
Hilafu et al. BMC Bioinformatics          (2020) 21:283 
https://doi.org/10.1186/s12859-020-03606-2

METHODOLOGY ARTICLE Open Access

Sparse reduced-rank regression for
integrating omics data
Haileab Hilafu1* , Sandra E. Safo2 and Lillian Haine2

*Correspondence: hhilafu@utk.edu
1Department of Business Analytics
and Statistics, University of
Tennessee, 37996 Knoxville, TN, USA
Full list of author information is
available at the end of the article

Abstract

Background: The problem of assessing associations between multiple omics data
including genomics and metabolomics data to identify biomarkers potentially
predictive of complex diseases has garnered considerable research interest nowadays.
A popular epidemiology approach is to consider an association of each of the
predictors with each of the response using a univariate linear regression model, and to
select predictors that meet a priori specified significance level. Although this approach
is simple and intuitive, it tends to require larger sample size which is costly. It also
assumes variables for each data type are independent, and thus ignores correlations
that exist between variables both within each data type and across the data types.
Results: We consider a multivariate linear regression model that relates multiple
predictors with multiple responses, and to identify multiple relevant predictors that are
simultaneously associated with the responses. We assume the coefficient matrix of the
responses on the predictors is both row-sparse and of low-rank, and propose a group
Dantzig type formulation to estimate the coefficient matrix.
Conclusion: Extensive simulations demonstrate the competitive performance of our
proposed method when compared to existing methods in terms of estimation,
prediction, and variable selection. We use the proposed method to integrate genomics
and metabolomics data to identify genetic variants that are potentially predictive of
atherosclerosis cardiovascular disease (ASCVD) beyond well-established risk factors.
Our analysis shows some genetic variants that increase prediction of ASCVD beyond
some well-established factors of ASCVD, and also suggest a potential utility of the
identified genetic variants in explaining possible association between certain
metabolites and ASCVD.

Keywords: Integrative analysis, Multi-view data, Reduced rank regression, High
dimensional data

Background
Advances in technologies and data collection processes have resulted in multiple
high dimensional data types being measured on the same subjects. For instance, in
biomedical research, these data types include genomics, metabolomics, proteomics, and
transcriptomics. While each of these data types provide a different snapshot of the
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underlying biological system, it is being increasingly recognized that combining these
data types can reveal complex relationships that may not be unraveled from individual
analyses. For instance, the integration of genomic and metabolomic/proteomic data can
provide valuable insight into key genomic loci that influence human plasma levels associ-
ated with complex diseases [1]. This is of great interest because genomic studies including
genome wide association studies (GWAS) have revealed that the majority of disease-
causing single nucleotide polymorphisms (SNPs) lie in noncoding regions of the genome
[2], making it difficult to know their functional implications. While individual genomic
variants identified through GWAS can be tested experimentally, this approach is compli-
cated by the modest effects of the identified variants and the fact that we may not know
the specific gene driving the genomic association [3]. Integration of genomics data with
other omics data can therefore enable us to identify genomic variants that could gener-
ate hypotheses for the genomic architecture of the underlying disease, or could identify
variants that have the potential to improve clinical factors. Since the metabolome is con-
sidered as the end product of all genetic, epigenetic, and environment activities [4, 5],
linking metabolite levels in human blood samples with genomics data can help shed light
on complex disease-causing genomic variants. Additionally, tying genomic variants to
metabolite levels can identify metabolites that can be used as biomarkers or potential tar-
gets for drug discovery [1]. A review of studies that combine genomics and metabolomics
data can be found in [3]. In a recent study [1], genomics data were linked with pro-
tein levels known to be associated with cardiovascular disease (CVD) and many new
gene locus-protein associations were unraveled, providing new insight into CVD risk
pathophysiology [1].
However, integrating genomics and metabolomics data, for instance, to identify impor-

tant disease-associated biomarkers is complicated by the high-dimensional nature of each
omics data. The popular epidemiological approach to relate genomics with metabolomics
or proteomics data is to consider an association of each of the genetic variant with each of
the metabolites using a univariate linear regression model, and to select genetic variants
that meet a priori specified significance level [1, 6, 7]. Specifically, the following linear
regression model is considered:

yj = xici + ej (1)

where yj, j = 1, . . . , q is a n×1 vector of metabolic features or protein expression levels for
n subjects, xi, i = 1, . . . , p is a n× 1 vector of SNPs for n subjects, ci is the unknown coef-
ficient for the ith SNP, ej is a vector of random noise, q denotes the number of responses
(metabolic features or protein levels), and p denotes the number of predictors (SNPs). The
above approach is limiting because larger sample size is usually required to identify asso-
ciated biomarkers, which is costly. Furthermore, it assumes variables for each data type
are independent, and thus ignores correlations that exist between variables both within
each data type and across the data types. Additionally, genomic studies show that most
genetic variants have modest effect on complex diseases, suggesting the need for methods
that model multiple SNPs simultaneously in association studies. These limitations lead us
to consider the following multivariate linear regression model

