sister subtree. This is implicitly dealt with in Case 5.

• Case 4: Conversely to Case 3, when both vp’s final alignment element and vp’s
preliminary context element are “RIGHT,” and vc is the right child of vp, we consume
the next element of both vp’s and vc’s preliminary contexts and assign to the next
element of vc’s final alignment vc’s consumed preliminary context element. Because
RIGHT-tagged elements originate from the right subtree of a node, and vc is the right
child of vp, vc’s preliminary context element is the correct element for this index of
the alignment. If the same RIGHT-tagged element was encountered but vc was the
left child of vp, then vc’s preliminary context element would not be the correct
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Fig. 1 Example pre-order alignment for a parent node and it’s left child

element for this index of the alignment, because RIGHT-tagged elements originate
from the right subtree of vp and the RIGHT-tagged element under consideration was
encountered in vp’s left subtree. In the case that a RIGHT-tagged element is
encountered in the left subtree of vp, we introduce a new gap into all the alignments
of the subtree at this index to account for the aligned element in vc’s sister subtree.
This is implicitly dealt with in Case 5.

• Case 5: When none of the conditions for Case 0, 1, 2, 3, or 4 hold, then we consume
the next element of vp’s preliminary context and the next element of vc’s final
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alignment is “GAPPED.” This handles the cases where either the two subtrees were
not aligned at the current index or a new gap needed to be introduced at the current
index because a LEFT-tagged or RIGHT-tagged element was encountered in vp’s
right or left subtree, respectively.

Analysis of pre-order traversal
Let m = a

k , where k is the length of the longest input string, and a is the length of the
root node’s preliminary context. In the best case that a “perfect alignment” is derived, that
is, that each element of all the input strings can be aligned with one of the elements of
the longest input string, then m = 1. In the worst case that a “degenerate alignment” is
derived, that is, that no element of any of the input strings can be aligned with any of the
elements of the longest input string, and all input strings are of equal length, thenm = n.
The improvement of the implied alignment algorithm presented here compared to the

original algorithm is that the additional stored information allows us to determine the
final assignments in �(k ∗ m ∗ n) instead of O

(
k2 ∗ n2

)
time. The aforementioned n2

component occurred in previous implementations due to the use of a “back-propagation”
technique, which required that, at each pre-order step, each new gap found in the align-
ment was retroactively applied to every alignment derived in a previous pre-order step.
The k2 component in the previous implementation was due to using a Needleman-
Wunsch string alignment between the current node and its parent node at each pre-order
step in addition to the alignment already performed at each post-order step. By saving the
requisite information on the nodes during the post-order traversal and then consuming
this information with the “sliding-zip” technique, we eliminate the Needleman-Wunsch
alignments during the pre-order, as well as the back-propogation, and replace these
computationally expensive operations with a much more efficient algorithm.
In the pre-order traversal algorithm presented above, we generate an implied alignment

in�(k∗m∗n) time.Wemust perform a “sliding-zip” operation on each node in the binary
tree T , hence the factor of n. The “sliding zip” accounts for the k ∗ m factor.
The best case time complexity occurs when the length of the derived alignment is the

length of the longest input string, an alignment with the minimal number of elements. In
this case,m = 1 and the “sliding zip” performed on each node performs work equal to the
length of the longest input string k. Hence, the best case time complexity of the implied
alignment algorithm is �(n ∗ k), occurring when the input strings are highly correlated
andm = 1.
The worst case time complexity occurs when the length of the derived alignment is

equal to the sum of the lengths of the input strings, an alignment with themaximumnum-
ber of elements. In the worst case, m � 1, and the “sliding zip” performed on each node
performs work equal to the length of the longest input string, k, multiplied by the num-
ber of input strings, n. Hence, the worst case time complexity of the implied alignment
algorithm isO(k ∗ n2), occurring when the input strings are independent of each other.

Methods
An example Haskell implementation of the implied alignment algorithm described above,
the data sets used to generate the results, along with a script to replicate the results dis-
cussed below can all be found here: https://github.com/recursion-ninja/efficientimplied-
alignment/replicate-results.sh

https://github.com/recursion-ninja/efficientimplied- alignment/replicate-results.sh
https://github.com/recursion-ninja/efficientimplied- alignment/replicate-results.sh
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We ran the implied alignment algorithm described in this paper on a pathological
data set that was constructed to illustrate the best and worst case performances of the
implied alignment algorithm. The pathological data set consisted of balanced binary
trees which repeatedly doubled in size. The smallest tree is a quartet tree, with the
strings consisting of a single symbol from the alphabet � = {A,C,G, T} repeated
k number of times. The lengths of the strings on each leaf were repeatedly dou-
bled in size to scale the string length. The size of the tree was scaled by taking 2

n
4

quartet trees and combining them together into a larger balannced binary tree of n
leaves.
The time complexity scaling of this pathological data set was examined under two dif-

ferentmetrics, σ0 and σ1. The formermetric preferentially selects substitution events over
insertion or deletion elements, thus producing the “perfect alignment.” Conversely, the
latter selects for insertion or deletion over substitution, thus producing the “degenerate
alignment.”
Additionally, to explore the performance of the pre-order traversal on “real world” data,

the algorithm was run on the fungal and metazoan biological data sets described by [31]
and [32] respectively. Both full data sets consisted of a preselected tree and predetermined
string alignment (i.e. including gaps). The full leaf set of the tree was repeatedly halved to
produce a data set of doubling leaf set sizes. The string alignment was repeatedly trun-
cated, dropping the beginning and end of the alignment, taking the central slice of the
current length from each string, and then removing all the gaps from the alignment slice.
The pruned trees and truncated strings were used as progressively doubling inputs, to
measure runtime scaling in terms of both leaf set size and string length. Both biological
data sets used the discrete metric σ3 and the alphabet � = {A,C,G, T, – }.
After running the algorithm on each data set, we constructed an Ordinary Least Square

