
Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326
https://doi.org/10.1186/s12859-020-03627-x

RESEARCH Open Access

CORENup: a combination of
convolutional and recurrent deep neural
networks for nucleosome positioning
identification
Domenico Amato1, Giosue’ Lo Bosco1,2* and Riccardo Rizzo3

From Annual Meeting of the Bioinformatics Italian Society (BITS 2019)
Palermo, Italy. 26-28 June 2019

*Correspondence:
giosue.lobosco@unipa.it
1Dipartimento di Matematica e
Informatica, Università degli studi di
Palermo, Via Archirafi, 34, 90123
Palermo, Italy
2Dipartimento di Scienze per
l’Innovazione tecnologica, Istituto
Euro-Mediterraneo di Scienza e
Tecnologia, Via Michele Miraglia, 20,
9039 Palermo, Italy
Full list of author information is
available at the end of the article

Abstract

Background: Nucleosomes wrap the DNA into the nucleus of the Eukaryote cell and
regulate its transcription phase. Several studies indicate that nucleosomes are
determined by the combined effects of several factors, including DNA sequence
organization. Interestingly, the identification of nucleosomes on a genomic scale has
been successfully performed by computational methods using DNA sequence as input
data.

Results: In this work, we propose CORENup, a deep learning model for nucleosome
identification. CORENup processes a DNA sequence as input using one-hot
representation and combines in a parallel fashion a fully convolutional neural network
and a recurrent layer. These two parallel levels are devoted to catching both non
periodic and periodic DNA string features. A dense layer is devoted to their combination
to give a final classification.

Conclusions: Results computed on public data sets of different organisms show that
CORENup is a state of the art methodology for nucleosome positioning identification
based on a Deep Neural Network architecture. The comparisons have been carried out
using two groups of datasets, currently adopted by the best performing methods, and
CORENup has shown top performance both in terms of classification metrics and
elapsed computation time.

Keywords: Nucleosome classification, Epigenetic, Deep learning networks, Recurrent
neural networks

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03627-x&domain=pdf
http://orcid.org/0000-0002-1602-0693
mailto: giosue.lobosco@unipa.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 2 of 14

Background
The eukaryote genome is packed as chromatin [1], the fundamental unit of packaging
is called nucleosome, and it consists of a histone octamer where about 147 bp of DNA
is wrapped. Nucleosomes are separated from each other by sequences of DNA called
linker DNA. Starting from this low-level organization, chromatin is coiled into many
higher-order structures to finally form the chromosomes. Nucleosome positioning indi-
cates the physical packaging of DNA driving the determination of the final architecture
of chromatin in the cell [2, 3] both trough the DNA sequence itself and the interaction of
other factors, including remodelling proteins [4–6], histone acetylation [7] and others [8].
The chromatin architecture of eukaryotic gene promoters is generally characterized by
a nucleosome-free region, where nucleosomes frequently occupy specific positions. For
this reason, nucleosomes affect gene regulation shaping the accessibility of transcription
factors to occupy their binding sites [9, 10].

Furthermore, nucleosomes influence also the accessibility of different regulative ele-
ment to DNA, that are critical for other biological processes such as replication [11]
and recombination [12]. For these reasons, understanding the structure and function of
nucleosomes is of great interest in biology.

The role of DNA sequence in causing nucleosome positions is clear from in vitro stud-
ies. Different DNA sequences show different affinities for the histone core. Early studies
showed that many nucleosomal related sequences contain quasiperiodic nucleotide dis-
tributions [13–15] A comparison of nucleosome sequence maps in vivo and reconstituted
in vitro exposes that the relative occupancies of each position are not the same [16]. This
in part indicates that nucleosomes in vitro are not regularly spaced, unlike nucleosomes
in vivo. These observations led to the conclusion that genomic DNA may encode nucle-
osome positions [17] opening the possibility to study combinatorial properties of DNA
string related to nucleosome preference [18–20]. Recent studies have posed a limit to
this deduction, the DNA sequence is for sure an important determinant in nucleosome
positioning, but additional factors are needed to determine long-range chromatin orga-
nization [21]. The recent MNae-seq experimental approach in nucleosome mapping has
provided to the communities several high-resolution nucleosome maps. In 2019 these
data have been systematically collected into a database, named NucMap [22]. NucMap
is an online database which includes 798 experimental data from 477 samples across 15
species, also supplying a set of very useful tools to visualize and compare the data. These
high-resolution data leads to the development of many computational methodologies
able to successfully process sequence information to predict the nucleosome presence
[17, 23–26]. Taking into consideration these biological studies, and differently from other
studies proposed so far, this work intends to try to understand at which extent the DNA
sequence is solely responsible for nucleosome positioning. This investigation is carried
out by a machine learning model, in particular a deep neural network, which processes
only sequence information. In the past years, we gave several contributions to the study
of deep learning networks for sequence classification [26–30]. In this work we present
CORENup, an extension of our previous models by the integration of two different neural
networks, each specialized in extracting specific features from sequences, i.e. non peri-
odic and periodic features. For sure the automatic identification of nucleosome positions
seems to have attracted several machine learning researchers, and very effective models
have been proposed so far [23, 25, 31, 32]. Among the most performing ones, we have to