Y = XC + E, (2)
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where Y is n × q matrix containing all the responses (e.g., all metabolites), X is n × p
matrix of predictors (e.g., SNPs), C is a p × q matrix of unknown coefficients, and E is
n × q matrix of random noise. Our goal is then to estimate the matrix of unknowns C,
and to identify multiple relevant predictors that are simultaneously associated with the
responses, and which potentially could predict complex diseases. From a statistical point
of view, the discovery of biomarkers is best cast as a variable selection problem, where
“variable” refers to the genetic loci or metabolites. Variable selection in omics data is
complicated by the high-dimensional nature of each of the omics data.
When we use (2) to model genomics and metabolomics/proteomics data, with a large

number of responses and predictors, the number of unknown parameters that need to be
estimated in C, i.e. pq, can quickly exceed the sample size n. To overcome this problem,
researchers have considered two important types of structural assumptions that induce
lower-intrinsic-dimension on C. The first is low-rankness where the rank of C is assumed
to be much smaller than its matrix dimension of min(p, q). That is, it is assumed that
rank(C) = r < min(p, q). Then, counting the parameters in the singular value decompo-
sition of C, we observe that only r(p+ q− r) free parameters need to be estimated, which
can be substantially lower than pq for low values of r. This structure is referred to as the
reduced-rank regression (RRR) and has been widely used in variety of applications [8, 9].
Reduced-rank estimation is often obtained by introducing penalties that are proportional
to the eigenvalues of the coefficient matrix or its rank, see, for example, [10–15].
The second structural assumption is the so called sparsity where only a small subset,

s, out of the p predictors are assumed to contribute to the variation of the responses.
Removing the ith predictor from model (2) is equivalent to setting the ith row in C to
zero. Vectorizing both sides of model (2) yields a univariate response regression model.
Thus, one can view the rows of C as groups of coefficients in the transformed model
and set them to zero by any group selection method developed for univariate response
regression models. Thus, the effective number of parameters is sq, which is smaller
than the unrestricted pq, but may be higher than r(p + q − r), especially if the rank of
C is low. Proposals that use penalties that induce row-sparsity include, among others,
[16–21]. For either structure, researchers have sought to understand how a given sta-
tistical estimation depends on the model parameters and on how to achieve optimal
estimation without the knowledge of the rank r or the sparsity level s. In this article, we
propose a new method that induces both row-sparsity and low-rankness, and leads to
meaningful dimension reduction and variable selection.

Motivating data: an atherosclerosis disease study

We motivate our work using data from the Emory/Georgia Tech Predictive Health
Institute (PHI) study. The PHI is longitudinal study of healthy employees from Emory
University and Georgia Tech that began in 2005 with the aim of collecting health factors
that could be used to optimize and maintain health rather than treating disease. With
this in mind, we seek to identify genomic risk factors that are correlated with motabo-
lite and which could be used for predicting 10-year risk of ASCVD. ASCVD is a chronic
inflammatory disease as well as a disorder of lipid metabolism [22]. It is a complex dis-
ease of many risk factors including genetic risk factors. Many genetic studies have been
conducted to identify genetic variants and genes that many be implicated in ASCVD [23].
However, the functional implications of these SNPs and genes are not well-understood.



Hilafu et al. BMC Bioinformatics          (2020) 21:283 Page 4 of 17

Linking metabolomic data with genomic data can help shed light on genetic loci influenc-
ing ASCVD. Additionally, tying genetic loci tometabolomics can identify metabolites that
can be used as biomarkers for ASCVD [1]. In light of the above, we seek to use metabo-
lites to guide selection of SNPs that may be associated with ASCVD, and to also explore
the potential utility of these genetic variants in explaining possible association between
certain metabolites, and ASCVD risk.

Main contributions

This paper makes two main contributions. First, we propose a new computationally effi-
cient convex formulation to estimate the coefficient matrix in (2) that takes advantage
of the potential presence of low-rankness and sparsity. The proposed convex formula-
tion is computationally efficient, and can be solved using readily available solvers. It is
also shown to yield competitive numerical performances (in estimation, prediction, and
variable selection) under a variety ofmodel parameter settings when compared with state-
of-the-art methods in the literature. Specifically, we observe that the superior results of
the proposed method, in estimation and variable selection, are more pronounced when
the number of responses and predictors are much higher than the sample size. This is
encouraging to us since our motivating problem, and many integrative genomics analy-
sis problems, fall under this regime. Second, atherosclerosis cardiovascular disease is a
major health-economic burden in USA, and beyond, and the problem of identifying other
non-traditional risk factors beyond well-established factors remains an important scien-
tific problem and active research area. We aim to contribute to the body of knowledge
in this field through the use of innovative statistical methods such as the ones proposed
here. We therefore present careful analyses of data from healthy adults with low- vs
moderate- to high-risk for developing atherosclerosis cardiovascular disease in the future
using genomics, metabolomics, clinical, and demographic data, permitting us to identify
genetic variants that increase atherosclerosis cardiovascular disease risk beyond estab-
lished risk factors. Additionally, we explore the potential use of these genetic variants in
explaining possible association of certain metabolites with atherosclerosis cardiovascular
disease.

