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Abstract

Background: Image-based high throughput (HT) screening provides a rich source of
information on dynamic cellular response to external perturbations. The large
quantity of data generated necessitates computer-aided quality control (QC)
methodologies to flag imaging and staining artifacts. Existing image- or patch-level
QC methods require separate thresholds to be simultaneously tuned for each image
quality metric used, and also struggle to distinguish between artifacts and valid
cellular phenotypes. As a result, extensive time and effort must be spent on per-
assay QC feature thresholding, and valid images and phenotypes may be discarded
while image- and cell-level artifacts go undetected.

Results: We present a novel cell-level QC workflow built on machine learning
approaches for classifying artifacts from HT image data. First, a phenotype sampler
based on unlabeled clustering collects a comprehensive subset of cellular
phenotypes, requiring only the inspection of a handful of images per phenotype for
validity. A set of one-class support vector machines are then trained on each
biologically valid image phenotype, and used to classify individual objects in each
image as valid cells or artifacts. We apply this workflow to two real-world large-scale
HT image datasets and observe that the ratio of artifact to total object area (ARcell)
provides a single robust assessment of image quality regardless of the underlying
causes of quality issues. Gating on this single intuitive metric, partially contaminated
images can be salvaged and highly contaminated images can be excluded before
image-level phenotype summary, enabling a more reliable characterization of cellular
response dynamics.

Conclusions: Our cell-level QC workflow enables identification of artificial cells
created not only by staining or imaging artifacts but also by the limitations of image
segmentation algorithms. The single readout ARcell that summaries the ratio of
artifacts contained in each image can be used to reliably rank images by quality and
more accurately determine QC cutoff thresholds. Machine learning-based cellular
phenotype clustering and sampling reduces the amount of manual work required
for training example collection. Our QC workflow automatically handles assay-specific
phenotypic variations and generalizes to different HT image assays.
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Background
With the advance of high throughput (HT) imaging technology and related automated

image analysis tools, scientists may conduct daily cell-level probes of biological systems

under many treatment conditions [1–3]. However, as single cell data generation ex-

pands rapidly, e.g. in the field of cell profiling [4, 5], a critical challenge researchers face

is automatically and reliably flagging images and cells contaminated by artifacts. Previ-

ous research has focused on studying and comparing metrics that detect image-level or

patch-level artifacts such as blurring and saturated pixels [6, 7]. A widely accepted ap-

proach is to review these quality control (QC) metrics and identify per-assay, per-

metric thresholds to accept or reject entire images or patches [8].

A fundamental limitation of this approach is that existing QC metrics not only reflect

fluctuations in image quality but also shift with natural phenotypic variations. For ex-

ample, DNA accumulation in apoptotic cells can lead to more saturated pixels, high

protein expression ratios may lead the image intensity into a wider range, and a shift to

fewer but larger cells leads to fewer edge pixels and therefore less high frequency

components in the image power spectrum. The dependency of such QC metrics

on cellular context such as cell counts and morphology can cause images with

valid phenotypic variations to be discarded, leading to low true positive rates. Like-

wise, these QC metrics may also be unaffected by true cell-level artifacts, such as

segmentation failures from treated cells adhering together and forming blobs, lead-

ing to low true negative rates as well.

The limitations of existing image-level QC metrics suggests the necessity of study-

ing QC at the cell level. In addition to tackling the QC challenge in HT image ana-

lysis, cell-level artifact detection has also become increasingly vital due to the

growing interest in studying and understanding the heterogeneous behavior embed-

ded in cell subpopulations [9]. For samples composed of various subpopulations of

cells, their diverse feature distributions can be skewed by the presence of bright for-

eign objects and poorly segmented cells. However, existing outlier detection

methods that rely on the assumption of feature normality [8] are easily undermined

because the morphological profile of a heterogeneous culture adopts diverse shapes.

Model-based approaches provide an alternative solution, e.g., cell classifiers trained

by providing normal or outlier examples [10–12]. Such data-driven strategies, how-

ever, require prior knowledge and ideally an exhaustive search for all possible phe-

notypes including real and artificial cells, which is rarely practical in the context of

HT screening. For these reasons, a practical cell-level QC implementation remains a

crucial unsolved problem.

