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Abstract

Background: The prediction of protein subcellular localization is a key step of the
big effort towards protein functional annotation. Many computational methods exist
to identify high-level protein subcellular compartments such as nucleus, cytoplasm
or organelles. However, many organelles, like mitochondria, have their own internal
compartmentalization. Knowing the precise location of a protein inside mitochondria
is crucial for its accurate functional characterization. We recently developed
DeepMito, a new method based on a 1-Dimensional Convolutional Neural Network
(1D-CNN) architecture outperforming other similar approaches available in literature.

Results: Here, we explore the adoption of DeepMito for the large-scale annotation of
four sub-mitochondrial localizations on mitochondrial proteomes of five different species,
including human, mouse, fly, yeast and Arabidopsis thaliana. A significant fraction of the
proteins from these organisms lacked experimental information about sub-mitochondrial
localization. We adopted DeepMito to fill the gap, providing complete characterization of
protein localization at sub-mitochondrial level for each protein of the five proteomes.
Moreover, we identified novel mitochondrial proteins fishing on the set of proteins
lacking any subcellular localization annotation using available state-of-the-art subcellular
localization predictors. We finally performed additional functional characterization of
proteins predicted by DeepMito as localized into the four different sub-mitochondrial
compartments using both available experimental and predicted GO terms. All data
generated in this study were collected into a database called DeepMitoDB (available at
http://busca.biocomp.unibo.it/deepmitodb), providing complete functional
characterization of 4307 mitochondrial proteins from the five species.
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Conclusions: DeepMitoDB offers a comprehensive view of mitochondrial proteins,
including experimental and predicted fine-grain sub-cellular localization and annotated
and predicted functional annotations. The database complements other similar
resources providing characterization of new proteins. Furthermore, it is also unique in
including localization information at the sub-mitochondrial level. For this reason, we
believe that DeepMitoDB can be a valuable resource for mitochondrial research.

Keywords: Submitochondrial localization, Subcellular localization, Mitochondrial protein,
Convolutional neural network, Deep learning, Functional annotation

Background
Given the unprecedented amount of DNA and protein sequences made available thanks

to modern sequencing technologies, a major challenge becomes the ability to make sense

of these data. To date, the UniprotKB database [1] contains about 172 million protein se-

quences, 560 thousand out of which are part of the manually curated Swiss-Prot database.

However, given the high costs associated with experimental characterization, only a small

fraction of the sequences has experimental functional annotation. In this context, compu-

tational tools for automatic functional annotation are of prominent importance in an at-

tempt of filling the gap, as testified by the high number of research groups participating in

the Critical Assessment of protein Function Annotation algorithms (CAFA) [2]. Protein

subcellular localization (SL) is one of the key aspects defining protein function. Many

computational methods have been published in the past, addressing the problem of pre-

dicting protein localization starting from protein sequence [3, 4]. Available tools roughly

belong to two main categories: (i) approaches that try to detect specific sorting signals

such as signal or organelle-targeting peptides [5–11]; (ii) general methods predicting SL

using features extracted from the entire protein sequence [12–17]. In both cases, methods

mainly predict the localization of proteins into main compartments, such as nucleus, cyto-

plasm, organelles, ER, plasma membrane and extracellular space. Many cytoplasmic or-

ganelles have their own internal structure. In particular, a double membrane comprising

an outer and an inner membrane, separated by an intermembrane space, surrounds mito-

chondria. The inner membrane encapsulates the mitochondrial matrix. Mitochondrial

compartments contain different protein types and play different roles in the overall mito-

chondrial activity. Computational methods, attempting to localize proteins in suborganelle

compartments, have been substantially limited so far by the lack of experimental data.

Concerning submitochondrial localization, few methods exist, discriminating three main

compartments: outer membrane, inner membrane and matrix [18–25]. Recently, we de-

velop DeepMito [26], a novel approach based on convolutional neural networks, able to

discriminate all four mitochondrial compartments and outperforming other methods in

literature [27].