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 3 of 14

mention iNuc-PseKNC [23]. It uses a Support Vector Machine with a radial basis function
kernel and a novel feature-vector that incorporates six DNA local structural properties.
Cross-validation tests on the three benchmark datasets have shown accuracy rates greater
than 79%. The work posed a baseline for the machine learning methods, also providing
three benchmark dataset very useful for the comparisons. The main issue of the method is
that it needs a feature extraction phase for the sequence processing, i.e. the representation
for the input data involve a specific preprocessing stage. Conversely, other authors have
used the simple one hot representation obtaining greater accuracy, using deep neural net-
work classifiers [25, 26, 28]. Actually the model called Le-Nup [25] is the top performer.
In this work, we will compare CORENup and LeNup in terms of performance metrics,
the complexity of the models, and elapsed computation times.

Methods
Machine learning systems need a mathematical representation of the input objects. This
representation is usually obtained defining some quantitative features of the objects and
reporting the corresponding measurement results in a representing vector. The choices
made during the development of these representations can affect the performance of the
whole system. Deep learning techniques can develop a representation of the input data
without human guidance, this is important in many classification problems, for example
in image processing where it is difficult to describe which features are suitable for a precise
task. This property is useful in sequence classification, where it is very hard to spot useful
features, and this is one of the reasons why deep learning networks are used.

In the following sections, after the introduction of the sequence representation, we
report the motivation of the CORENup architecture, compared with another deep
learning neural network used for sequence classification.

Sequence representation

Machine learning algorithms process tensor data, so that DNA sequences should be
converted to numerical representations. Fasta files containing DNA sequences are con-
stituted by a set of strings from a finite alphabet �. This alphabet is restricted to four
symbols, e.g. � = {A, C, G, T}, corresponding to the 4 bases adenine, cytosine, guanine,
thymine, if there is no uncertainty on base value for a specified sequence position, oth-
erwise two or more alternative base values for a single position can be represented using
the IUPAC notation, where, for example, the symbol W in a position stands for A or T.

In this work the used sequences are from a 4-letters alphabet and sequence represen-
tation is the one-hot encoding, that transforms a sequence of length L into a matrix of
dimension (4, L). A sketch of the one-hot representation is in Fig. 1. Matrix rows corre-
spond to symbols in the alphabet, while columns indicate the positions in the sequence

Fig. 1 The one-hot representation A simple visualization of the build process for an one-hot representation

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 4 of 14

where the symbols are present. The matrix is binary, i.e. each column j have all zero values,
but one in the row of the corresponding symbol.

The one-hot representation is a sparse binary representation, suitable only for datasets
made of fixed-length small sequences. The main advantage of this sequence representa-
tion is that the context of each position, i.e. the sequence of symbols, is preserved and this
property will be exploited in the following.

CORENup neural network model

In nucleosome-linker classification one of the most recent and effective networks is
the LeNup network [25]. This network, as many deep learning systems, has a structure
inspired by the Google Inception network [33]. These systems are based on a cascade
of cells made by convolutional layers in parallel. These convolutional layers have many
kernels of dimension 3 or 5, that process the signal in parallel. The basic idea is that
in sequence recognition problems it is necessary to look at sequence features obtained
at different scales, and then integrate these features so that the next stage can extract
more abstract information. LeNup and Inception networks use this approach to obtain a
multi-level multi-scale representation of the input, and after many processing cells, these
networks use this representation as input for the fully connected final layers. In these net-
works the number of parameters (weights of the neural network) can grow very quickly,
in fact, the LeNup network has more than two millions of parameters.

The integration of many features from layer to layer is the basic idea that also inspired
this work, but we wanted to combine different sets of features coming from many sources.
In the past, we investigated the use of convolutional and recurrent neural networks for
sequence classification [27, 28]. We found that the two methods build two different sets
of features from the sequence and that these features can be integrated to build a better
classifier.