To overcome the aforementioned limitations of current QC methods and improve

the robustness of cellular heterogeneity studies, we developed a generalized (i.e., non-

assay specific) QC workflow to flag individual artificial cells in HT imaging, enabling

both more reliable cellular profiling and straightforward assessment of image quality as

evaluated by the ratio of artifact area to total detected cell area (ARcell). To our know-

ledge, this represents the first QC method and scoring metric that operate at the cell

level. Due to the lack of standardized ground truth image quality scores for HT image

data to directly compare against, we demonstrate the benefits of our approach by ap-

plying it to two real-world assays, showing how it favorably compares to existing image

QC methods in a variety of applications.
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Results
Our cell-level QC workflow mainly consists of two parts, shown in Fig. 1. The first part

(Fig. 1a) covers image analysis and feature selection to pick a representative but compu-

tationally feasible feature set, followed by phenotype sampling to collect an image sub-

set that covers all phenotypes. The second part (Fig. 1b) builds a set of one-class

support vector machines (SVMs), one per cellular phenotype, which then identify arti-

facts from each image of the assay. With the artifacts identified, ARcell calculation is

straightforward. In the following subsections we provide more details about our

workflow.

Image analysis and feature selection

We employ the open-source image analysis software CellProfiler ([2], http://www.cell-

profiler.org/) to perform cell segmentation and quantitative measurements at both

image and cell level using standard modules. As a result, every image is characterized

by features including focus scores, intensity, correlation between pairs of staining

markers (if more than one marker is collected), and signal-to-noise (SNR) ratio [13].

To minimize the dimensionality of the feature space while retaining phenotypic variety,

we apply hierarchical clustering (implemented in scikit-learn, [14]) to identify groups of

highly correlated image-level features. For both tested assays, the clustering reveals that

feature ‘FocusScore’ is highly correlated with the standard deviation of pixel intensity

(i.e., feature ‘StdIntensity’), while the other intensity measurements fall into one

Fig. 1 Schematic diagram of QC workflow. a A phenotype sampler to collect images that retain phenotypic
variety. Grouped by their phenotypes, sampled images provide representative cells to train one one-class
SVM per phenotype. (Dashed inset in (i) expanded in (ii-iv)). b A set of one-class SVMs to identify artifacts
from each image. (‘!’ denotes a phenotype is excluded through visual inspection.) In all cell QC masks,
artifacts are marked in green and good quality cells are labeled in blue, with the percentage of artifacts
listed in white
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subgroup. We therefore select image features including ‘PowerLogLogSlope’, ‘Focus-

Score’, ‘MeanIntensity’, ‘Correlation’, and ‘SNR’ for the following QC process. Given

that most image features are sensitive to the count of cells observed in the field of view

[6], to minimize the impact of cellular phenotype fluctuation on QC performance, we

also include ‘Cell Count’ in the final feature list for image sampling.

Phenotype sampler

The premise of our workflow is to build a set of classifiers trained by a comprehensive

collection of biologically valid phenotypes, and then identify an object as an artifact if it

does not resemble any of these phenotypes. This new approach requires the collection

of artifact-free cell samples, in order to treat artifact identification as an anomaly detec-

tion machine learning problem. To ensure the effective sampling of all artifact-free

cells, our phenotype sampler takes two steps: outlier-based removal of artifact-

dominated images, and phenotype-preserving image sampling.

First, we wish to identify and remove images that predominantly contain artifacts via

image-level phenotype assortment (Fig. 1a.i-ii), since the biological phenotypes corre-

sponding to these images are likely predominated by artifacts. We accomplish this with

image-level outlier detection. Our outlier detection algorithm is based off our observa-

tion that HT screening images form clusters with variable densities in the multi-

dimensional QC feature space (Fig. 1a.i, Supplementary Fig. 1) due to the nature of

screening studies, which typically contain replicates of treatments, treatments at mul-

tiple dosages, and compounds sharing structures or targeting the same signaling path-

ways. Given that non-artifact images form clusters due to the aforementioned guilt-by-

association forces, images falling outside clusters are suspect, likely corrupted by im-

aging, staining, or segmentation artifacts. We apply a density-based local outlier de-

tector [15] to identify such out-of-cluster images while allowing for variation in the

densities of the clusters themselves (Fig. 1a.ii).

