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Abstract

Background: Chromatin 3D conformation plays important roles in regulating gene
or protein functions. High-throughout chromosome conformation capture (3C)-based
technologies, such as Hi-C, have been exploited to acquire the contact frequencies
among genomic loci at genome-scale. Various computational tools have been
proposed to recover the underlying chromatin 3D structures from in situ Hi-C
contact map data. As connected residuals in a polymer, neighboring genomic loci
have intrinsic mutual dependencies in building a 3D conformation. However, current
methods seldom take this feature into account.

Results: We present a method called ShNeigh, which combines the classical MDS
technique with local dependence of neighboring loci modeled by a Gaussian
formula, to infer the best 3D structure from noisy and incomplete contact frequency
matrices. We validated ShNeigh by comparing it to two typical distance-based
algorithms, ShRec3D and ChromSDE. The comparison results on simulated Hi-C
dataset showed that, while keeping the high-speed nature of classical MDS, ShNeigh
can recover the true structure better than ShRec3D and ChromSDE. Meanwhile,
ShNeigh is more robust to data noise. On the publicly available human GM06990 Hi-
C data, we demonstrated that the structures reconstructed by ShNeigh are more
reproducible between different restriction enzymes than by ShRec3D and ChromSDE,
especially at high resolutions manifested by sparse contact maps, which means
ShNeigh is more robust to signal coverage.

Conclusions: Our method can recover stable structures in high noise and sparse
signal settings. It can also reconstruct similar structures from Hi-C data obtained
using different restriction enzymes. Therefore, our method provides a new direction
for enhancing the reconstruction quality of chromatin 3D structures.
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Background
Correct 3D organization of chromosomes plays important roles in maintaining

chromosomal functions such as gene expression, epigenetic modification and timely

copy and separation of chromosomes in mitosis. However, determining chromosomal

3D structures is still an unsettled issue currently. Traditional techniques such as fluor-

escence microscope and fluorescence in situ hybridization (FISH), usually have low

resolution and can only probe a few of individual genome loci at one time. Hi-C [1],

which is derived from Chromatin conformation capture (3C) and depth sequencing

technique, provides a new promise for this problem. As a high-resolution and high-

throughout method of studying chromosomal 3D conformation, Hi-C can measure the

contact frequency between genome loci pairs at the genome-wide level. Inferring the

3D structure of the genome from the contact frequency matrix obtained by Hi-C has

become an interesting research topic of bioinformatics since the occurrence of Hi-C.

However, reconstructing the 3D structures of chromosomes from the Hi-C data is not

so straightforward but an optimization problem essentially. As in other applications, a

standard optimization procedure requires clarifying two issues: the objective function to

be minimized or maximized and the optimization algorithm. As for the objective function,

one strategy is the distance-based formula. That is, this strategy first converts the contact

frequency matrix into the spatial distance matrix and then minimizes the discrepancy be-

tween the distance matrix calculated from the predicted structure and that converted

from the frequency matrix [2–7]. Two operations are prerequisite for this strategy: first,

the frequency matrix is normalized to remove the biases related to the DNA sequence,

among which GC content, sequence mappability and frequency of restriction sites are

three most apparent bias resources [8]; second, the conversion factor that modulates the

power law relationship between the frequency matrix and the distance matrix [1] is esti-

mated through an additional optimization procedure [2]. Another strategy of selecting the

objective function casts the problem of structure inference as a maximum likelihood

problem by assuming the contact frequency between genome loci follows a Poisson distri-

bution [9, 10]. HSA [11] constructs the likelihood by integrating multiple contact matrices

generated from different enzymes. The advantage of this strategy is that, by modeling the

effect of all the three data bias (i.e. GC content, sequence mappability and frequency of re-

striction sites) and the power law relationship between frequency and distance matrix

with a generalized linear formula, all these effects can be absorbed into the final likelihood

function. Thus, all parameters --- the Cartesian coordinates of all genome loci, the coeffi-

cients describing the effect of data bias and the conversion factor parameter --- can be de-

rived simultaneously through a unified optimization procedure. Consequently, the

normalization of the contact frequency matrix and the additional conversion factor infer-

ence procedure, which are requisite for the first strategy, are now unnecessary.