In the following subsections, the mechanism of convolutional and recurrent (LSTM)
networks are introduced, and the combination of the two in the CORENup network is
explained.

Convolutional neural networks

In a convolutional layer each neuron has a receptive field that scans the input and during
this scan builds the layer output. Assuming that the layer has N neurons, the receptive
field of neuron i with i = 1, 2, . . . N has a set of weights wi

u, with u = −n, · · · , n, where
2n + 1 is the width of the receptive field of the neuron, and scans an input vector x ∈ �d;
given that the non-linearity of the neuron is a generic function φ, the output of the neuron
yi

k , associated to the component k of the input vector x ∈ �d is:

yi
k = φ

(n∑
u=−n

wi
u ∗ xk−u

)
i = 1, 2, · · · N k = n, n + 1, · · · , d − n (1)

In the architecture in Fig. 2, the first convolutional layer extracts from the sequences
features that are contained in a narrow window, the combination of these features is
processed by the second convolutional layer. The convolutional layer is stateless and the
output depends only on the present input values.

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 5 of 14

Fig. 2 The ConvNet network. The convolutional network used for the classification in [27]

The non-linear function φ is usually the Rectified Linear Unit (ReLU), defined as:

ReLU(x) =
{

x if x ≥ 0
0 if x < 0

(2)

In the work [27] we used these network to classify genetic sequences with good results,
and this justifies its use in the CORENup architecture.

LSTM network

Recurrent neural networks have a state value, a sliding window scans the input vector and
each input vector component updates an internal network state that contributes to gen-
erating the output signal. Long Short-Term Memory layer (LSTM) is a particular kind of
recurrent neural network where special units called gates select the relevant input val-
ues used to update the network hidden state. In general LSTM layers process sequences
exploiting information that is into the whole sequence, or into a very large window. While
the convolutional layer process the whole input pattern in a single step, LSTM process the
input pattern exploiting the sequence of features so that we have to introduce the time in
the notation and we refer to the input x as the input at the time t, xt. Assuming xt ∈ �d the
LSTM has three gate quantities to take into account: the forget gate ft ∈ �u, the update
activation gate it ∈ �u, the output activation gate ot ∈ �u, where u is the number of hid-
den units of the network. These gates are all functions of the input xt and of the hidden
state of the network ht−1 ∈ �u; the ht vector is also the output of the network. These
activation are obtained from the following equations:

ft = σ
(

Wfxt + Ufht−1 + bf
)

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

where Wf, Wi, Wo are all weights matrices of dimension (u, d), and Uf, Ui, Uo are weights
matrices of dimension (u, u). The gate values are obtained from the current input xt and
the past hidden state value ht−1. The current value of hidden state ht, is obtained from
the cell state signal st that collects the values of the forget gate, the update gate, and the
output gate, and is updated by using:

st = ft � st−1 + it � tanh(Wcxt + Ucht−1 + bc)

The output of the network is calculated by using the following equation:

ht = tanh(st) � ot

where the symbol � indicates the multiplication element by element. In a preceding work
[26] we found that substituting a convolutional layer with an LSTM layer can improve the
performance in sequence classification tasks, and the resulting network is in Fig. 3. In this
case, the LSTM works on sequence features obtained by the convolutional layer, and this
can give better results.

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 6 of 14

Fig. 3 The LSTM network. The architecture with an LSTM network used in [26]

Merging the architectures: the CORENup network

As said before both the architectures have advantages so that we decided to integrate the
two approaches in the network architecture in Fig. 4. The CORENup network is com-
posed by an input convolutional layer, that extracts some raw features from the sequence,
followed by two processing paths: convolutional and recurrent. The combination of these
two processing paths is obtained putting side to side the output vectors from each path.
Both paths output a 3D tensor, after the flatten layers the two-column tensors xL and xc
are 1D tensors with different dimensions:

xL ∈ �L

xc ∈ �c (3)

The two vectors are combined to obtain the tensor X :

X =
[

xL

xc

]
(4)

where X ∈ �L+c is a column vector.
The proposed CORENup network is not so deep compared to the LeNup network: the

input signal moves across 4 layers, considering the parallel as two layers and including
the fully connected ones, while LeNup has 5 gated convolution layers plus two fully con-
nected. The CORENup spreads more in width than in-depth, but, due to its structure, it
can obtain similar or better performance with smaller training time. The details of the
CORENup structure are reported in Table 1, where it is also reported the number of the
parameter of the network.