Here we explore the adoption of DeepMito for performing proteome-wide prediction

of sub-mitochondrial localization on representative proteomes of five species including

human, mouse, yeast, fly and Arabidopsis thaliana. Firstly, we assessed for each prote-

ome the predictive performance of DeepMito on the set of proteins already endowed

with manually curated submitochondrial localization. DeepMito reported a very good

prediction performance, further confirming its effectiveness in the discrimination of

submitochondrial compartments. Secondly, we endowed with submitochondrial
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localization 1024 proteins already experimentally annotated as mitochondrial but lack-

ing the submitochondrial localization. Furthermore, we identified novel mitochondrial

proteins among those lacking any SL annotation using three different SL predictors.

The predicted mitochondrial proteins were further analyzed using DeepMito, achieving

an additional full characterization of 2530 proteins.

We completed the above analysis with a thorough functional characterization with

biological process and molecular function annotations available in UniProtKB and,

when necessary, predicted by means of our Bologna Annotation Resource [28].

Overall, we were able to annotate 4307 mitochondrial proteins. We collected the re-

sults of our annotation in a new database called DeepMitoDB, accessible at http://

busca.biocomp.unibo.it/deepmitodb. DeepMitoDB stands as a comprehensive resource

for mitochondrial proteins, collecting together proteome-wide experimental and pre-

dicted mitochondrial localization, as well as rich functional annotations for the five

model organisms.

Results
Available annotations for the five reference proteomes

In Table 1, we report the present status of the annotation of subcellular localization in

UniProtKB for the five different proteomes considered. We generated all the data start-

ing from the UniProtKB release of July 2019 (see Methods section for details on the

procedure adopted to generate the protein dataset). Overall, we collected some 90,237

proteins for the five organisms. Significant fractions of proteins, even in well-annotated

organisms like humans, still lack any SL annotation (20, 28, 21, 76 and 55% of human,

mouse, yeast, fly and Arabidopsis thaliana proteomes, respectively). Moreover, for

many proteins, the annotation is electronically inferred and/or predicted and without

experimental evidence.

The availability of experimental (ECO:000269) annotations for SL varies across the

five different species, accounting for 33, 17, 45, 7 and 15% of the proteins from human,

mouse, yeast, fly and Arabidopsis thaliana, respectively. 5–9% of the proteins is experi-

mentally annotated as being localized into mitochondria in all species but yeast, of

which known mitochondrial proteome accounts for 19% of all experimentally anno-

tated proteins. The fractions of mitochondrial proteins for which a more specific sub-

mitochondrial SL is experimentally available are 43, 45, 47, 27 and 35% in human,

mouse, yeast, fly and Arabidopsis thaliana, respectively.

In Table 2, we report a detailed statistics of available SL annotations of the different

sub-mitochondrial levels. As a general pattern for all species, inner membrane proteins

Table 1 The present status of Subcellular Location (SL) annotations of five reference proteomes

Human Mouse Yeast Fly Arabidopsis

# of proteins (UniProtKB reference proteome) 20,667 22,259 6049 13,796 27,466

# of proteins with only experimental mitochondrial SL 350 120 278 32 244

# of proteins with experimental sub-mitochondrial SL 263 97 251 12 130

# of proteins with experimental non-mitochondrial SL 6178 3561 2208 895 3642

# of protein without experimental SL 9772 12,244 2022 2373 8309

# of proteins lacking SL annotation 4104 6237 1290 10,484 15,141
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represent the most abundant class, followed by matrix, outer membrane and intermem-

brane space proteins. The vast majority of proteins is annotated as localized into a sin-

gle sub-mitochondrial compartment, while only a small fraction is annotated as having

multiple subcellular localizations.