No matter which objective function above is adopted, the issue finally boils down to

a nonlinear and large scale optimization problem, for which a simple local searching

approach, such as Newton algorithm, is not suitable. Several global searching schemes

have been proposed. ChromSDE [2] transforms the problem into a semi-definite pro-

gramming (SDP) problem by embedding the original 3D Euclidean space into the Hil-

bert space of higher dimension. It can guarantee recovering the correct structure in the

noise-free case. But for noisy input data a local optimization method is needed to refine

the solution obtained from the SDP problem. PASTIS [9] uses IPOPT [12], a C++
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package that implements an interior point filter algorithm for large-scale nonlinear

optimization, to maximize the Poisson likelihood. BACH and BACH-MIX [10] apply

Gibbs sampler with hybrid Monte Carlo to draw samples in the parameter space and

output a collection of 3D chromosomal structures from the Bayesian posterior distribu-

tion. TADbit [13, 14] contains a module of chromosome 3D reconstruction that was

developed around Integrative Modeling Platform (IMP, http://www.integrativemodel-

ing.org), a general framework for restraint-based modeling of 3D bio-molecular struc-

tures [15]. HSA [11] adopts simulated annealing combined with Hamiltonian dynamics

to explore the chromatin comformal space. Different from BACH et al., MCMC5C [16]

assumes the contact frequency is normally distributed and employs the Markov chain

Monte Carlo (MCMC) with Metropolis-Hastings sampler [17] to sample from the pos-

terior distribution. Same as BACH, MCMC4C outputs an ensemble of conformations.

AutoChrom3D [3] selects LINGO (www.lindo.com/products/lingo), a commercial non-

linear constrained optimizer, to get the best chromatin structure. 3DMax [4] utilizes a

stochastic gradient ascent algorithm to maximize the likelihood generated from the

normal distribution. MOGEN [5, 6] and LorDG [7] maximized the objective function

by using steepest gradient ascent with the back-tracking line search algorithm.

The problem of inferring the coordinates of N objects in the 3D space from the distance

information between them can be solved perfectly by the classical multidimensional scaling

method (MDS) [18]. However, the distance matrix converted from the contact frequency

matrix is not complete in that it contains many unknown entries generally, which makes

the classical MDS method can not be utilized directly. This is just why various optimization

approaches above mentioned were proposed. In order to avoid the time-consuming

optimization procedure, ShRec3D [19] cleverly designed a two-step algorithm. It first com-

pletes the distance matrix by using the concept of shortest path in graph theory (i.e. Floyd-

Warshall algorithm), and then exerts the classical MDS to reconstruct 3D genome struc-

tures. It is orders of magnitude faster than the above optimization-based methods.

ShRec3D+ [20] corrects the conversion factor by a golden section search before carrying

out ShRec3D. MDSGA [21] improves the shortest path distances using a genetic algorithm.

In the above we gave a rough introduction for some reconstruction methods. See [22] for a

complete overview of the current state of the art 3D chromosome reconstruction. It should be

noted that the positions of genomic loci in the 3D space are not irrelevant to each other. Gen-

omic loci can be taken as a bunch of connected beads that comprise of a polymer. Two loci

adjacent in the genome are surely close to each other in the 3D space. However, current

methods seldom give consideration to this property of genomes. HSA [11] characterizes the

adjacency relationship of neighboring loci by a Gaussian Markov chain to capture the local de-

pendence of genomic loci. In the present work we extend the framework of classical MDS and

provide a more flexible way to model the correlations between genomic loci of local proximity.

Our algorithm, named ShNeigh, can significantly improve the performance of ShRec3D and

simultaneously still runs far faster than the optimization-based methods, such as ChromSDE.

Results
Simulated data study

We compared our ShNeigh with the existing methods ChromSDE [2], ShRec3D [19]

and ShRec3D+ [20]. As for ChromSDE, the quadratic SDP algorithm is adopted. We
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first test these programs on the simulated helix structure dataset. Figure 1 shows the

performance comparison for the programs under different measurements. We draw the

mean result of 10 runs for each noise level to reduce the occasional fluctuation. The

conversion factor is always assumed equal to 1 in ShRec3D, which is just the true value

for our simulated data. Because ShRec3D+ merely adds a conversion factor estimation

step upon ShRec3D and can not improve the performance of ShRec3D for the simula-

tion scenario, it is not included in Fig. 1a-b. As expected, when the noise level in-

creases, SCC decreases and RMSD increases generally. The RMSD of ChromSDE starts

from 0 at zero noise level, which coincides with the claim that ChromSDE can guaran-

tee recovery of the true structure in the noise-free case. Unfortunately, the other three

programs do not possess such a good feature. However, when the noise level get larger

(> 0.25), the superior behavior of ShNeigh1 and ShNeigh2 begins to emerge, and their

Fig. 1 Performance comparison on simulated data. a Root mean square deviation (RMSD) between the
predicted structure and the true structure under varying noise levels. b Spearman correlation between the
distance matrices calculated from the predicted structure and those from the true structure under varying
noise levels. c The absolute difference between the estimated and true conversion factor under varying
noise levels. d Logarithm of running time of tested programs under varying number of points
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superiority enlarges compared to ChromSDE with the increasing noise level (Fig. 1a).