The CORENup has roughly the same number of parameters of the LeNup, but the archi-
tecture is quite different. The number of layers is less and the majority of the weights is
concentrated on the first dense layer because the number of dimension of X is L+c where
L = 3650 and c = 1800. Considering 370 hidden units in the first hidden layer, we have
more than 2 millions of weights concentrated in just one layer. In the LeNup network,

Fig. 4 The CORENup architecture. A representation of the CORENup architecture presented in this paper.
The details of the architecture are reported in Table 1

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 7 of 14

Table 1 CORENup structure

Features extraction path

Layer Kernel Dim # Hidden Units stride Dim Output Dim # Params

Conv1D 5 50 1 147x50 1.050

MaxPool1D - - 2 73x50 0

Dropout 50% - - - 73x50 0

LSTM Path

Layer Kernel Dim # Hidden Units stride Dim Output Dim # Params

LSTM - 50 - 73x50 20.200

Dropout 50% - - - 73x50 0

Flatten - - - 3.650x1 0

Convolutional path

Layer Kernel Dim # Hidden Units stride Dim Output Dim # Params

Conv1D 10 50 1 73x50 25.050

MaxPool1D - - 2 36x50 0

Dropout 50% - - - 36x50 0

Flatten - - - 1.800x1 0

Dense path

Concatenate - - - 5.450x1 0

Dense - 370 - 370x1 2.016.870

Dropout 50% - - - 370x1 0

Dense - 1 - 1x1 371

Parameters count

Parameters

Features Extraction Path 1.050

LSTM Path 20.200

Convolutional Path 25.050

Dense Path 2.017.241

Total 2.063.541

Notice that the dense layer contains the majority of the network parameters

as well as other deep neural networks, the weights are spread over many layers so that
updates require many calculations, due to the more backpropagation steps, while in the
CORENup network the weights in the fully connected layer will be updated in a single
back-propagation step.

Datasets and training details

To be comparable with state of the art methods, the CORENup network was tested using
two group of datasets and two different folding techniques. Each of the two groups of
datasets has a reference paper where the data have been collected and used to train one or
more machine learning models. Adopting such datasets give us the possibility to compare
CORENup with other methods, assuming to use the same experimental protocol of the
other methods.

The first group of datasets is composed of four sets of DNA sequences. The first
three underly nucleosomes from Homo Sapiens (HS), Caenorhabditis Elegans (E) and
Drosophila Melanogaster(DM). The details about how these data have been collected can
be found in the paper by Guo et al. [23] and in the references therein. The fourth dataset
is about Saccharomyces Cerevisiae (Y) and is introduced in [34].

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 8 of 14

The best performer on this data is the LeNup neural network [25]. Authors provide
the source code of the method (github repository), so that we have decided to run the
experiments also using this methodology.

Following the experimental protocol reported in the LeNup work [25] we used a 20-fold
cross-validation method for each dataset of the first group. The cardinality of each class,
for each dataset, is reported in Table 2. For each iteration, we use 1 fold to test model and
the remaining 19 folds to train both CORENup and the state of art LeNup network.

The second group of datasets give us the possibility to test the prediction methods
on different sequence classes of HS, DM and Y species. Such classes include whole-
genome (WG) and promoter (PM) sequences of Y, and the largest chromosome (LC),
promoter (PM) and 5’UTR exon regions (5U) sequences from DM and HS. The dataset
is downloadable in terms of bed file as reported in the reference paper [35]. To collect
the sequences, we have used the coordinates in the bed files to fetch the nucleosomal and
linker sequences using the genome files downloaded from the UCSC Table Browser. The
distribution of the elements in the classes for this group of datasets is shown in Table 3.
These datasets were used as a benchmark for different methods available in literature [35].
The protocol used by the author in the work, consisted in the extraction with replace-
ment, for each dataset, of 100 samples of 100 sequences each. We decided to adopt the
same protocol for CORENup and LeNup network. Every dataset was split in training and
test sets a priori, in such a way that we had sufficient data to train a strong model and a
large enough pool from which to extract 100 test samples of 100 items each.

CORENup has been implemented using Tensorflow with Keras Backend API [36] envi-
ronment. It has been trained using the Adam optimizer [37] for the computation of
the stochastic gradient descent with binary cross-entropy as the loss function. Learning
Rate has been set to 3 × 10−4 and, to prevent overfitting, and L2 Regularisation with
λ = 1 × 10−3 has been used. CORENup set the maximum number of epochs to 200 and
used an Early Stopping rule for training that stops if the loss function, calculated on vali-
dation, doesn’t decrease for 5 consecutive epochs. The size of the validation has bee set to
10% of the training set. The output of both models ranged between 0 and 1, has been used
to predict labels with a threshold of 0.5. Every output above this last one was classified as
a nucleosome otherwise as a linker.