Assessing DeepMito performance on the reference proteomes

We previously described the performance of DeepMito under different conditions and on

different datasets [26]. Here, we are interested in evaluating the tool at work on full-

proteome analysis. As a first experiment, we assessed DeepMito performance on the five

proteomes considered in this work. In particular, we analyzed with DeepMito the subsets

proteins with the two following characteristics: i) belonging to the five different species

and ii) endowed with single-compartment experimental annotation of SL at the sub-

mitochondrial level (evidence code ECO:0000269). As reported in Table 2, this dataset

comprises 702 proteins where 241, 92, 232, 12 and 125 are from human, mouse, yeast, fly

and Arabidopsis thaliana, respectively. We scored the performance of DeepMito by com-

puting Matthews Correlation Coefficients (MCCs) for each sub-mitochondrial compart-

ment assignment (Table 3). Since some species contain only few protein sequences (e.g.

fly), we also report aggregated results considering the whole dataset (column Overall in

Table 3). As previously highlighted [26], performance of DeepMito is stable across the

four different compartments, ranging from 0.73 (intermembrane space and matrix) to

0.81 (outer membrane) MCC values. Interestingly, the 0.73 MCC value for the intermem-

brane space proteins indicates only a small performance drop for this compartment,

which contains the smallest fraction of proteins. The finding indicates the good ability of

DeepMito to deal with class imbalance, and this is one of the major advantages of our

method over previously released approaches [26, 27].

Table 2 Compartment-level statistics of experimental (ECO:000269) sub-mitochondrial localizations

Localization Human Mouse Yeast Fly Arabidopsis

Outer membrane 61 26 35 3 21

Inner membrane 92 41 106 4 57

Intermembrane space 11 4 37 3 6

Matrix 77 21 54 2 41

Single localization 241 92 232 12 125

Multi-localized 22 5 19 0 5

Total 263 97 251 12 130

Table 3 Prediction performance (MCC) of DeepMito on the sets of proteins endowed with
experimental (ECO:000269) sub-mitochondrial localization

Class/Species Human Mouse Yeast Fly (a) Arabidopsis Overall

Outer membrane 0.87 0.67 0.75 1.0 0.85 0.81

Inner membrane 0.78 0.72 0.78 0.71 0.79 0.77

Intermembrane space 0.72 0.56 0.74 0.77 0.86 0.73

Matrix 0.72 0.57 0.80 0.67 0.76 0.73
(a)Only 12 proteins are included in this dataset
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Proteome-wide annotation of sub-mitochondrial localization

In order to provide complete characterization of protein localization at sub-

mitochondrial level we analyzed two sets of proteins with DeepMito:

1. Proteins endowed with experimental mitochondrial localization (ECO:000269) but

lacking experimental evidence at sub-mitochondrial level. This dataset will be referred

to as MitoExp.

2. The remaining proteins lacking any annotation for SL and/or endowed with non-

experimental localization. This dataset will be referred to as MitoPotential

The MitoExp dataset comprises 1024 mitochondrial proteins distributed into 350,

120, 278, 32 and 244 sequences from human, mouse, yeast, fly and Arabidopsis thali-

ana, respectively. We analyzed DeepMito for sake of increasing the annotation granu-

larity of proteins in sub-mitochondrial compartments.

The MitoPotential dataset includes 71,976 proteins distributed into 18,481, 12,857, 3312,

13,876 and 23,450 sequences from human, mouse, yeast, fly and Arabidopsis thaliana, re-

spectively. Sequences in the MitoPotential dataset are preprocessed for the identification of

putative mitochondrial proteins. Specifically, we performed in-silico prediction of SL using

three different state-of-the-art tools: BUSCA [14], MitoFates [10] and TargetP-2.0 [8]. A

query protein is considered as localized into mitochondria if two out of three methods

agreed on its mitochondrial localization. By this, we identified 2530 novel mitochondrial

proteins on which we performed DeepMito analysis.

We merged the results of our experiments with the remaining 753 proteins with avail-

able experimental annotations for the sub-mitochondrial localization (see Table 1). This

allowed obtaining the submitochondrial annotation of the proteome of the five species

considered, overall characterizing 4307 protein sequences. Figure 1 and Table 4 show the

distributions of sub-mitochondrial compartments (predicted and true) in the proteomes.