ShNeigh1 and ShNeigh2 perform similarly and both significantly outperform ShRec3D,

showing that inclusion of the neighboring dependency relationship can offer essential

improvement against the underlying ShRec3D method. In summary, our ShNeigh algo-

rithms are more robust and accurate than ChromSDE and ShRec3D, except for com-

paring to ChromSDE in the noise-free or little noise situation. However, Fig. 1b shows

ShNeigh1 and ShNeigh2 have no pronounced improvement against ShRec3D in terms

of the SCC measure, and both ShRec3D and ShNeigh programs perform worse than

ChromSDE on SCC. It seems that ChromSDE tends to be over faithful to the noisy in-

put data, which may be the reason why ChromSDE is less robust than other programs.

In Fig. 1c the absolute error between the estimated conversion factor α and the true

α (=1) rises with increasing noise level generally. At low noise levels (< 0.2), ChromSDE

can nearly perfectly estimate α values, consistent with its performance on the RMSD

measure. But when the noise level increases the error estimated by ChromSDE ascends

dramatically, indicating ChromSDE is prone to give a wrong conversion factor estima-

tion as the data get more noisy. By contrast, ShNeigh2 and ShRec3D+ can estimate the

conversion factor α quite accurately across various noise levels. We can see from Fig.

1a, c that the performance of these programs on RMSD and that on the absolute α

error interweave with each other, in that samller RMSD leads to smaller α error, and

vice versa.

As described in the previous section, ShRec3D and ShNeigh1 have no optimization,

while ShRec3D+ includes a uni-variate optimization step (estimate α) and ShNeigh2 pos-

sesses a two-variate minimum searching procedure (estimate α and the weight ρ). There-

fore, ShRec3D and ShNeigh1 are most efficient among the tested programs, and

ShRec3D+ runs slower than ShRec3D and ShNeigh1 and faster than ShNeigh2 (Fig. 1d).

ChromSDE is the most time-consuming since it needs to explore a space of N2 variables

(compute a semi-definite kernel matrix).

Figure 2 shows the predicted structures of the simulated helix by different programs

(ShRec3D, ShNeigh2 and ChromSDE) under different noise levels. The structures pre-

dicted by ShNeigh1 are very similar to ShNeigh2 and so not shown. For the noise-free

case drawn in the top row, both ShNeigh2 and ChromSDE can almost perfectly recover

the true structure, and ShRec3D seems to give a bit over-fat structure. For the case of

medium noise level (=0.5, the middle row), the performances of all the three programs

get worse, but the reconstruction result of ShNeigh2 is still quite good, and it is diffi-

cult to identify the helix structure from ChromSDE’s reconstruction. When the noise

level gets the maximum (=1, the bottom row), ShNeigh2 can still present a clear helix

structure, and by contrast, the structure by ShRec3D is too fat and obscure, while

ChromSDE completely fails. We conclude that, on the whole, ShNeigh outperforms

ShRec3D and ChromSDE, especially in the highly noisy circumstance.

At last we investigate the impact of signal coverage on the performance of these pro-

grams. Obviously signal coverage is proportional to the number of nearest neighbors

parameter K of the simulation code. In fact signal coverage is approximately equal to

K/N (Fig. 3f). Figure 3 shows RMSD increases with descending nearest neighbors K for

all programs and all noise levels, indicating that reducing signal coverage can substan-

tially deteriorate the reconstruction results. Our programs ShNeigh1 and Sheigh2 per-

form similarly and both of them give apparent improvement relative to ShRec3D for all
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noise levels and all signal coverage. And they outperform ChromSDE at most situa-

tions. It is only at low noise level or high signal coverage that ChromSDE performs bet-

ter than ShNeigh1 and ShNeigh2 (Fig. 3a-b). The leading status of ShNeigh1 and

ShNeigh2 compared to ChromSDE gets more significant when the noise level increases,

which coincides with the results shown in Fig. 1-2. When the signal coverage decreases,

ChromSDE’s RMSD gets larger rapidly, while our ShNeigh programs are less sensitive

to the signal sparseness. Therefore, the leading status of ShNeigh1 and ShNeigh2 com-

pared to ChromSDE also gets more significant when the frequency matrix turns sparser

(Supplementary Figure S1).