Results
Considering the same processing principle of feature integration shared by CORENup
and LeNup, and the similar number of parameters, we decided to compare our model
with the LeNup network using the two groups of datasets introduced before. The results
obtained from the first dataset are evaluated by using the typical metrics of the clas-
sification evaluation. For each of the 20-fold the accuracy (ACC), sensitivity (SENS),

Table 2 Number of samples in the first group for each class

Nucleosome Linker Total

HS 2273 2300 4573

DM 2900 2850 5750

E 2567 2608 5175

Y 1880 1740 3620

HS represents the Homo Sapiens group; DM represents Drosophila Melanogaster group; E represents the Elegans group; Y
represents Yeast group

https://github.com/biomedBit/LeNup

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 9 of 14

Table 3 Number of samples in the second group for each class

Nucleosome Linker Total

HS - LC 97209 65563 162772

HS - PM 56404 44639 101043

HS - 5U 11769 4880 16649

DM - LC 46054 30458 76512

DM - PM 48251 28763 77014

DM - 5U 4669 2704 7373

Y - WG 39661 4824 44485

Y - PM 1880 4463 31836

The labels HS, DM and Y have the same meaning as in Table 2. LC represents the longest chromosome; P represents the
promoter sequences; 5U represents the 5UTR Exon region; WG represents the whole genome

specificity (SPEC), Matthew’s correlation coefficient (MCC) are evaluated using the
following formulas:

ACC = TP + TN
TP + FP + TN + FN

SENS = TP
TP + FN

SPEC = TN
TN + FN

MCC = TP ∗ TN − FP ∗ FN√
(TN + FN) ∗ (TN + FP) ∗ (TP + FN) ∗ (TP + FP)

where TP is true-positive, FP is false positive, TN is true negative and FN is false-negative.
We indicate as positive the nucleosome class. We also calculated the Roc Curve to com-
pare the prediction performance of the four methods and we reported the Area Under
the Curve (AUC). The first set of results is related to the HS, DM, E and Y datasets,
and in Table 4 the results obtained from two models used in our recent works, indicated
as simple LSTM [26] and ConvNet [27] are reported, together with the CORENup and
the LeNup networks. The two simpler networks have almost always worst performance
than the more complex networks, confirming that with more parameters it is possible to
improve the performance of the classifier. Looking at the CORENup column it is possi-
ble to see that the CORENup network outperforms the LeNup almost in all the cases;
there are just two values below the LeNup performance in Human (HS) and Elegans (E)
datasets.

Discussions
The obtained results sustain the idea that the architecture is important and simply adding
more weights, for example making the network deeper, do not automatically improve the
performance. In CORENup network the majority of the parameters are used on the first
fully connected layer, where it is necessary to integrate features of different nature, non-
periodic features obtained from the stateless convolutional layer, and periodic features
from the recurrent LSTM layer, and even if they are more than 2 million they have a small
impact on the training time. The first 4 rows of Tables 5 and 6 report the training time
for the two networks on datasets HS, DM, E and Y. From Table 5 it is possible to see that
the CORENup is about three times faster than the LeNup, while Table 6 reports the total
training time until the algorithm stops. In two cases this time is longer for the LeNup,

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 10 of 14

Table 4 Experimental results for the 20-Fold procedure with the first group of data-sets