Method
Reduced-rank regression

Let
{
x�
i , y�

i
}n
i=1 denote an available n i.i.d. samples. In the sequel, we denote the predictor

and response data matrices by X and Y, respectively. Suppose that C is of lower rank, r
= rank(C) < min(p, q), and that we have a q × r orthonormal matrix A whose columns
span the right singular subspace of C. That is, we have a q× r orthonormal matrixA such
that for some p × r matrix B, C = BA�. Then, post-multiplying both sides by A, we can
re-write model (2) as

YA = XB + EA, (3)

where XB is of reduced dimension with only r components that can be interpreted
as unobservable latent factors that drive the variation in the responses. This re-
parametrization also indicates that A spans the right singular subspace of Y. Therefore,
if we had such a matrix A, we would fit a lower dimensional regression of YA on X to
obtain an estimate of B, and use it to obtain an estimate for C. In the literature, model (3)
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is referred to as the reduced-rank regression model. Since the responses are modeled by
r(r < q) common latent factors, we achieve dimensionality reduction of the predictors
and expect that this modeling exercise takes the correlations among the q responses into
account. There are a number of approaches of obtaining such a matrix A. For example,
[17] and [24] consider the SVD, C = UDV�, where U and V are p × r and q × r matrices
with orthonormal columns, respectively, and D is a r × r nonnegative diagonal matrix.
[18] set A to be the r-dimensional right singular subspace of Y. We exploit both these
approaches in this paper. On the other hand, [20], propose to seek such an A that leads
to the best approximation of the signal matrix XC. That is, they seek a q × r orthogonal
matrix A such that XBA� is the best rank r approximation of the signal matrix XC.
The latent factors XB (r components) are lower dimensional than the original predic-

tors. However, they are linear combinations of all the p original predictors. Therefore,
while model (3) achieves dimension reduction of the predictors, it does not lead to vari-
able selection. Recall that a predictor is unimportant in predicting the responses viamodel
(2) if the corresponding row in C is zero. Thus, to achieve variable selection, row-sparse
estimate of C is desirable. The following two key facts facilitate this using model (3): (i)
if C has at most s non-zero rows, so does B = CA; (ii) the non-zero rows in B and C are
the same. Thus, row-sparse estimate ofC can be obtained by seeking row-sparse estimate
of B.

Our approach to sparse reduced-rank regression

Suppose that we have a matrix Ã as described above (we discuss how to obtain such a
matrix in the implementation section below). We use the following optimization problem
for a row-sparse estimation in reduced-rank regression (3):

B̂ = min
B

p∑

j=1

∥∥bj
∥∥
2 subject to max

1≤j≤p

∥∥∥X�
j

(
YÃ − XB

)∥∥∥
1

≤ τ , (4)

where τ > 0 is a tuning parameter that controls the sparsity level in B̂. Large values
of τ yield less sparse estimates and smaller values of τ yield more sparse estimates. The
formulation in (4) can be thought of as a generalization of the dantzig selector [25] to a
multivariate reduced-rank regression setting, with YÃ as the response and X as the pre-
dictor. This formulation, which yields row-sparse estimates, is desirable for the following
reasons: (i) the solution to the optimization problem is unique up to a r × r orthogonal
matrix; (ii) the set of important predictors obtained by solving the optimization prob-
lem is uniquely determined, where the important predictors are those that correspond
to nonzero rows of the solution. Consequently, the solutions to (4) are determined up to
an orthogonal transformation. Nonetheless, different solutions correspond to selection of
the same set of predictors, hence the name coordinate-independent sparse reduced-rank
regression (CISRRR).

Implementation

We focus on the reduced-rank version of our proposal via (4), as this is the more useful
method for the high-dimensional setting. The proposed method can be viewed as a two
stage estimation approach. In the first stage, we seek an estimate of the right singular
subspace of C, or the right singular subspace of Y, say Â. In the second stage, we solve (4)
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to obtain row-sparse estimate B̂ of B. The corresponding row-sparse estimate ofC is then
obtained as: Ĉ = B̂Â�.

Algorithm 1 Coordinate-Independent Sparse Reduced-Rank Regression
Input: X,Y, τ , Ã (initial Â).
Output: Â(τ ), B̂(τ )

Iterate Until Convergence:

1. Given current Â, to update B̂, solve

B̂ = min
B

p∑

j=1
‖bj‖2 subject to max

1≤j≤p

∥∥∥X�
j

(
YÂ − XB

)∥∥∥
1

≤ τ .

(5)

2. With the current B̂ and Â, compute Ĉ = B̂Â� and update Â by the r right singular
vectors of XĈ.

The values of Â and B̂ at convergence serve as the estimates Â(τ ) and B̂(τ ).