Real hi-C data study

As for the human GM06990 cell lines, we compute the average RMSD across 23 chro-

mosomes (1–22 and X) between the predicted structures from HindIII and NcoI Hi-C

data and the average Spearman correlation coefficient between the estimated distance

matrices (dSCC) of the predicted structures from the two enzyme data, which are

Fig. 2 3D Structures predicted by different methods on simulated helix data under different noise levels.
ShNeigh uses ShNeigh1, and ShNeigh2 has similar performance
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shown in Fig. 4 and Supplementary Figure S3. Not surprisingly, all tested programs per-

form worse as the resolution rises (Fig. 4a-b), since the average signal coverage gets

lower at higher resolution (Fig. 4c). We first compare the performances of ShRec3D

and ChromSDE. Note that the average signal coverage is about 0.96, 0.82, 0.40, 0.17 for

1000 k, 500 k, 200 k, 100 k, respectively. The comparison between ShRec3D and

ChromSDE shown in Fig. 4 is very similar to the result shown in Fig. 2 of Ref. [11]. We

found the improvement of our shNeigh programs against ShRec3D is not so distinct as

the case of simulated data at 1000 k and 500 k resolution, though the difference be-

tween them is still remarkable at 200 k and 100 k resolution. ChromSDE behaves the

best at 1000 k and 500 k resolution but the worst at 200 k and 100 k resolution. The

dSCC value of ChromSDE is even close to zero at 100 k resolution (Fig. 4b), reflecting

that ChromSDE completely failed to recover the underlying structure of GM06990 data

for very high resolution. On the contrary, ShNeigh1 and ShNeigh2 perform relatively

stable across all resolutions, and shNeigh1 performs the best among all tested programs

at 200 k and 100 k resolution. On the whole, the advantage of shNeig1 and shNeigh2

Fig. 3 RMSD measure of tested programs on simulated data under varying number of nearest neighbors K.
The point number of the simulated helix is 100
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approaches maximum at high resolution but is limited at low resolution. Comparing

Fig. 4 with Fig. 3, the advantage of ChromSDE shown at 1000 k and 500 k resolution

seems that the noise level of GM06990 data is very low. However, we are more con-

vinced by the conjecture that real Hi-C data are commonly the product of a mixture of

diverse structures [2, 23]. What’s more, the estimated conversion factor α by ShNeigh2

gets larger with increasing resolutions (Supplementary Figure S2), which coincides with

the conclusion of Ref. [2].

The 3D structures of chromosome X predicted by ShRec3D, shNeigh1 and

ChromSDE at different resolutions are drawn in Fig. 5. At 1000 k and 500 k resolution,

all three programs can give structures of relatively good reproducibility. However, at

200 k and 100 k resolution, only shNeigh1 generated clear and highly reproducible

structures, while Shrec3D and ChromSDE just reconstructed some tangled messes.

Because ChromSDE was computationally overburdened on the frequency matrices at

40 kb resolution, we processed Dixon2012 matrices only with ShRec3D and ShNeigh1.

The whole genome of each cell type is reconstructed within one or 2 h per method (A

PC with i7 7700K CPU and 32GB RAM). Since only one enzyme is available, the RMSD

measure is not applicable for Dixon2012 data. In order to evaluate the performance of

the two methods, we compute SCC between the input frequency matrix and the fre-

quency matrix calculated from reconstructed structure. As shown in Fig. 6, the out-

performance of shNeigh1 against ShRec3D is overwhelming.

Discussion
We have developed a novel method, named shNeigh, to reconstruct the 3D

organization of chromosomes at the genome scale. It uses the classical MDS to

minimize the gap between the predicted pairwise distances and those converted from

Fig. 4 Performance comparison on GM06990 Hi-C data. a RMSD between the predicted structures of HindIII
enzyme and NcoI enzyme at different resolutions. b Spearman coefficient between the predicted frequency
matrices of HindIII enzyme and NcoI enzyme at different resolutions. c Signal coverage of HindIII enzyme and
NcoI enzyme at different resolutions. All measures are averaged across 23 chromosomes
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the contact data. Shortest path algorithm is used to complete the converted distance

matrix before applying MDS. ShNeigh explicitly models the local dependence of neigh-

boring loci by a Gaussian expression and elaborately integrates the model into the

MDS framework. Two strategies are adopted to determine the parameters (i.e. conver-

sion factor α and the weight ρ) involved in the procedure: ShNeigh1 directly gives α = 1

and ρ values by relating ρ with the loci number and the signal coverage, and ShNeigh2

searches for the two parameters through an iterative algorithm by minimizing the dif-

ference between the measured and predicted contact matrix.