LSTM ConvNet CORENup LeNup

HS ACC 0,836±0,03 0,83±0,03 0,881±0,04 0,873±0, 02

SENS 0,898±0,03 0,867±0,03 0,931±0, 06 0,839±0, 03

SPEC 0,792±0,03 0,814±0,03 0,843±0, 02 0,906±0, 04

MCC 0,681±0,002 0,666±0,0 0,758±0, 07 0,762±0, 03

AUC 0,92±0,03 0,91±0,03 0,93±0, 03 0,928±0, 01

DM ACC 0,854±0,04 0,838±0,04 0,882±0, 02 0, 875 ± 0, 02

SENS 0,872±0,03 0,816±0,03 0,898±0, 02 0, 876 ± 0, 03

SPEC 0,841±0,05 0,838±0,06 0,869±0, 02 0,74±0, 13

MCC 0,71±0,003 0,68±0,003 0,766±0, 04 0,766±0, 04

AUC 0,93±0,02 0,92±0,02 0,94±0, 02 0,937±0, 02

E ACC 0,897±0,03 0,895±0,03 0,915±0, 05 0, 912 ± 0, 02

SENS 0,938±0,03 0,924±0,02 0,958±0, 03 0, 885 ± 0, 02

SPEC 0,865±0,04 0,874±0,04 0,882±0, 03 0,939±0, 02

MCC 0,799±0,002 0,795±0,001 0,835±0, 07 0, 832 ± 0, 03

AUC 0,96±0,02 0,96±0,02 0,96±0, 02 0,96±0, 02

Y ACC 0,996±0,05 0,996±0,06 1,0±0, 002 1,0±0, 0

SENS 0,998±0,05 0,998±0,05 0,999±0, 005 1,0±0, 0

SPEC 0,995±0,07 0,995±0,08 1,0±0, 0 1,0±0, 0

MCC 0,992±0,003 0,993±0,002 0,999±0, 005 1,0±0, 0

AUC 0,99±0,0 0,99±0,0 0,99±0, 0 1,0±0, 0

The two networks LeNup and CORENup outperform the simpler networks in Figs. 2 and 3. Best values are shown in boldface

because the CORENup keeps improving its performance for more epochs, and the algo-
rithm does not stop the training if there are still improvements on the classification
results.

The other eight datasets (HS-LC, HS-PM, HS-5U, DM-LC, DM-PM, DM-5U, Y-WG
and Y-PM) are much more difficult because there is much more noise in the sequences. In
this trial, the CORENup gives better results on 5 datasets out of 8, as reported in Table 7,
still maintaining the same, very fast, training time. Notice that the AUC in dataset HS-
PM is only 1∗10−3 below the LeNup value and that the only significant differences are on
the HS-LC and Y-PM datasets. The training times are reported in the last eight rows of

Table 5 Time for Epochs

CORENup LeNup Overhead

HS 5 16 0.31

DM 6 20 0.30

E 5 18 0.27

Y 4 12 0.33

HS - LC 63 233 0,27

HS - PM 44 158 0,28

HS - 5U 10 35 0,29

DM - LC 47 171 0,27

DM - PM 57 211 0,27

DM - 5U 4 13 0,30

Y - WG 36 124 0.29

Y - PM 24 88 0.27

Comparison between CORENup and LeNup time for epochs, all the time are expressed in seconds. The Overhead column reports
the ratio between CORENup and LeNup times

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 11 of 14

Table 6 Training time

CORENup LeNup Overhead

HS 166,79 305 0,55

DM 219,14 382,75 0,72

E 207,40 312,35 0,66

Y 287,46 186,5 1,54

HS - LC 2544,14 1426 1,78

HS - PM 1558,92 1806 0,86

HS - 5U 316,08 750 0,42

DM - LC 2025.52 4435 0.46

DM - PM 1823.39 3040 0.60

DM - 5U 121.78 171 0.71

Y - WG 791.37 1294 0.61

Y - PM 500.37 1311 0.38

Comparison between CORENup and LeNup Training time, all the time are expressed in seconds. The Overhead column reports
the ratio between CORENup and LeNup times

Tables 5 and 6, again it is possible to see that the time for epoch is one-third of the LeNup
training time and that the whole training time is still lower, except for the HS-LC dataset.

The third column in Table 7 shows the AUC values of the best performer among the
8 methods compared in the paper by Liu et al [35]. The symbol ’∼’ is used to indicate a
’very close to’ value, and this approximation is mandatory since the paper reports no more
than a bar plot for the AUC values. The comparison shows the improvements obtained
by using the two deep neural networks.

All the experiments reported ran on Intel i7 CPU with 32GB of memory RAM and an
NVIDIA TITAN V with 12GB of GPU dedicated memory.

Conclusions
Deep neural networks are suitable for sequence classification because they can automat-
ically extract the useful features from sequence and can use them for classification. In
deep neural networks like GoogLeNet [33] or LeNup network [25], these features are pro-
cessed by a sequence of layers that groups them and extract from this composition new
high-order more complex features.