To understand the motivation behind the updating in step 2, note that if we knew C, we
can think of the right singular subspace ofXC as estimating the right singular subspace of
Y. Therefore, this step can be thought of as encouraging the updating A and B such that
XC approximates Y. Next, we discuss two approaches to obtain the initial estimate Ã.

1 We can use the sample estimate for the right singular subspace of Y as the initial
estimate of A. Let Y = UDV�, where U ∈ R

n×r , D is a diagonal r × r matrix, and
V is q × r. Set Ã = V as the initial estimate.

2 Alternatively, we can use some regularization to obtain the initial estimate.
Suppose that ĈOLS is the nonsparse OLS estimate of C. That is,
ĈOLS = (

X�X
)−1 X�Y. Perform a singular-value decomposition (SVD):

ĈOLS = UDV�. Then, use the first r columns of V as the estimate Ã. In the event
that n < p, we use the ridge-type estimator instead of the OLS estimator, i.e.
ĈRidge =

(
X�X + I ∗ √

log p/n
)−1

X�Y. For computational expediency, we also

avoid having to invert the p × pmatrix
(
X�X + I ∗ √

log p/n
)
. Instead, we use the

tricks given in [26] and invert an n × nmatrix. More specifically, let X = UDV�

represent the SVD of X; that is, V is p × n with orthogonal columns, U is n × n
with orthogonal columns, and D a diagonal matrix with elements
d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. [26] show that a computationally efficient estimate of the
ridge estimator can be obtained as: ĈRidge = V

(
R�R + I ∗ √

log p/n
)−1

R�Y,
where the matrix R = UD is n × n, leading to a much less computationally
expensive estimate.

All our empirical results are based on the first approach. However, we have conducted
simulation studies to assess the performances using the second approach as well. The
simulations showed that the two approaches yield comparable results. Once an initial Ã
is specified, to solve the optimization problem in (5), we used CVX, a MATLAB pack-
age for specifying and solving convex optimization problems [27, 28]. Matlab codes that
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implement this algorithm are provided as online supplementary material (see Additional
file 2).

Tuning parameter selection

The tuning parameter τ in (5) controls the level of sparsity in B̂, and hence in Ĉ, and
needs to be selected adaptively from the data. Notice that when τ > max1≤j≤p

∥∥∥X�
j YÂ

∥∥∥
1
,

the optimization problem (5) yields a trivial solution, giving us an upper bound for τ .
Therefore, we choose the optimal τ from the range

(
0,max1≤j≤p

∥∥∥X�
j YÂ

∥∥∥
1

)
using K-fold

cross validation. Specifically, for a given τ , we randomly split the available data {(Y,X)}
into K roughly equal-sized non-overlapping groups of observations, which we denote by
{(Y,X)}k , k = 1, . . . ,K . Let {(Y,X)}−k be the data matrix leaving out {(Y,X)}k . With a
given τ , we apply the proposed method on {(Y,X)}−k to obtain an estimate of the coeffi-
cient matrix Ĉk(τ ). Then, we compute the K-fold mean squared prediction error (MSPE)
as follows:

MSPE(τ ) = 1
K

K∑

k=1

∥∥XkĈk(τ ) − Yk∥∥2
F

nkq
(6)

where nk is the number of observations in {(Y,X)}k . We do this for a number of τ values
in the range (20 in our empirical studies) and select the optimal tuning parameter τ as:

τopt = min
τ

{MSPE(τ )} . (7)

Rank (r) selection: In our discussions so far, we have treated the rank (r) as known. In
practice, it needs to be estimated from the data. There are many methods proposed to
estimate r in the literature, see for instance [15] and [29], and the references therein. In our
empirical studies, we again use cross-validation to estimate the rank. More specifically,
we choose an estimate r̂ such that

r̂ = min
r

{
MSPE

(
τopt, r

)}
,

where MSPE(τopt, r) is the MSPE for a given r and the optimal tuning parameter as
selected by (7). The value of r in practice is small, often times between 1 and 3. In our
empirical simulations, we try values r in {1, · · · , 10}. If the optimal value of r obtained by
the cross-validation approach is close to 10, one could expand the range. Our empirical
results (Table 1 in Additional file 1) show that this approach works well.

Results
Simulation studies

In this section, we assess the finite sample performance of the proposed coordinate-
independent sparse estimationmethod for reduced-rank regression (CISRRR).We assess,
and compare, estimation, prediction and variable selection performances. Estimation and
prediction performances are evaluated using, respectively,