(OLS) model with the running time in milliseconds as a function of dimensions k and
n. We took the binary logarithm, log2, of both input dimensions as well as the output.
From there, we calculated the coefficients of each input in this equation: log2(runtime) =
β0+β1 log2(n)+β2 log2(k)+ε, where ε represents the estimation error. Note that, because
the logarithm of the inputs was taken, we would expect β1 to be close to 1 for linear
performance with respect to that input variable and close to 2 for quadratic performance.
See Table 2.
A direct runtime comparison between the O

(
k2 ∗ n2

)
algorithm in POY and our

improved algorithm was not readily achievable due to being implemented in different
impure and purely functional languages, which come with confounding architectural
designs. Instead we present the empirical runtime analysis of the pre-order traversal

Table 2 Regression coefficients of leaf-set size and string length on runtime

Dependent variable:

log2 (Runtime)

Best Worst Fungi Metazoa

(1) (2) (3) (4)

log2 (String count n) 1.057 2.021 1.236 1.511

log2 (String length k) 0.920 1.120 0.836 1.038

Observations 49 49 42 42

Adjusted R2 0.990 0.996 0.987 0.995
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above.We did not thoroughly explore the implemented post-order traversal, as it does not
deviate substantially from the well-understood Needleman-Wunsh algorithm. We have
provided the reader a convenient https://github.com/recursion-ninja/efficient-implied-
alignment/replicate-results.sh script in the aforementioned code repository to conduct
their own analysis of both the pre-order and post-order traversals.

Results
The pathological data sets shows the stark difference between the best case �(n ∗ k) and
worst caseO

(
k ∗ n2

)
performances. The OLS model empirically supports the theoretical

best and worst cases demonstrated by the two runs on the pathological data set as shown
in Figs. 2 and 3.
The OLS model also anecdotally supports the supposition that time complexity scales

well for the biological data sets. The fungal andmetazoan sequence data sets demonstrate
a near-linear time complexities with respect to the number of input strings and linear
complexity with respect to string length. The fungal data sets lend support to the argu-
ment that some of “real world” use cases can perform close to the theoretical best case
complexity (see Figs. 4 and 5).

Conclusions
The IA algorithm can be improved to run with O

(
k ∗ n2

)
and best case �(k ∗ n)

complexity of time and space. The more similar the input strings are, the closer the
performance will be to the best case. When the algorithm is applied to “real world” bio-
logical sequences, the performance tends strongly towards the best case. The improved
algorithm presented in this paper offers immediate and significant gains to applications
related to the TAP and MSA.

Fig. 2 Best case pre-order runtime

https://github.com/recursion-ninja/efficient-implied- alignment/replicate-results.sh
https://github.com/recursion-ninja/efficient-implied- alignment/replicate-results.sh
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Fig. 3 Worst case pre-order runtime

Discussion
The algorithm originally described by [1] was given the name implied alignment to
differentiate it from other methods (e.g. sum-of-pairs alignment) unconnected to the
vertex string assignments “implied” by the binary tree on a given leaf-set. However, it is
worth articulating exactly how the alignment we derive is implied by the tree. In short, it
is the requirement of commutativity and the lack of associativity.

Fig. 4 Fungi pre-order runtime
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Fig. 5 Metazoa pre-order runtime

For the purposes of this analysis we will ignore the cost returned from the ⊗ and con-
sider only the resulting alignment context. Therefore let ⊕ : �∗

� × �∗
� → �∗

� be defined
as ⊗, but ignoring the alignment cost of the result. If we are given a rooted binary tree
T = ((A,B), (C,D)) with leaves A,B,C,D ∈ �∗ then the ancestral state of the root node
defined by the heuristic function ⊕ would be ((A ⊕ B) ⊕ (C ⊕ D)). In fact, the ancestral
state of any internal node defined by ⊕ can be calculated by applying ⊕ recursively to the
subtree of the internal node. The binary structure of the tree directly implies the prece-
dence of each application of ⊕ in the final result. Since ⊕ need not be associative, the tree
((A, (B,C)),D) evaluated as ((A⊕(B⊕C))⊕D), is likely to yield different results. However,
since ⊕ is commutative, transposing any child nodes between the left and right posi-
tions of their parent will result in a tree that yields the same internal values. For example
consider a transposed tree T ′:

eval(T ′) = eval((D,C), (B,A))

= ((D ⊕ C) ⊕ (B ⊕ A))

= ((C ⊕ D) ⊕ (B ⊕ A))

= ((C ⊕ D) ⊕ (A ⊕ B))

= ((A ⊕ B) ⊕ (C ⊕ D))

= eval((A,B), (C,D))

= eval(T )

This commutative property and lack of an associative property precisely determines
that the alignment is implied by the tree on the leaf-set under ⊕ and not the unique
alignment on all trees for the leaf-set under ⊕. Clearly, a ⊕ that is both commutative and
associative using the algorithm described in this paper would yield the same alignment
on all trees for a given leaf-set.
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