Second, we subsample the remaining images to cover diverse phenotypes (Fig. 1a.iii-

iv) and ensure equal representation of phenotypic variations in the sampled subset.

This is particularly important for retaining rare but interesting phenotypes in the train-

ing collection. Our overall approach is to iteratively construct a sparse sampling grid in

the full feature space from which we will sample the nearest images to build our train-

ing set. Sparsity is desirable because the number of possible feature-value combinations

is very large and many regions of the feature space contain few or no images. We begin

by creating an equidistant one-dimensional grid along each feature dimension at spa-

cing decided by kernel density estimation (KDE, Fig. 1a.iii, [14]). Because image features

extracted from HT imaging assays usually display various distributions, we apply KDE

with 5-fold cross validation to obtain an optimal sampling bandwidth, hi, for the ith

feature dimension and treat this hi as a base sampling rate. The final sampling rate is

determined by multiplying hi with an integer K, which controls the tradeoff between

sample set size and computation time. We iteratively construct the sparse, full-feature

space sampling grid by starting with any two feature dimensions and, before adding an-

other dimension, removing any grid point whose distance towards its best image match

(a data point obtained through nearest neighbor search) is beyond r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
i¼1h

2
i

q

, where

D is the dimensionality of the feature space in the current iteration. After iterating
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through all selected image features, the resulting multidimensional sampling grid is a

low-resolution representation of the raw data set (Fig. 1a.iii). Images are then sampled

by matching these grid points with their nearest neighbors (Fig. 1a.iv).

Single cell classifier for QC

With our phenotype-preserving sample set created, the remainder of our pipeline

groups related images into phenotype-representing clusters, removes clusters corre-

sponding to artificial cells, trains one-class SVM classifiers, and finally labels single seg-

mented cells as artifacts or not (Fig. 1b). For phenotype grouping, we first apply a

Gaussian mixture model (Python Scikit-learn library [14];) to estimate the number of

groups, nup, using Bayesian information criterion (BIC). To handle the variation in fea-

ture distribution with respect to different subgroups and choose a more suitable num-

ber of effective subgroups automatically, sampled images are then clustered by a

variational Bayesian Gaussian Mixture model [14] with the number of groups upper-

bounded by nup. With the grouping determined, we output a set of representative im-

ages from each group for manual inspection to determine whether the group represents

artifacts. Artifacts may be biologically valid but algorithmically problematic, for ex-

ample, treated cells may adhere to each other and form blobs that cannot be segmented

(Fig. 1b, phenotype 3). This manual inspection step provides an opportunity to catch

any remaining quality issues at a much lower time cost than upfront analysis as only a

small number of images per group need to be checked. It is important to our overall

method that artifact phenotypes be flagged here. In our later discussion of both assays

we apply our method to we will demonstrate that flagging artifact phenotypes is simple

for users. From each distinct phenotype group, cells are collected and screened by a

cell-level density based outlier detector [15] to achieve a tighter group envelope before

training a one-class SVM classifier with radial basis function (RBF) kernel [14] to clas-

sify objects belonging to that phenotype. After training the classifiers to learn the deci-

sion boundary that envelops the feature space occupied by the representative cells, a

candidate cell is recognized as an artifact upon unanimous agreement by all SVMs (Fig.

1b), i.e., an object is labelled an artifact if it is located outside all the boundaries of nor-

mal cell groups represented by those SVMs. The ratio of artifact area to total seg-

mented object area, ARcell, is output as a direct measurement of image quality (Fig. 1b).

Each one-class SVM is defined by two parameters: nu controls the fraction of training

errors and gamma shapes the RBF kernel. We use the default setting (one over the

number of cell descriptors) for gamma. We choose a small constant for nu (1E-3) since

we have high confidence in the sampled inlier training data output by our processing

pipeline and want the SVM to positively identify a very high proportion of this data.

The impact of different choices for parameters nu and gamma on the ARcell metric will

be demonstrated later with a real-world case study.