� = ∥∥C − Ĉ
∥∥2
F /(pq) and MSPE = ∥∥Yt − Ŷt

∥∥2
F /(ntq) (8)

where Ŷt = XtĈ, nt is the test set sample size, and ‖.‖F represents the Frobenius norm.
Variable selection performance is evaluated using true positive rate (TPR), the ratio of
truly important variables that the method selects as important, and false positive rate
(FPR), the ratio of unimportant predictors that the method selects as important. TPR
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values close to one and FPR values close to zero indicate a better variable selection per-
formance. In all our simulation settings, to minimize the effect of parameter tuning, we
generate a large test set (with 10,000 observations), a strategy which was also employed
by [16] and [18]. For our method, the tuning parameter candidates are taken at a grid
of 20 equally spaced values between (0,τmax], where τmax is as defined in the tuning
parameter selection section. Also, unless otherwise specified, the tuning parameter is
chosen by 5-fold cross-validation as described in tuning parameter selection section. We
repeat the simulation process 50 times and report results in the form of boxplots of the
corresponding values.
We compare our method, i.e. Algorithm 1, with a number of state-of-the-art competing

sparse estimationmethods for multivariate linear regression. The first competing method
we consider is the signal extraction approach for sparse multivariate response regression
(SiER) by [20]. This method exploits the reduced rank structure by assuming there exist
matrices A and B such that C=BA�, and seeks such A and B that lead to the best rank
r approximation of the signal matrix XC. We use the SiER package in R to implement
this method [20], using the “cv.SiER” function with 5-fold cross-validation to select the
tuning parameters. The second competing method we consider is the regularized multi-
variate regression for identifying master predictors (remMap) by [30]. This method does
not assume the reduced rank structure and solves a penalized least squares problem with
both row-wise and element-wise sparsity imposed on the coefficient matrix. We use the
remMap package in R to implement this method [30]. The third competing method is
the subspace assisted regression with row-sparsity (SARRS) method by [18], which was
extended to yield row and column sparse estimators in [19]. SARRS is carried out by
Algorithm 1 in [18]. The fourth competing method is the sparse partial least squares
(SPLS) method due to [31] which identifies sparse latent components by maximizing the
covariance between them and the responses with sparsity inducing penalty imposed. We
implement SPLS using the spls package in R. We use the function “cv.spls” with 5-
fold cross-validation to select the tuning parameters, with the number of components K
selected from {1, · · · , 10} and the thresholding parameter η selected from {0.1, · · · , 0.9}.
We note again that, for a fair comparison, we use the tuning parameter selection methods
presented in the respective papers.
We compare the methods under different model parameter settings as characterized

by the covariance matrix of the predictors, as well as different rank values, and signal-
to-noise ratios. We adopt simulation settings from [16], which were also adopted by [18].
The rows of the design matrix X are i.i.d. random vectors sampled from a multivariate
Gaussian distribution with zero mean vector and covariance matrix �, with �ij = ρ|i−j|.
The coefficient matrix C ∈ R

p×q has the form

C =
[
C1
0

]

=
[
bB0B1

0

]

,

with b > 0, B0 ∈ R
s×r and B1 ∈ R

r×q, where all entries in B0 and B1 are i.i.d. random
numbers from N(0, 1). Large value of b correspond to a large signal-to-noise ratio. We
consider the following four cases.

1. n > p = q: n = 100, p = 25, q = 25, s = 15, r = 5, b = 0.2, 0.4, ρ = 0.1, 0.5, 0.9.
2. q < n < p: n = 30, p = 100, q = 10, s = 15, r = 2, b = 0.5, 1, ρ = 0.1, 0.5, 0.9.
3. n < p = q: n = 30, p = 100, q = 100, s = 15, r = 2, b = 0.5, 1, ρ = 0.1, 0.5, 0.9.
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4. n < p < q: n = 30, p = 100, q = 1000, s = 15, r = 5, b = 0.5, 1, ρ = 0.1, 0.5, 0.9.

We conduct additional simulations (refer to Figs. 1 and 2 in Additional file 1) where the
error term matrix has entries from a non-Gaussian distribution. More specifically, we
consider two additional noise distributions: Eij ∼ √

3/5t5, and Eij ∼ 3U[-1,1], where
“3U[-1,1]” refers to the sum of three uniform [-1,1] random variables, and tν stands for a
t-distribution with ν degrees of freedom.

Simulation results

Figures 1, 2 and 3 report simulation results for the scenario where the noise matrix E ∈
R
n×q has i.i.d.N(0, 1) entries. Figure 1 reports the results for case 1 (n = 100, p = q = 25),

from which, we make the following observations. In terms of estimation and prediction
performances, remMap outperforms all the other methods, especially when ρ = 0.1 and
0.5. This is not surprising, as remMap does not impose the low-rankness assumption and
the sample size dominates both p and q. However, our method (CISRRR) yields compara-
ble results with remMap, and even outperforms it when ρ = 0.9 when remMap appears
to struggle - again perhaps because it is marginal model. We see that all the methods
also perform reasonably well and comparably ρ = 0.1. In terms of variable selection, our
method yields the best results in all settings. It yields TPR values that are significantly
higher than the TPR values of the other existing methods, and comparable (often better)
FPR values. In fact, we see that the TPR values of our method are consistently around 1.
We see that both SARRS and SiER struggle in this case, especially in terms of TPR. Figure