Though ShNeigh2 has a step of searching for the optimal conversion factor α and the

weight ρ, it is still much faster than ChromSDE. ShRec3D and ShNeigh1 runs fastest

among the tested programs. This means that ShNeigh can process much more genomic

loci within bearable time compared to ChromSDE, which of great significance for ex-

perimental Hi-C data with gradually enhanced resolution in the future. What’s more,

our method achieves essential performance improvement compared to ShRec3D at

some cost of time consuming (i.e. ShNeigh2) or even no time cost (i.e. ShNeigh1). Such

an improvement exists and is quite apparent in most situations. Only for the data of

Fig. 5 The alignment between predicted structures of chromosome X of GM06990 using HindIII enzyme
(red) and NcoI enzyme (blue) by ShRec3D, shNeigh1 and ChromSDE
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high signal coverage that are generated from diverse structures the improvement gets

somewhat weaker. Compared to ChromSDE, our programs are very robust in that they

perform excellent for noisy or low signal coverage data, while ChromSDE works well

for the data of low noise level and high signal coverage and corresponding to diverse

structures. Mathematically, we speculate that the loss of precision at the case of low

noise and high signal coverage for ShNeigh and ShRec3D is due to the fact that too

many matrix entries are modified by the shortest path algorithm. Considering it is very

common for real Hi-C data to be noisy and sparse, our method is highly attractive. Ob-

serving Fig. 4 and supplementary Figure S1, we conservatively conclude that ShNeigh

can guarantee to obtain substantial improvement against both ShRec3D and

ChromSDE for the Hi-C data with signal coverage not more than 0.5. On the contrary,

the Markov chain that was used in HSA to model the local dependence of neighboring

Fig. 6 Comparison of ShRec3D and shNeigh1 on four Dixon2012 cell lines at 40 kb resolution. ShRec3D and
shNeigh1 are colored by blue and red, respectively. SCC is Spearman correlation coefficient between input
frequency matrix and reconstructed frequency matrix. mES: mouse ES cell; mCO: mouse cortex; hES: human
ES cell (H1); hIMR90: human IMR90 fibroblasts
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loci showed significant improvement only for very sparse Hi-C contact matrix (say,

10% signal coverage).

Conclusions
We propose a new method to infer a consensus 3D genome structure from a Hi-C con-

tact map. The novelty of our method is that it takes into account the adjacency of gen-

omic loci along chromosomes. Mathematically, the proposed method penalizes the

optimization problem of the classical MDS with a smoothness constraint weighted by a

function of the genomic distance between genomic loci. We demonstrate that this

optimization problem can still be solved efficiently by a classical MDS method. We

then show that the method can recover stable structures in high noise and sparse signal

settings. We also show that it can reconstruct similar structures from Hi-C data ob-

tained using different restriction enzymes.

Our method provides a new guideline for enhancing the reconstruction quality of

chromatin 3D structures. We notice that it is possible to involve our Gaussian adja-

cency model into most existing methods, including both distance based and likelihood

based programs, such as HSA, PASTIS, ChromSDE, and so on. Assessing the perform-

ance of these various combinations is an interesting topic that deserves to be further

explored in the future.

The software package, deposited in https://github.com/fangzhen-li/ShNeigh, contains

a minimum code for implementation of our ShNeigh method. It requires a normalized

contact matrix as input. The users should pre-process the experimental Hi-C data by

sequencing, mapping, binning and normalizing steps to get the normalized matrices be-

fore applying our software. As experimented in this work, our software can cope with

at least 40 kb resolution real Hi-C data, which corresponds to contact matrices of more

than 5000 × 5000 size. Higher resolutions or bigger matrices may also be processed

within a limited time.

Methods
One Hi-C experiment generates a library of paired-end reads. Each paired-end read

represents one observation that the corresponding two restriction fragments contact

each other. Then the reads are mapped to the reference genome and those of low qual-

ity are filtered out. After grouping the mapped high-quality reads according to genome

loci where they locate, we get a contact frequency matrix F, where Fij is a nonnegative

integer representing the contact count between loci i and j. Here each locus is a gen-

omic bin with a constant size such as 1Mbp or 40kbp. The resolution, namely the size

of each genomic bin, is governed by the sequencing depth. The frequency matrix F is

square and symmetric. Note that F may contain many zero entries generally, which in-

dicates that the underlying locus pair are too far in the 3D space to interact with each

other.