An example histogram of ARcell values and corresponding image masks is given in

Supplementary Fig. 2. We recommend examining the ARcell histogram to gain intuition

about the image quality distribution. In the given example, due to the long tail of the

distribution, a stringent, low ARcell threshold could be set without sacrificing a large

percentage of images. Alternatively, an intuitive absolute threshold such as 50% could

be used if the downstream processing pipeline is more robust against whatever
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anomalies are observed in the higher-scoring images. A QC process necessitates mak-

ing a tradeoff between saving partially contaminated images and increasing statistical

confidence, and this choice is intrinsic to the nature and goals of each study and assay.

This approach helps quantify the decision-making process while still allowing room for

domain-specific decision-making by the users.

Phenotype sampling and cell segmentation

Our approach targets artifacts at the cell level, relying on a preprocessing stage (i.e.

CellProfiler) for segmenting the cells. This segmentation in turn is usually limited by

the number of images or phenotypes tested during the development of the preprocess-

ing image segmentation solution. Thus, in our framework, we also apply the phenotype

sampler ahead of designing the preprocessing cell segmentation solution (Supplemen-

tary Fig. 2), ensuring the appraisal of diverse phenotypes to maximize segmentation

quality.

In the event of errors in this preprocessing segmentation, clumps may be improperly

segmented or not segmented at all. Our method is robust against such failures in two

ways. First, if the number of images featuring improperly segmented artifacts is small, it

is unlikely that they will pass the outlier detection stage. If the segmentation-based arti-

facts are instead of a sufficient density to pass the outlier detection, they will manifest

as one or more phenotype clusters during the phenotype detection stage. The user will

have an opportunity to review the clusters and decide to allow the segmentation arti-

facts as their own phenotype or deny them as artifacts. Which choice is more desirable

depends on the specific goals of the study and how much useful information can be ex-

tracted from these problematic cases.

Cell-level QC performance of assay α

We first evaluated the performance of our cell-level QC workflow using HT image

assay α. Our phenotype sampler collected 3108 images primarily encompassing seven

image-level phenotypes (Fig. 2). Next we manually inspected the phenotype sample im-

ages. In image phenotype 1, cells mostly clump together and cannot be segmented

properly through CellProfiler, therefore that phenotype was considered an algorithmic

artifact and thus excluded from subsequent one-class SVM training. Phenotypes 2, 6,

and 7 contain cells that represent the dominant cell population, differentiated by an un-

even illumination that dims towards the bottom left of the field (phenotype 6), and by

lower seeding density cultures (phenotype 7). Phenotypes 3 and 4 mostly contain empty

wells with different background noise levels. Phenotype 5 contains a high apoptosis ra-

tio, shown by the occurrence of bright spots. After collecting cells from the desired

phenotypes [2, 5–7] and training the one-class SVMs, every detected object in assay α

was classified as a valid cell or artifact and ARcell was calculated to summarize each im-

age’s quality.

We then compared the result with conventional image QC measures, e.g. FocusScore

(FS) and PowerLogLogSlope (PLLS) (Fig. 2, Supplementary Fig. 4) and found that ARcell

was more practical than the other QC measures in ranking images by quality since it

was less sensitive to cell count fluctuations. As a single tuning parameter, ARcell was

more practical and accurate in ranking image quality, e.g., two images receiving similar
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FS and PLLS score but with one clearly less contaminated could be ranked more accur-

ately by ARcell (Fig. 2 b-c, red vs. green arrow). Unlike with ARcell, we could not reliably

rank image quality using any single conventional quality measure, as an image sitting at

the normal range of one measure could be identified as an outlier by another (e.g., Fig. 2

b-c, magenta example). As ARcell is calculated at cellular granularity, it performs accur-

ately under a wide variety of image cell counts when compared to conventional quality

metrics. For example, among all four examples listed in Fig. 2c, the cyan one obtained the

lowest FS as a result of low cell count, but its quality measurement was justified by ARcell.

Third, thresholding the conventional QC measurements is nontrivial due to the complex

distributions of quality metrics driven by cellular phenotype fluctuation (Fig. 2b) as well

as undesired technical variations. Gating on additional QC measurements requires accur-

ately setting additional thresholds for each added feature to ensure identification of im-

aging and staining artifacts.