Fig. 1 Simulation results for Gaussian errors under case 1. Reported results are 50 independent replications.
� assesses estimation performance. MSPE is mean squared prediction error; TPR is true positive rate; FPR is
false positive rate. Black for ρ = 0.1, b = 0.2; Red for ρ = 0.1, b = 0.4; Green for ρ = 0.5, b = 0.2; Blue for
ρ = 0.5, b = 0.4; Cyan for ρ = 0.9, b = 0.2; Purple for ρ = 0.9, b = 0.4
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Fig. 2 Simulation results for Gaussian errors under case 3. Reported results are 50 independent replications.
� assesses estimation performance. MSPE is mean squared prediction error; TPR is true positive rate; FPR is
false positive rate. Black for ρ = 0.1, b = 0.5; Red for ρ = 0.1, b = 1; Green for ρ = 0.5, b = 0.5; Blue for
ρ = 0.5, b = 1; Cyan for ρ = 0.9, b = 0.5; Purple for ρ = 0.9, b = 1

2 reports the results for case 3 (n = 30, p = 100, q = 100). Here, we see that CISRRR out-
performs all the other methods in estimation, prediction, and TPR performances. Even
though the performances in TPR appear comparable to that of SARRS and SiER, it is seen
that our method yields more stable results - with less variability. With respect to FPR,
our method is inferior to remMap and SPLS, and to a lesser degree SARRS, especially
in the ρ = 0.1 and ρ = 0.5 cases. However, both remMap and SPLS yield very inferior
TPR values, an indication that they both yield very sparse estimates. The performances
for case 2 (not reported to save space) are similar to the performances for case 3. Figure
3 reports the results for case 4 (n = 30, p = 100, q = 1000). For this case, remMap did
not produce results, since q is large and it does not make the reduced-rank assumption.
Here again, we see that our method outperforms all the other methods in estimation,
prediction, and TPR, in all the settings. The advantage of our method is, in fact, more
pronounced in this case as it yields superior results consistently. Especially when the cor-
relation structure among the predictors is higher (ρ = 0.9 vs ρ = 0.5 vs. ρ = 0.1), we
see that the other methods performances deteriorate but our method continues to per-
form well. These observations are true for estimation, prediction and TPR. However, our
method pays some price in terms of FPR as it does not outperform any of the other meth-
ods in terms of FPR. As we indicated earlier, SPLS yields more sparse results and thus
have lower TPR and lower FPR values. Overall, our method is shown to yield competitive,
and often times superior, results.
In all the simulation settings that we consider, the estimation and prediction perfor-

mances of the methods are better when the correlation structure among the predictors
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Fig. 3 Simulation results for Gaussian errors under case 4. Reported results are 50 independent replications.
� assesses estimation performance. MSPE is mean squared prediction error; TPR is true positive rate; FPR is
false positive rate. Black for ρ = 0.1, b = 0.5; Red for ρ = 0.1, b = 1; Green for ρ = 0.5, b = 0.5; Blue for
ρ = 0.5, b = 1; Cyan for ρ = 0.9, b = 0.5; Purple for ρ = 0.9, b = 1

is weaker (ρ = 0.1 vs ρ = 0.5). Nevertheless, we see that our method continues to per-
form well, relative to the other methods. Overall, our methods yields competitive (often
superior) results in estimation, prediction and TPR. In terms of FPR, it yields compa-
rable performance, sometimes inferior to the best performing method. Furthermore, we
observe that remMap performs well for the large n setting, and struggles when q is large
since it does not induce the reduced-rank structure, as well as when ρ is large since it is a
marginal model. Finally, it appears that, like remMap, SPLS performs well for the large n
setting (case 1), but it struggles in variable selection when either p or q is large (cases 2, 3
and 4).

Real data analysis: the atherosclerosis disease study

Study goals and design: We apply the proposed method for simultaneous analysis of
genetic (single nucleotide polymorphisms, SNPs) and metabolomics data. Data were
obtained from the Emory University and Georgia Tech Predictive Health Institute (PHI)
study. Our goal in this section is to identify relevant SNPs, and corresponding genes, that
are simultaneously associated with metabolites, and which can be used to predict 10-
year risk for atherosclerosis diseases (ASCVD). Specifically, we seek to use metabolites to
guide selection of SNPs that may be associated with ASCVD, and to explore an indirect
relationship between metabolites and ASCVD through the genetic variants.

SNP and metabolomics quality control and filtering: We obtained genetic and
metabolomics data from the Emory PHI study. Several studies point to the association
between biomarkers of inflammation, and the risk of CVD [32, 33]. As such, recent effort
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has focused on identifying biomarkers of inflammation and characterizing their effect
on CVD [34]. We therefore focused on inflammation-related genes, and the SNPs within
these genes. Specifically, we pulled all SNPs in our data that were in gene regions found in
the inflammation pathway from NCBI dbSNP; there were 262,157 SNPs. Of note, these
SNPs may or may not be associated with ASCVD. For SNP quality control, please refer to
the flow chart given in Fig. 3 in the web supplementary material (Additional file 1). We
assumed an additive genetic model in which the genotypes were coded to count the num-
ber of minor alleles so “0” for both homozygous major, “1” for heterozygotes (1 major, 1
minor), and “2” for risk-allele homozygotes (minor alleles). We treated the genetic data as
continuous.
We obtained metabolomics data on 6,010 m/z features. We removed features having

more than 50% zeros and coefficient of variation ≥ 20%. This resulted in 272 m/z fea-
tures for the analyses. Because of the skewed distributions of most metabolomic levels,
we log2 transformed each feature. We standardized each feature to have mean zero and
unit variance.