Given a frequency matrix F, our task is to reconstruct the 3D structure of the

chromosome from which F is generated. That is, a coordinate matrix X = (x1,⋯, xN) ′ ∈

RN × 3 should be derived from F, where N denotes the number of loci in the chromo-

some and xi ∈ R
3 × 1 represents the 3D coordinate of the i-th locus. Our approach is

based on the classical MDS methods.
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Classical MDS-based methods

Classical MDS-based methods, such as ShRec3D and ShRec3D+, generally consist of

the following three steps.

First, convert the contact frequency matrix F into a distance matrix D. All existing

methods, including MDS-based and likelihood-based approaches, assume that the con-

tract frequency between two loci and their 3D distance agrees with the following power

law relationship [2].

Dij ¼ 1=Fij
� �α

if Fij > 0
∞ otherwise

�
ð1Þ

where α is the conversion factor and Dij and Fij are the 3D distance and contact fre-

quency between loci i and j, respectively. The infinite distances Dij =∞ denote they pro-

vide no information for structure reconstruction. Eq.(1) does not consider the scale

between the converted distance and the real physical distance. This scale, if necessary,

can be described by adding a coefficient β before the term (1/Fij)
α in Eq.(1). The param-

eter β is usually expressed explicitly in the objective function of likelihood-based

methods. Our goal is to make the predicted structure align the underlying true struc-

ture as accurate as possible after applying scaling, reflection, translation and rotation

operations, for which it is not requisite for β to emerge in Eq.(1). Thus, for the MDS-

based methods β is calculated solely in assessing algorithm performance, namely in

computing the RMSD criterion. The conversion factor α was set to a constant one in

ShRec3D. Here we calculate α by the policy used in ChromSDE and ShRec3D+. See the

subsection Parameter estimation for detailed description.

Second, complete the distance matrix D. The classical MDS requires a full set of dis-

tances between all loci pairs available, but the infinite elements of D represent un-

known distances and so must be endowed with finite values before applying MDS. To

this end, we model the distance matrix D by a weighted graph whose nodes represent

the genomic loci. In this graph two nodes i and j are linked by an edge if and only if

the corresponding Dij has finite value, and the length (or weight) of the edge is just the

value of Dij. We define the distance between two nodes by the length of the shortest

path relating them. Finding the shortest path between any two nodes in the graph is a

classical problem in graph theory. As in ShRec3D, we use the Floyd-Warshall algorithm

(implemented by the Matlab function graphallshortestpaths) to calculate the shortest

paths and their lengths. Floyd-Warshall is a dynamic programming algorithm with time

complexity O(N3), where N is the number of nodes. The resulting graph becomes a

clique, namely a fully connected graph, and the shortest-path distances satisfy the tri-

angular inequality. Note that some original finite distances may change their values

after Floyd-Warshall calculation, reflecting the input data are noisy.

Third, map the distance matrix into 3D structure by multidimensional scaling. Multi-

dimensional scaling (MDS) is a technique of data statistics that can determine the coor-

dinates of n objects in the k-dimensional Euclidean space (here k = 3) from their

distance measures [24]. In order to elucidate the procedure of MDS, we firstly let IN de-

note an N ×N unity matrix and 1 = (1,⋯, 1)′ be a column vector of length N with all

elements being ones, then we define an N ×N matrix H ¼ IN− 1
N 110 . H is symmetric

and idempotent. Given the distance matrix D, construct the matrix A ¼ ðaijÞ ¼ ð− 1
2D

2
ijÞ
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and further define B = (bij) =HAH. Meanwhile, for the coordinate matrix X = (x1,⋯, xN)

′ ∈ RN × 3 to be reconstructed we define its centralized inner product matrix by B̂ ¼ ð bbij
Þ ¼ HXX 0H . The classical MDS aims to minimize the following cost function:

ψ ¼
X

bij− bbij� �2
¼ tr B−B̂

� �2 ð2Þ

where tr(.) denotes the trace of a matrix. To this end, singular value decomposition is

applied to B to get its three largest eigenvalues λ1 ⩾ λ2 ⩾ λ3 and their corresponding ei-

genvectors (γ1, γ2, γ3), with γi having been normalized to 1. Then the coordinate matrix

X is recovered by

X ¼
ffiffiffiffiffi
λ1

p
γ1;

ffiffiffiffiffi
λ2

p
γ2;

ffiffiffiffiffi
λ3

p
γ3

� �
ð3Þ

With this solution the cost function get minimum:

ψ ¼ λ24 þ⋯þ λ2n ð4Þ

Therefore, when all eigenvalues other than the top three are equal to zero the recon-

struction is exact. But in practice some λi (i > 3) may be negative, so the classical MDS

can only approximately recover the chromosome structure generally.