Fig. 1 Distributions of combined experimental and predicted sub-mitochondrial compartments for the five
species considered in this study
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For all species, inner membrane and matrix proteins are the most abundant,

whereas outer membrane and intermembrane space proteins account for smaller

fractions (both experimental and predicted, with the only exception of yeast in

which we observe a high number of experimentally annotated intermembrane pro-

teins). In human and mouse, the overall fractions of inner membrane and matrix

proteins are quite similar. In yeast we observe a higher concentration of inner

membrane proteins (both considering experimental and predicted distributions)

whereas in fly and Arabidopsis thaliana the overall percentages of matrix proteins

are about 20% more abundant than the inner membrane proteins. These differ-

ences may be due to a combined effect including the natural differences between

organisms and/or the different amount of experimental evidence observed (as

already highlighted in Table 1) that hampers the possibility of building balanced

training datasets and leads to uneven distributions of prediction errors between dif-

ferent organisms. When input information is low, performance indeed can be af-

fected by higher instability. In spite of this, data are important for driving possible

future experimental validation.

Functional characterization of proteins residing in different mitochondrial compartments

In order to provide complete functional characterization of the 4307 mitochondrial pro-

teins from the five organisms, we retrieved from the UniProtKB Gene Ontology Annota-

tion (GOA) database (https://www.ebi.ac.uk/GOA/, release 2019_10), available GO

annotations on Biological Process (BP) and Molecular Function (MF) aspects. We re-

trieved All GO annotations, also including those having IEA (Inferred by Electronic An-

notation) evidence code. Proteins lacking GO annotations (in one or both aspects) were

annotated using our Bologna Annotation Resource (BAR3.0), which allows to transfer sta-

tistically validated functional annotations from precomputed clusters including more than

32 million UniProtKB sequences [28]. This allowed to extend GO-BP and GO-MF anno-

tations to 3668 (85%) and 3492 (81%) proteins, respectively. Table 5 summarizes the num-

ber of annotated proteins and terms of the two GO subontologies, also reporting for each

one how many terms are from GOA with manual curation, from GOA with automatic an-

notation or assigned with BAR3.0. Multiple identical annotations with different evidence

codes were collapsed into a single entry retaining the one with the highest quality

evidence.

Overall, 5381 and 2133 different GO-BP and GO-MF terms annotate the 3668

and 3492 mitochondrial proteins, respectively. These correspond to 30,476 and 20,

Table 4 Summary of sub-mitochondrial localizations (annotated and predicted) of the 4307
mitochondrial proteins

Class/Species Human Mouse Yeast Fly Arabidopsis Overall

Outer membrane 151 93 82 34 85 445

Inner membrane 441 354 321 288 386 1790

Intermembrane space 62 31 77 28 31 229

Matrix 412 293 231 323 638 1897

Total 1066 771 711 673 1140 4361 (a)

(a)The total count is greater than 4307 because of the presence of multi-localizing proteins
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306 associations of GO-BP and GO-MF, respectively. About one third of the GO-

BP and one fourth of the GO-MF associations derive from the BAR3.0 platform

(Table 5).

Overall, different BP and MF terms annotate proteins in the four compartments.

Typical biological processes characterizing specific compartments are: cell death (GO:

0008219), observed in the outer membrane; oxidative phosphorylation (GO:0006119)

and respiratory electron transport chain (GO:0022904) observed in the inner mem-

brane; phospholipid transport (GO:0015914) and protein import into mitochondrial in-

termembrane space (GO:0045041) observed in the intermembrane space; and pyruvate

metabolic process (GO:0006090) observed in the matrix.

The DeepMitoDB

We collected all data produced in this study into a database called DeepMitoDB. The

database is available at http://busca.biocomp.unibo.it/deepmitodb. DeepMitoDB repre-

sents a comprehensive resource for researchers interested in studying mitochondrial

proteins. Its major characteristics is to combine proteome-wide experimental data with

predicted annotation of subcellular localization at submitochondrial level and comple-

mentary functional characterization in terms of biological processes and molecular

functions. We extracted this rich functional characterization from available annotations

in GOA and complemented with similarity-based annotations carried-out with our

BAR 3.0 platform. DeepMitoDB allows users to search for proteins by organisms, mito-

chondrial compartment, biological process or molecular function and to quickly re-

trieve and download results in different formats, including JSON and CSV.