The same principle of feature composition can be exploited using features of different
nature, such as the one extracted by convolutional networks and recurrent networks. The
convolutional layers can extract and process features that are related to the presence of

Table 7 Experiments result for the second group of data-sets

CORENup LeNup Best for [35]

HS - LC 0,912 0,926 0,65

HS - PM 0,875 0,876 0,67

HS - 5U 0,758 0,732 ∼0,7

DM - LC 0,734 0,724 ∼0,7

DM - PM 0,738 0,734 ∼0,7

DM - 5U 0,746 0,695 ∼0,7

Y - WG 0,968 0,939 0,77

Y - PM 0,909 0,933 0,79

The AUC values are calculated as explained in the work [35] where the data-sets were originally proposed. The last column
reports the results of the best performer among the 8 methods compared in the original paper. Best values are shown in boldface

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 12 of 14

“static” patterns in the sequences, such as few letters words or other patterns. The recur-
rent layer can complete the extraction of the feature related to the periodic characteristics
of the sequences probably related to word repetition. Using this approach, the input signal
follows different processing paths aimed to extract different information from the input.
The resulting network is more "wide" than deep, with many layers that work in parallel on
the same input. In this paper, we have proposed a deep neural network, called CORENup,
which follows this parallel layer composition. CORENup has shown to be a top performer
with a smaller training time with respect to the state of the art. This kind of architecture
shows that the features extraction and composition process can be obtained not only in
deep stacks of convolutional layers but also in shallow modules that process the signal in
different ways and the collecting the results in a single representing vector.

Future efforts will be focused to increase the information extracted from the input and
to mix them to obtain a more rich input signal for the fully connected layers.

Acknowledgments
We gratefully acknowledge the support of NVIDIA Corporation for this research with the donation of a Titan Xp that was
used for the preliminary studies, and a Titan V GPUs used for the training of the model on the complete datasets. This
research is funded in part by MIUR Project of National Relevance 2017WR7SHH ”Multicriteria Data Structures and
Algorithms: from compressed to learned indexes, and beyond”.

About this supplement
This article has been published as part of Volume 21, Supplement 8 2020: Italian Society of Bioinformatics (BITS): Annual
Meeting 2019. The full contents of the supplement are available at https://bmcbioinformatics.biomedcentral.com/
articles/supplements/volume-21-supplement-8.

Authors’ contributions
GLB and RR conceived the study. GLB, RR, AD designed the methodology. RR and DA implemented the methodology.
AD prepared the data and ran the experiments. GLB and RR analyzed and interpreted the data. The authors read and
approved the final manuscript.

Funding
Publication costs are funded by the I.E.ME.S.T. (Euromediterranean Institute of Science and Technology).

Availability of data and materials
The source code of CORENup is freely available at https://github.com/DeepLearningForSequence/CORENup-A-
Combination-of-Convolutional-and-Recurrent-Deep-Neural-Networks-for-NucleosomePositioning. The data used for
the experiments are downloadable at https://github.com/DeepLearningForSequence/CORENup-Datasets/tree/master/
Datasets.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Dipartimento di Matematica e Informatica, Università degli studi di Palermo, Via Archirafi, 34, 90123 Palermo, Italy.
2Dipartimento di Scienze per l’Innovazione tecnologica, Istituto Euro-Mediterraneo di Scienza e Tecnologia, Via Michele
Miraglia, 20, 9039 Palermo, Italy. 3CNR-ICAR, National Research Council of Italy, Via Ugo La Malfa, 153, 90146, Palermo, Italy.

Received: 16 June 2020 Accepted: 22 June 2020 Published: 16 September 2020

References
1. Ridgway P, Almouzni G. Chromatin assembly and organization. J Cell Sci. 2001;114(15):2711–2.
2. Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. High-resolution nucleosome mapping reveals

transcription-dependent promoter packaging. Genome Res. 2010;20(1):90–100.
3. Whitehouse I, Tsukiyama T. Antagonistic forces that position nucleosomes in vivo. Nat Struct Mol Biol. 2006;13(7):633.
4. Cairns BR. Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr Opin Genet

Dev. 2005;15(2):185–90.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-8
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-8
https://github.com/DeepLearningForSequence/CORENup-A-Combination-of-Convolutional-and-Recurrent-Deep-Neural-Networks-for-NucleosomePositioning
https://github.com/DeepLearningForSequence/CORENup-A-Combination-of-Convolutional-and-Recurrent-Deep-Neural-Networks-for-NucleosomePositioning
https://github.com/DeepLearningForSequence/CORENup-Datasets/tree/master/Datasets
https://github.com/DeepLearningForSequence/CORENup-Datasets/tree/master/Datasets

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 13 of 14

5. Sala A, Toto M, Pinello L, Gabriele A, Di Benedetto V, Ingrassia AMR, Lo Bosco G, Di Gesù V, Giancarlo R, Corona
DFV. Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome
remodelling atpase iswi. EMBO J. 2011;30(9):1766–77.