In Supplementary Fig. 5 we experimented with different plausible error rates for nu

and gamma when training the SVMs for this assay. Part A shows the ARcell values and

corresponding image masks (artifacts in green, valid cells in blue) for an artifact-

containing image under different parameter values. Higher nu and gamma tighten the

decision boundary of the SVM classifier around the cluster of training images corre-

sponding to a particular phenotype, while lower nu and gamma expand the boundary

to be more permissive. In Part B we find that varying our chosen value of nu = 1E-3 by

Fig. 2 Performance of cell-level QC, assay α. a Images sampled by our phenotype sampler are grouped into
7 phenotypes with 5 examples shown for each. b-c A comparison between conventional image quality
measurements and ARcell. Each dot represents one image with the size and intensity proportional to ARcell.
For the conventional QC metrics, FocusScore (FS) and PowerLogLogSlope (PLLS), the dashed line indicates
the median value and the solid lines show 1st quartile - IQR*1.5 and 3rd quartile + IQR*1.5 respectively
(IQR = interquartile range). Examples of cell-level QC result (colored arrows) are listed with their FS, PLLS and
ARcell (AR) in (C). In all QC masks, artifacts are marked in green and good quality cells are labeled in blue. d
Cell-level QC improves the accuracy of well-level phenotype summary. Top, an example of inconsistent
dose response: out of six replicates (grey curves), the outlier curve (marked by red squares) contains images
with ARcell between 3.8 and 63.0% as indicated by marker size. Bottom, comparison of drug response
consistency before and after cell-level QC at concentration equal to 10uM (see Supplementary Fig. 7 for
other concentrations). Each circle represents one compound
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a factor of 10 changes ARcell by over 1% in 0.08% of images (at 1E-4) and 6.3% of im-

ages (at 1E-2). Since the image clusters have higher density towards the center of each

cluster, we expect this behavior whereby increasing nu has a larger effect on ARcell than

decreasing it. While the parameter values we list provided accurate classification for

both of our assays, users can replicate this parameter variation experiment if they find

the SVM classifiers are too permissive or restrictive.

Observing the prevalence of heterogeneity in assay α (Supplementary Fig. 6A), we

scored well-level response by the fraction of cells having the protein of interest translo-

cated into the nucleus. We investigated the impact of artifacts on this measurement

and found that removal of artificial cells restored the distribution of population hetero-

geneity (Supplementary Fig. 6). For this assay, among six replicates, distortion in dose

response as a result of artificial cells was observed for some compounds (e.g., Fig. 2d,

top). We then compared the consistency of dose response measurements before and

after cell-level QC by calculating the standard deviation of replicates collected for each

compound at multiple doses. After removing artificial cells, we recalculated well-level

responses and excluded wells predominated by artifacts (i.e., ARcell > 50%), as the

remaining non-artifact cell population may not be sufficient to characterize the well-

level phenotype (e.g., Fig. 2c, magenta example). As indicated by the standard deviation

of replicates, improvement was observed in response consistency across all concentra-

tions (Fig. 2d, bottom, Supplementary Fig. 7).

Cell-level QC performance of assay β

We then evaluated this QC workflow on a second, significantly more complex assay β,

collected by a different imaging system for scoring a morphologic phenotype of interest

for multiple cell lines: small and elongated nuclei. After image-level feature extraction

and cell segmentation, 1734 images were sampled and grouped into seven phenotypes

(Fig. 3a). During the manual inspection phase of sample images from each of these

seven image phenotypes, image phenotype seven was removed because it exhibited a

common staining artifact (Fig. 3a, bottom row). The grouping result shows that as-

sorted phenotypes regarding cellular morphology, intensity, spatial distribution and cul-

ture density are captured by our phenotype sampler. Because of the relatively low

seeding density of this assay (~ 700 cells/well), staining artifacts could easily dominate

an image. Therefore, for this assay, we raised the threshold of ARcell to 70% to eliminate

very problematic well images and preserve less contaminated ones (Fig. 3b). Following

cell-level QC, we recalculated the phenotype score, i.e., the ratio of small elongated nu-

clei contained in a well, and obtained a more accurate description of well-level pheno-

type regardless of the cell line (Fig. 3b). Importantly, our method was not affected by

the heterogeneity in cellular populations and retained minority phenotypes in heteroge-

neous cultures (Fig. 3c).