Discussion
Comparing DeepMitoDB with similar databases

Different existing databases, such as the Integrated Mitochondrial Protein Index (IMPI,

available through MitoMiner4.0) [29], MitoCarta [30] and the Human Protein Atlas –

Subcellular Localization (HPA-SL) [31], collect mitochondrial localization and related

data. None of the databases, at the latest releases, provides any information about sub-

mitochondrial localization. In this respect, to the best of our knowledge, DeepMitoDB

is the first database providing integrated experimental and predicted evidence for pro-

tein localization within mitochondria.

Table 5 Number of proteins annotated with GO-BP and GO-MF in the five proteomes

GO term

BP MF

# annotated proteins 3668 3492

# annotations (GOA manually reviewed) (a) 15,984 10,346

# annotations (GOA automatic and unreviewed) (b) 3439 4527

# annotations (BAR3) (c) 11,053 5433

Total annotations (# different terms) 30,476 (5381) 20,306 (2133)
(a)Evidence codes: all except IEA
(b)IEA evidence code
(c)Terms uniquely annotated by BAR3.0
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Here we compare DeepMitoDB with IMPI, MitoCarta2.0 and HPA-SL. Since the

various databases differ in the set of represented species, we restrict the comparison on

human (available in all databases) and mouse (available in all databases but HPA-SL)

species. Moreover, since DeepMitoDB is protein-centric while others are gene-centric,

we mapped all the data entries in all databases onto stable Ensembl Gene identifiers.

Then, we computed the overlap between the databases. Figure 2 shows results for hu-

man (a) and mouse (b) genes. Although different databases share significant fractions

of genes, each lists a different number of mitochondrial genes (reported in parentheses

aside each DB name as the number of unique Ensembl gene ID represented). The dif-

ferences are likely due to different predictive strategies adopted to identify putative

mitochondrial genes and/or the integration of different types of experimental evidence.

DeepMitoDB complements other resources with 166 and 118 human and mouse

genes/proteins, respectively. Interestingly, the mitochondrial localization of 84 (51%)

and 81 (69%) of the above human and mouse proteins, respectively, was established

with the SL prediction methods detailed above.

DeepMitoDB use case

To show a possible use case of the database, we analyzed human proteins that are

uniquely present in DeepMitoDB (166 proteins, as reported in Fig. 2) and we describe

here a case demonstrating how our database, integrating experimental and predicted lo-

calizations, can be useful for anticipating and refining experimental SL information

available.

Specifically, the human Nocturnin protein (UniProtKB accession: Q9UK39), a phos-

phatase which catalyzes the conversion of NADP+ to NAD+ and of NADPH to NADH,

is involved in the control of circadian clock [32]. The protein was not annotated as lo-

calized into mitochondria in the July 2019 UniProtKB release (i.e. the release we used

to build our database): for this reason, the protein was included in the MitoPotential

dataset and processed by SL predictors. The protein was hence identified as mitochon-

drial and predicted by DeepMito to be localized into the mitochondrial matrix com-

partment. Interestingly, experimental mitochondrial localization of this protein was

assessed in 2019 [32] and included into a subsequent UniProtKB release (Aug, 2019).

Fig. 2 Comparison of data contained in different databases of human (a) and mouse (b) mitochondrial
genes/proteins. In parentheses the number of unique Ensembl gene ID contained in each database
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In other words, this example shows how a SL database including predicted data can

provide SL annotation before experiments are available. Moreover, our database further

complements experimental data providing predicted sub-mitochondrial localization,

which is not yet available for the specific protein.