Application of the proposed and competing methods: We had matching genetic
and metabolomics data on 121 subjects. We applied our method to the metabolomics
(Y121×272) and genetic (X121×1988) data to identify subset of SNPs that are simultaneously
associated with metabolomics data, and which potentially can predict ASCVD risk. We
obtained 50 bootstrap training and testing datasets by sampling the dataset with replace-
ment. Out of bag samples (samples in the original data but not in the bootstrap training
sets) were considered as bootstrap testing sets. For each bootstrap dataset, we estimated
the rank r of the coefficient matrix for the multivariate regression model using 5-fold
cross-validation as described in the tuning parameter selection section. The rank of the
coefficient matrix was estimated to be r̂ = 2. Next, we apply the methods to the train-
ing data to obtain the estimated coefficient matrix, Ĉ, which yields the predicted values
for the test metabolite samples, Ŷtest. We use Ytest and Ŷtest to compute the test MSPE, as
given in (8). We record the number of non-zero rows of the estimated coefficient matrix
(selected SNPs) for each method and for each bootstrap testing datasets. The averages are
reported in Table 1.
Since our goal is to identify potential novel genetic variants that are linked with m/z

features, and which could predict ASCVD risk, we considered the following analyses after
identifying potential SNPs. The 10-year ASCVD risk score was dichotomized into low-
vs moderate- to high-risk ASCVD. Specifically, ASCVD risk score ≥ 5.0% was considered
moderate to high-risk, and ASCVD risk score < 5% was considered low-risk [35, 36].
A weighted genetic-risk score (GRS) that utilizes the SNPs appearing at least 90% (>45

Table 1 Average MSPEs and average number of selected SNPS (non-zero rows) for the competing
methods from 50 independent bootstrap replications

CISRRR SARRS SIER SPLS remMap

MSPE 1.013 1.038 1.035 1.032 ****

# Selected SNPs 72.820 146.00 274.4 278.420 ****

SARRS 8

SiER 6 5

SPLS 2 3 7

The bottom half of the table presents the number of overlapping SNPs in the respective top 15 SNPs for the methods
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times) out of the 50 bootstrap datasets was calculated by multiplying the logarithm of the
odds ratio for that particular SNP by 0, 1, or 2 depending on the number of risk alleles
carried by each subject using the whole data. The log odds ratio from each bootstrap was
estimated for each of the 15 SNPs, and a weighted mean of the estimates was used in
calculating the genetic risk score. We further considered whether including the GRS to a
model that used well-established risk factors (age and/or sex) improved predictive ability.
We explored causal association between metabolites and ASCVD risk, after adjust-

ing for age and sex, by utilizing the GRS as an instrument in the causal pathway using
Mendelian randomization [37]. Specifically, if the genetic risk score is statistically sig-
nificantly associated with certain metabolites and is associated with ASCVD risk, then
this would provide supportive evidence for a potential causal effect of that metabolite
on ASCVD. In the Mendelian randomization analyses, we adopted the two-stage process
outlined in [37]. In the first stage, we considered a linear regressionmodel of eachm/z fea-
tures on the GRS controlled for age and sex, and we obtained fitted values for m/z features
that showed significant association with the GRS (Benjamini-Hochberg False Discovery
Rate [38] p-value <= .0004). In the second stage, these fitted values were included in a
logistic regression model of ASCVD risk on the fitted values, and the effect on ASCVD
risk was assessed after adjusting for age and sex.

Results

SNPs identified using the proposed and existing methods: We investigate the SNPs
identified by the proposed method, and the corresponding genes, with respect to their
potential effect on ASCVD. Table 1 reports the average MSPEs and average model size
(number of selected SNPs). Our proposed method identified 15 SNPs that were selected
in at least 90% of the 50 independent replications (see web supplementary material). Of
these selected 15 SNPS, 8 appear in the top 15 most selected SNPs by SARRS, 6 appear in
the top 15 most selected SNPs by SiER, and 2 appear in the top 15 most selected SNPs by
SPLS.
Table 2 in the web supplementary file shows the least squares means for the 15 SNPs