Comparison with a patch-level QC approach

In our final experiment, we compared the performance of our cell-level QC workflow

with a recent patch-level image QC tool integrated with ImageJ and CellProfiler ([7],

Fig. 4). Four different types of artifacts including out-of-focus, haze-like, foreign object

or saturation signal, and algorithmic (segmentation failure) were tested. Both methods
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were able to locate out-of-focus regions but at different resolutions: cell- versus patch-

level. However, the patch-level tool was unable to recognize those artifacts not involv-

ing focus issues. Our cell-level QC workflow covered more artifact varieties and suc-

cessfully located them, including the one artificially created by an image segmentation

failure (Fig. 4a). We further summarized the patch-level QC result by calculating the

ratio of patches with defocus level greater than a fixed threshold (Fig. 4b, Supplemen-

tary Fig. 8A) and comparing it against ARcell. A high ARcell is correlated with a high de-

focus patch ratio, except for those images containing mostly background pixels for

which the patch-level QC tool reports very low certainty (Fig. 4b, red dashed circle).

Reducing the defocus level cutoff permits patches with minor defocus issues, and re-

cruits more patches with lower certainty from our tested images (Supplementary Fig. 8).

Also, as expected, images with a high ARcell obtained a low defocus patch ratio if they

contained other in-focus artifacts (Fig. 4b and Supplementary Fig. 8).

Discussion
We have presented a QC workflow built on two novel insights that gives users more

robust and fine-grained quality control capabilities, while avoiding the lengthy and diffi-

cult process of simultaneously thresholding multiple QC features for every assay. The

first insight is that cell-level artifact detection enables a single powerful, phenotype-

invariant, image-level QC measure in the form of ARcell, the ratio of artifact to total ob-

ject area in an image. The second insight is that high-quality cell-level artifact detection

can be achieved through machine learning techniques: the properties of screening as-

says permit an unsupervised clustering approach to detect valid phenotypes with greatly

Fig. 3 Performance of cell-level QC, assay β. a Examples of sampled images grouped by their phenotypes.
Sampled images were grouped into seven phenotypes with five examples shown for each. For visualization
purposes, only a representative region of the original well image is displayed. b A comparison of
phenotype score before and after cell-level QC for different cell lines. From top to bottom are examples of
raw images and their phenotype masks before and after QC. Red dash line box shows a well dominated by
artifacts (ARcell > 70%) and removed before downstream analysis. c Examples of wells containing
heterogeneous subpopulations to show minority phenotypes (e.g., cells labeled in magenta) were not
mistakenly labeled as artifacts by our cell-level QC approach. In all masks, nuclei with phenotype of interest
are labeled in magenta, otherwise blue; detected artifacts are marked in green
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lessened user intervention, and these phenotype clusters can then be sampled to train a

set of classifiers to perform the aforementioned cell-level artifact detection.

Our results demonstrate the utility of model-based classification in filtering out arti-

facts while retaining valid phenotypes across the feature space of image quality metrics.

Model-based classification approaches require manual sampling of training examples,

making it extremely likely to overlook phenotypes of biological interest within the hun-

dreds of thousands of well images in a production HT imaging assay. Our workflow

avoids this issue and saves user effort by performing phenotype grouping using an un-

labeled clustering methodology, built upon assumptions that are sound in the context

Fig. 4 Detection of staining artifacts, a comparison between our cell-level QC and a patch-level QC
application recently integrated into common image analysis platforms. a From left to right, four different
types of artifacts are displayed with their: top - raw image, middle - single cell QC result, and bottom -
patch-level defocus score generated by a deep learning approach (Yang 2018). In the cell QC mask, artifacts
are marked in green and good quality cells are labeled in blue. In the results generated by the patch-level
approach, the patch outlines denote the predicted defocus level by hue (red for least defocus) and
prediction certainty by lightness (increased lightness for increased certainty). b A comparison between the
ratio of defocused patches (y-axis) and ARcell (x-axis) for images collected from assay α and β. Each dot
represents an image with both the size and intensity proportional to the prediction certainty of defocus
level. Patches with defocus level greater than 5 are considered out of focus. Images within the red dashed
circle show high defocus patch ratio but low prediction certainty. More comparisons using different
defocus level cutoffs can be found in Supplementary Fig. 8 along with labeled examples
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of HT screening. It takes advantage of the guilt-by-association property embedded in