MDS with consideration of neighboring relationship

Intuitively, if two loci xi and xj are neighbors in the genome, the distance between the

spatial coordinates of xi and xj should be small. In order to consider the local depend-

ence of neighboring genomic loci, we define an affinity matrix M = (mij) with

mij ¼ exp − i− jð Þ2=2σ2� 	 ð5Þ

where σ represents the rate that mij decays with the genomic distance between loci i

and j. Then we add the term ∑mij‖xi − xj‖
2 into the cost function Eq.(2), turning the

cost to

~ψ ¼
X

bij− bbij� �2
þ ρ

X
mij xi−x j



 

2 ð6Þ

The second term reflects a distance penalty. It controls the smoothness of the recon-

structed structure with a tuning parameter ρ. The extreme scenario ρ = 0 is just the

ShRec3D [19] method, which gives a reconstruction entirely relying on the contact

maps without smoothing.

After some algebra (see Supplementary text for a detailed derivation), we proved that

the above problem is equivalent to minimizing the following object function:

~ψ ¼
X ebij− bbij� �2

¼ tr ~B−B̂
� �2 ¼ tr B−ρL−B̂

� �2 ð7Þ

where ~B ¼ ð ebijÞ ¼ B−ρL, and L is the Laplacian matrix defined by L =D −M where D is

the diagonal matrix with entries dii ¼
P

jmij . Therefore, compared with Eq.(2), it is

straightforward that we should exert singular value decomposition on ~B ¼ B−ρL and

get the top three eigenvalues eλ1⩾ eλ2⩾ eλ3 and their corresponding eigenvectors ðfγ1;fγ2; eγ3Þ.
Then the reconstructed coordinate matrix X becomes
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X ¼
ffiffiffiffiffieλ1q fγ1;

ffiffiffiffiffieλ2q fγ2;
ffiffiffiffiffieλ3q eγ3

� �
ð8Þ

In the present work we only consider an affinity matrix M with the form of Eq.(5).

Other forms of M are also desirable to attempt, for example, mij = 1 for |i − j| = 1 and

mij = 0 otherwise. This matrix is just the scheme used in HSA [11], which captures the

local dependency of the most neighboring loci solely.

Parameter estimation

There are three parameters to be estimated in our method: the conversion factor α in

Eq.(1), the distance penalty weight ρ in Eq.(6), the decaying rate σ in Eq.(5). Once their

values are given, the reconstruction can be implemented by Eq.(8) straightly. We can

either provide their values directly or infer them by an additional optimization proced-

ure. We refer to the former as ShNeigh1 and to the latter as ShNeigh2.

For ShNeigh1, we empirically set α = 1, ρ ¼ maxfð1−scÞ ffiffiffiffi
N

p
; minð3; 0:2� ffiffiffiffi

N
p Þg

and σ = 0.023 ×N, where N is the number of genomic loci and sc ∈ [0, 1] denotes the

signal coverage defined by the percent of non-zero entries in the contact matrix. sc is

an indicator of the sparseness of the contact matrix. α = 1 is the policy adopted by

ShRec3D. More suitable σ values than 0.023 × N are possible, but our experiments

showed that the reconstruction is insensitive to σ. The expression of ρ is partly inspired

by HSA. It means that the value of ρ is proportional to both one minus signal coverage

and the root square of loci quantity. The term minð3; 0:2� ffiffiffiffi
N

p Þ is used to handle the

case of very high (close to 1) signal coverage. Without this term, ρ will tend to be zero

as sc approaches 1. For ShNeigh2, we also set σ = 0.023 ×N, but we infer α and ρ by

minimizing an error function that describes the difference between the predicted fre-

quency matrix F̂ and the input frequency matrix F. Fig. 7 gives a detailed description

of the function error(α, ρ, F).

Minimizing error(α, ρ, F) with respect to α and ρ is a two-dimensional optimization

problem, and it is difficult to calculate the gradient for error(α, ρ, F). ChromSDE used

the golden section algorithm to optimize α, but it is a one-dimensional derivative-free

algorithm and thus unsuitable for our context. Here we adopt the Nelder-Mead sim-

plex (implemented by the Matlab function fminsearch), a multi-dimensional derivative-

free algorithm, to simultaneously optimize α and ρ. A simplex in two dimensions is a

triangular. For a given simplex, the Nelder-Mead simplex method first evaluates the ob-

jective function on its three vertices and recognizes the vertex with the largest value

and the one with the smallest value. Then a new point with value lower than the vertex

Fig. 7 Error function definition
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with the largest value is generated by operations of reflection, expansion and compres-

sion. A new simplex is thus constructed by substituting the largest vertex with the new

point, or by shrinking toward the smallest vertex. Therefore, the minimum of the ob-

jective function can be approached by iteratively updating the simplex.