Conclusions
In this work, we performed a large-scale, proteome-wide analysis for annotating mito-

chondrial and sub-mitochondrial localization of proteins from five well-studied refer-

ence proteomes: human, mouse, yeast, fly and Arabidopsis thaliana. A significant

fraction of the proteins from these organisms still lack functional and sub-cellular

localization annotations. We contributed to fill this gap by providing proteome-wide

annotations of protein localization at sub-mitochondrial level obtained with our re-

cently developed predictor DeepMito.

Firstly, we scored DeepMito on the set of proteins already characterized at the sub-

mitochondrial level: in this experiment, we further confirmed state-of-the-art perform-

ance of our tool in a large-scale assessment.

Secondly, the tool was applied to proteins already known to be mitochondrial but

lacking sub-mitochondrial localization annotations as well as to new mitochondrial as

predicted by the BUSCA webserver. Overall, 4307 proteins were characterized in the

five organisms. Information about subcellular localization was then complemented with

manually curated and predicted functional annotations from the biological process and

molecular function GO ontologies. The data were all collected and are now available

through a database called DeepMitoDB accessible at http://busca.biocomp.unibo.it/

deepmitodb. The database provides a comprehensive view of mitochondrial proteins,

including manually curated and predicted fine-grain sub-cellular localization and anno-

tated and predicted functional annotations. Other resources dedicated to mitochondrial

proteins also account for localization data [29–31]. As a complement, DeepMitoDB

provides characterization of new proteins. Furthermore, it is also unique in including

localization information at the sub-mitochondrial level. For this reason, we believe that

DeepMitoDB can be a valuable resource for mitochondrial research.

Methods
Datasets

We extracted from UniProtKB release July 2019 the reference proteomes of five different

organisms: human, mouse, yeast, fly and Arabidopsis thaliana. In particular, from the Uni-

ProtKB Proteomes Portal (https://www.uniprot.org/proteomes/) we downloaded FASTA se-

quences corresponding to reference proteomes and containing one sequence per gene.

Annotations of subcellular localizations were obtained from the corresponding field

of the UniProtKB entry and considering as experimental evidence only (ECO:0000269).

Available Gene Ontology (GO) annotations were extracted from the UniProtKB Gene

Ontology Annotation (GOA) database (https://www.ebi.ac.uk/GOA/), release October 2019.

The DeepMito predictor

DeepMito [26] is a recently released predictor of protein submitochondrial localization.

DeepMito is one of the few methods available (e.g. SubMitoPred [27]) that is able to
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discriminate four different mitochondrial compartments, namely the two membranes

(inner and outer), the intermembrane space e the matrix.

Here, we provide a general overview of the method. Additional details on the Deep-

Mito architecture as well as on the training procedure can be found on the reference

paper [26].

The method relies on the convolutional neural network architecture shown in Fig. 3.

Input proteins are encoded using two different descriptors:

1. Evolutionary information, in the form of Position Specific Scoring Matrices

(PSSMs) as obtained running PSI-BLAST [33] (three iterations, e-value 0.001)

against the Uniref90 database (release March, 2018). This encodes each residue

using 20 different values.

2. Residue physical–chemical attributes, in particular using the 10 different numerical

values introduced by Kidera and coworkers [34]. These values were obtained by

means of a multivariate statistical analysis starting from a set of 188 different

properties.

Overall, a protein is encoded by a Lx30 matrix, where L is the length of the protein.

This input is processed using a convolutional neural network including the following

layers:

1. A 1D convolutional layer comprising 256 filters each of size 19. Each filter scans the

encoded input sequence for motifs in the feature space, producing an output of

length L. Overall, the layer maps the input protein into a feature map of size Lx256.

2. Two global pooling layers are applied in parallel computing, respectively, the

maximum and the average values of each filter scan over the entire sequence

length. The outputs of these layers, each of size 256, are then combined together

and flattened into a vector of 512 values.

3. An output fully connected network comprising 256 hidden units mapping the

combined pooling output into the four output units corresponding to the four

Fig. 3 The DeepMito convolutional network architecture
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mitochondrial compartments. The softmax activation function is applied at the

layer output (obtaining a probability output for each class) and the predicted

compartment is the one having the highest probability.