HT screening whereby multiple images share biologically relevant phenotypes, and so

implements a density-based outlier detector to remove images with prominent artifacts

before sampling. To eliminate any remaining non-outlier artifacts from training exam-

ples, we group sampled images by their phenotypes for ease of inspection.

We demonstrated the capabilities of our proposed QC workflow by applying it to two

large-scale HT screening assays, covering a range of cell lines, treatments, and image

acquisition settings. Our QC metric ARcell provides an intuitive quality ranking more in

line with human visual assessment than previous scoring systems. Gating on ARcell, im-

ages largely contaminated by artifacts can be excluded and less impacted ones can be

salvaged before downstream analysis. In our experiments, we successfully remove

artifact noise with our cell-level QC tool, enabling more accurate subpopulation identi-

fication and precluding the need for noise-reducing aggregation approaches that dis-

card meaningful biological information.

Our QC workflow identifies artifacts at cell level, using an external cell segmentation

solution. The phenotype grouping and manual inspection of phenotype sample images

acts as a last line of defense against common artifacts, but on rare occasions errone-

ously segmented fragments from large artifacts may resemble valid phenotypes closely

enough to be misclassified (Supplementary Fig. 8B). Therefore it is preferable whenever

possible to improve the segmentation itself so that more of an assay’s cells can be used

for analysis instead of discarded. To help achieve reliable cell segmentation results, our

phenotype sampler component is run independently as part of preprocessing to con-

tribute a collection of phenotype images to aid segmentation algorithm tuning. As

emerging technologies drive the improvement of image segmentation methods, e.g.,

deep learning-based models [16, 17] we expect further advances in the performance of

our proposed QC workflow by further reducing the risk of segmentation artifacts re-

sembling valid cells passing through. Another direction for further study involves fur-

ther reducing or eliminating the human analysis step via automated classification of

image phenotypes as biologically valid or invalid before SVM training. Finally, testing

on additional image datasets will enable a more comprehensive evaluation of workflow

performance and facilitate tuning of model parameters for further generalization, lead-

ing to application of our workflow on more HT image assays including additional cell

types, organoids, phenotypes, and 3D images.

Conclusions
Image QC plays a very important role in image-based HT screening as it determines

the quality of any downstream analysis. Our image QC workflow increases the reso-

lution of QC analysis beyond existing image- or patch-level approaches to the cellular

scale, robustly identifying previously undetectable artifacts. Our workflow automatically

handles assay-specific phenotypic variations by collecting representative cells capturing

an exhaustive range of non-artifact phenotypes from sampled images, identifying arti-

facts by comparing each candidate cell with the training examples, and detecting artifi-

cial cells created not only by imaging or staining artifacts but also the limitations of

image segmentation algorithms. As a consequence, cells and images that were falsely

accepted or rejected by existing methods are now properly classified, increasing the ac-

curacy and sample size of all downstream analysis.
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Methods
The datasets used in the experiments were two HT image assays, α and β, previously

collected in-house. Assay α is designed for scoring protein translocation in cells treated

by compounds at multiple doses (see Supplementary Methods [18]). This assay con-

tains 555,196 well images acquired on the PerkinElmer Opera QEHS system with six

replicates for each condition. The average number of cells per image is ~ 1700. The

second assay, β, is collected by a different imaging system (ImageXpress Micro High-

Content Imaging System) for scoring a morphologic phenotype of interest (see Supple-

mentary Methods) with seeding density of ~ 700 cells per well. Due to the use of mul-

tiple cell lines in assay β, we observe a larger variety of cellular phenotypes regarding

morphology and staining intensity from its 230,382 wells.
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