Data

Both simulated and real Hi-C datasets are used to test the performance of our method. We

generate the simulated datasets based on a helix curve structure with the following formula [2]:

x ¼ sin tð Þ; y ¼ cos tð Þ; z ¼ t=10; t ¼ 1;⋯; 10π ð9Þ

This structure is modeled by a linear polymer consisting of N points. The coordinates

of the N points are calculated by Eq.(9) and then transformed to an N ×N distance

matrix D. In order to imitate the incompleteness nature of real Hi-C frequency matrix,

only distances for K (K <N) nearest neighbors around each of the points are retained,

and other distances are assigned to infinity. K directly determines the signal coverage

of the transformed distance matrix D (see Fig.3f). The distance matrix D is then con-

verted into the contact frequency matrix by F = (1/D)1/α. We further make the fre-

quency matrix noisy by adding a random noise δ that is uniformly distributed in the

region [−S,S], with S ∈ (0, 1) being a given noise level. Specifically, ~F ¼ Fð1þ δÞ. Finally
the frequency matrix is scaled to summation 106, which is similar to the usual treat-

ment of real Hi-C data. Thus, the simulation code has 4 input parameters to be given

by users: point number N, noise leverl S, conversion factor α and the number of nearest

neighbors K. We fix the conversion factor α = 1 throughout the simulation and tune

the other three parameters according to different tasks. See Ref. [2] for more detailed

description of generating simulated data and the code therein.

There have been lots of in situ Hi-C data online, of which the human GM06990 cell

dataset [1] is commonly used in literature. The advantage of this dataset is that it was

generated with two different enzymes (HindIII,NcoI), making it possible to validate the

structure of the investigated genome or validate alternative experimental designs. This

dataset is also used in our present work. As described in the Introduction, the real Hi-

C data need to be normalized to remove biases before reconstruction for all distance-

based methods. The normalized contact frequency matrices of human GM06990 cells

can be downloaded directly from the website of Amos Tanay’s group (http://compge-

nomics.weizmann.ac.il/tanay/?page_id=283). The data generated in Dixon et al. [25] is

another real Hi-C dataset we used (denoted as Dixon2012). This dataset is composed

of four cell types: mouse embryonic stem cells (mES), mouse cortex (mCO), human

embryonic stem cells (hES), human IMR90 fibroblasts (hIMR90). We downloaded the

normalized frequency matrices of 40 kb resolution for all four cell types directly from

the website of Bing Ren’s group (http://chromosome.sdsc.edu/mouse/hi-c/download.

html). We compared our ShNeigh with three published programs: ShRec3D [19],

ShRec3D+ [20] and ChromSDE [2], which are all distance-based methods, by using

both the simulated and the real Hi-C data.

Performance assessment measures

We use different structure similarity measures for simulated data and real Hi-C data to

assess the performance of ShNeigh. Since the true structure is known for the simulated
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data, a natural measure is the Root Mean Squared Deviation (RMSD). RMSD measures

the similarity of two structures by computing the distance of coordinates of the paired

points between them. Given a real structure’s N × 3 3D coordinates P = (p1,⋯, pN)′,

and a predicted structure Q = (q1,⋯, qN)′ (pi or qi is a 3 × 1 vector of the ith locus’ co-

ordinate, i = 1, · · ·, N), RMSD is defined as

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
pi−qik k22

r
ð10Þ

Before performing Eq.(10), some geometric operations: reflecting, rotating, translating

and scaling, should be imposed on the predicted structure Q to make it align the true

structure P. See [10, 11, 26] for the detailed implementation. Obviously, smaller RMSD

value means higher similarity of two structures and hence better performance of the

tested program. It is widely used in bio-molecular structure comparison, such as pro-

tein structures and chromosome structures. In addition, we use the Spearman correl-

ation coefficient (SCC) between the pairwise distances from the predicted structure and

those from the true structure to give another performance measure.

As for the real Hi-C data, the underlying true structures of chromosomes are un-

known, so the RMSD measure comes from comparing the two predicted structures of

HindIII and NcoI enzymes. We also compute the Spearman correlation between the

two estimated frequency matrices of the structures inferred from two different en-

zymes. It is more unbiased to use Spearman correlation than use Pearson correlation

for testing every program, because Spearman correlation is independent of the conver-

sion factor α [2]. Similar to Pearson correlation, the Spearman correlation value varies

in [− 1,1], the more close to 1.0 the better.
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