DeepMito was trained and tested in cross-validation on a dataset comprising 424

high-quality, non-redundant proteins extracted from UniProtKB/SwissProt (release

February 2018) and experimentally annotated as being localized into one of the

four mitochondrial compartments. In all comparative experiments, DeepMito out-

performed other approaches, showing, in particular, a very high robustness with re-

spect to class imbalance [26].

Other prediction methods

Prediction of subcellular localization

The Bologna Unified Subcellular Component Annotator (BUSCA, http://busca.bio-

comp.unibo.it) [14] is a web-server integrating several different tools for predicting pro-

tein subcellular localization of both globular and membrane proteins as well as

methods for identifying localization-related features such as signal and transit peptides,

GPI-anchors and transmembrane regions. These tools are organized into a decision

graph processing the outputs of the different tools. Overall, BUSCA an input protein

can be classified by BUSCA into one of many cellular compartments. The number of

discriminated localizations depends on the taxonomic origin of the input protein:

BUSCA supports discrimination of up to 9 localization for animal and fungal protein,

16 compartments for plants (including also chloroplast and sub-chloroplast localiza-

tions), 4 for Gram- and 3 for Gram+ bacteria.

Here, BUSCA was adopted for the discovery of novel mitochondrial protein. Given a

set of input proteins, BUSCA was then used to discriminate mitochondrial from non-

mitochondrial proteins. Simply, all proteins predicted as localized into a compartment

different from “mitochondrion” were classified as non-mitochondrial.

Two additional methods were used to complement and verify BUSCA predictions. In

particular, the latest version of TargetP (v2.0) [8] (http://www.cbs.dtu.dk/services/Tar-

getP/) was downloaded and ran locally. TargetP-2.0 is based on deep learning methods

and predicts mitochondrial localization by recognition of the targeting pre-sequence.

Finally, MitoFates [10] (http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi), another machine

learning-based method recognizing mitochondrial-targeting peptides, was also

employed. In this case, proteins were directly uploaded and analyzed using the pre-

dictor web server (which allows analyzing up to 2000 proteins per job).

The output of the three above tools were combined by means of a simple majority

rule: proteins were considered as localized into mitochondria if at least two out three

tools predict the protein as localized into the organelle.

Functional annotation

The Bologna Annotation Resource (BAR3.0, https://bar.biocomp.unibo.it/bar3/) [28] is

a server for the annotation of protein function. The method implemented by BAR3.0

relies on a comparative large-scale analysis of the entire UniProtKB database. In par-

ticular, all sequences included in UniProtKB (considering both SwissProt and TrEMBL)

Savojardo et al. BMC Bioinformatics 2020, 21(Suppl 8):266 Page 11 of 13

http://busca.biocomp.unibo.it
http://busca.biocomp.unibo.it
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi
https://bar.biocomp.unibo.it/bar3/


were pairwise aligned using BLAST. From these alignments, a set of clusters was com-

puted grouping all sequences sharing more than 40% sequence identity on at least 90%

of the alignment into the same cluster. For all proteins within a cluster, all available ex-

perimental annotations, including GO terms and Pfam domains, were extracted. Terms

and domains that are over-represented (as obtained from a Bonferroni-corrected Fisher

test and setting a 1% significance level) can be transferred on all remaining sequences

in the clusters. New sequences enter a cluster via BLAST alignment against the entire

database of sequences (the cluster assigned is the one in which is placed the best hit)

and inherit all annotations from it. Currently, BAR3.0 contains 28,869,663 sequences

(from UniProtKB release May 2015) grouped in 1,361,773 clusters, along with 3,399,

026 isolated sequences, called singleton.

Here we used BAR3 to assign GO terms in the biological process and molecular

function aspects annotations to complement functional annotation of mitochondrial

proteins. In particular, BAR3.0 predictions were merged together with available annota-

tions. In case of multiple annotations of the same GO term, we retained the one having

the highest quality evidence code.
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