identified by our method - the predicted population means for 10-year ASCVD risk, after
adjusting for age and sex. For instance, the rs1286264 SNP located on chromosome 14
is an intron variant found in the protein coding gene Ribosomal Protein S6 Kinase A5
(RPS6KA5). From our data, individuals with two risk alleles of this polymorphism are
more likely to have lower adjusted 10-year ASCVD risk score least squares means com-
pared with individuals with normal alleles or 1 risk and 1 normal alleles. A weighted
genetic risk score developed using the 15 SNPs was significantly associated with ASCVD
risk, after adjustment for age and sex (p-value < 0.001) (Table 2 below). The predictive
ability of the GRS + traditional risk factors was assessed with the area under the curve
(AUC) from a receiver operating characteristics curve. We note from Table 2 that includ-
ing the GRS improved AUC in both models. The difference between GRS + traditional
risk factors model and only the traditional risk factor model were both statistically signif-
icant (p-value = 0.0134 for Model 1; p-value = 0.0104 for Model 2). Our findings suggest
that a unit increase in the GRS increased the risk for ASCVD with an OR of 2.348 (95%
CI: 1.599, 4.132) after controlling for age and sex. Intriguingly, when we dichotomize the
GRS, with a high risk score >75th percentile, and low risk score ≤ 75th percentile, we
find that the odds for ASCVD risk in the high genetic risk group was about 5 times the
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Table 2 Predicting ASCVD risk with GRS (genetic risk score) and traditional risk factors

Model 1 Model 2

OR p-value CI OR p-value CI

GRS 2.354 <.001 ( 1.466, 3.779) 2.348 <.001 (1.460, 3.776)

age 1.155 <.001 (1.065, 1.254) 1.158 <.001 (1.067, 1.256)

sex (M vs F) 0.771 0.6954 (0.242, 2.459)

AUC 0.8428 vs 0.743 (Ref) 0.8441 vs 0.743 (Ref)

Ref represents reference ROC; model with no risk score

odds for ASCVD risk in the low genetic risk group, after controlling for age and sex (OR
= 5.076, p-value .0005, 95% CI: 1.77, 14.49).

Mendelian randomization exploratory analysis: Here, we sought to tie the genetic risk
score to m/z features and to explore causal association of m/z features to ASCVD risk.
The genetic risk score served as an instrument to estimate the effect of the m/z features
on ASCVD risk, after adjustment for age and sex. In this exploratory analysis, our find-
ings suggested that the Dehydroalanine compound (C02218) is a possible risk factor for
ASCVD. Specifically, the amino acid, Dehydroalanine, belonging to the Cysteine (Cys)
and methionine (Met) metabolism pathway increased ASCVD risk with an odds ratio
of 23.204 (95% CI: 4.106, 131.124) per SD increase in the log2 predicted plasma levels,
after controlling for age and sex. Some research studies have documented the negative
health consequences including elevated risk for cardiovascular diseases with high-intakes
of both Met and Cys [39–41]. Our findings suggest an indirect association between
Dehydroalanine amino acid and ASCVD risk through these genetic variants.

Conclusion
We sought out to develop a method for identifying potential genetic variants that are
associated with metabolites and have a predictive value beyond some established risk
factors. We framed this as a two stage analysis: in the first stage we identified SNPs that
were associated with the metabolites using dimension reduction techniques proposed in
this article. In the second stage we used the selected SNPs as instruments to explore the
cause-effect association of the selected metabolites with ASCVD. To handle the large
number of SNPs andmetabolites, we used sparse reduced-rank regression and proposed a
new estimationmethod for the coefficient matrix using a group Dantzig type formulation.
The proposed formulation is convex and can be solved using readily available solvers, such
as the CVX toolbox in MATLAB. We carried out extensive simulation study to assess its
finite sample performance, and compared it to other existing state-of-the-art methods.
In the second stage, we developed a genetic risk score comprised of 15 genetic variants

and we assessed whether including the risk score in a model with well-established risk
factors (age/sex) improved predictive ability. Our findings suggested a potential utility of
the genetic risk score as it improved predictive ability. We used Mendelian randomiza-
tion to explore association of a metabolite with ASCVD through the genetic risk score.
Our analysis revealed a possible indirect association between the Dehydroalanine amino
acid and ASCVD using the genetic risk score in the causal pathway, suggesting a potential
role of Dehydroalanine on ASCVD risk through the genetic risk score. We note that our
findings are just exploratory, as we lacked an independent data set to validate our results.
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Nevertheless, our results add to the literature on possible genetic variants that could
be used in addition to established risk factors to improve prediction of atherosclerosis
cardiovascular disease.

In our proposed method, we only focus on sparsity on B; this amounts to selection of
predictors. One would be able to induce sparsity on A to select responses. We have not
pursued this idea in this approach, but we believe it will be interesting to do so in the
future.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03606-2.

Additional file 1: Additional simulations and data analysis. We present additional simulations to assess the
robustness of the proposed method when the error terms are non-Gaussian. In addition, in this file we report a
flow-chart for the SNP selection process, and a table (Table 2) with the least squares means for the 15 SNPs identified
by our method - the predicted population means for 10-year ASCVD risk, after adjusting for age and sex.

Additional file 2: Software. Matlab codes that implements the proposed CISERRR algorithm.
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