6. Schnitzler GR. Control of nucleosome positions by dna sequence and remodeling machines. Cell Biochem Biophys.
2008;51(2-3):67–80.

7. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem.
2007;76:75–100.

8. Nucleosome positioning. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C, editors. Encyclopedia of
Bioinformatics and Computational Biology. Oxford: Academic Press; 2019. p. 308–17.

9. Lu Q, Wallrath LL, Elgin SC. Nucleosome positioning and gene regulation. J Cell Biochem. 1994;55(1):83–92.
10. Svaren J, Horz W. Transcription factors vs. nucleosomes: Regulation of the pho5 promoter in yeast. Trends Biochem

Sci. 1997;22:93–97.
11. Liu M-J, Seddon AE, Tsai ZT-Y, Major IT, Floer M, Howe GA, Shiu S-H. Determinants of nucleosome positioning and

their influence on plant gene expression. Genome Res. 2015;25(8):1182–95.
12. Pulivarthy SR, Lion M, Kuzu G, Matthews AG, Borowsky ML, Morris J, Kingston RE, Dennis JH, Tolstorukov MY,

Oettinger MA. Regulated large-scale nucleosome density patterns and precise nucleosome positioning correlate
with v (d) j recombination. Proc Natl Acad Sci. 2016;113(42):6427–36.

13. Satchwell SC, Drew HR, Travers AA. Sequence periodicities in chicken nucleosome core dna. J Mol Biol. 1986;191(4):
659–75. https://doi.org/10.1016/0022-2836(86)90452-3.

14. Drew HR, Travers AA. Dna bending and its relation to nucleosome positioning. J Mol Biol. 1985;186(4):773–90.
https://doi.org/10.1016/0022-2836(85)90396-1.

15. Lowman H, Bina M. Correlation between dinucleotide periodicities and nucleosome positioning on mouse satellite
dna. Biopolymers. 1990;30(9–10):861–76. https://doi.org/10.1002/bip.360300902.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.360300902.

16. Giancarlo R, Rombo SE, Utro F. In vitro versus in vivo compositional landscapes of histone sequence preferences in
eucaryotic genomes. Bioinformatics. 2018;34(20):3454–60. https://doi.org/10.1093/bioinformatics/bty799.

17. Kaplan N, K Moore I, Mittendorf Y, J Gossett A, Tillo D, Field Y, M LeProust E, R Hughes T, Lieb J, Widom J, Segal E.
The dna-encoded nucleosome organization of a eukaryotic genome. Nature. 2009;458:362–6.

18. Lo Bosco G. Alignment free dissimilarities for nucleosome classification. In: Angelini C, Rancoita PM, Rovetta S,
editors. Computational Intelligence Methods for Bioinformatics and Biostatistics. Cham: Springer; 2016. p. 114–28.

19. Utro F, Di Benedetto V, Corona DFV, Giancarlo R. The intrinsic combinatorial organization and information
theoretic content of a sequence are correlated to the DNA encoded nucleosome organization of eukaryotic
genomes. Bioinformatics. 2015;32(6):835–42.

20. Giancarlo R, Rombo SE, Utro F. Dna combinatorial messages and epigenomics: The case of chromatin organization
and nucleosome occupancy in eukaryotic genomes. Theor Comput Sci. 2019;792:117–30.

21. Chereji RV, Clark DJ. Major determinants of nucleosome positioning. Biophys J. 2018;114(10):2279–89. https://doi.
org/10.1016/j.bpj.2018.03.015.

22. Zhao Y, Wang J, Liang F, Liu Y, Wang Q, Zhang H, Jiang M, Zhang Z, Zhao W, Bao Y, Zhang Z, Wu J, Asmann
YW, Li R, Xiao J. NucMap: a database of genome-wide nucleosome positioning map across species. Nucleic Acids
Res. 2018;47(D1):163–9. https://doi.org/10.1093/nar/gky980.

23. Guo S-H, Deng E-Z, Xu L-Q, Ding H, Lin H, Chen W, Chou K-C. inuc-pseknc: a sequence-based predictor for
predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics.
2014;30(11):1522–9.

24. Tahir M, Hayat M. inuc-stnc: a sequence-based predictor for identification of nucleosome positioning in genomes
by extending the concept of saac and chou’s pseaac. Mol BioSyst. 2016;12:2587–93.

25. Zhang J, Peng W, Wang L. Lenup: learning nucleosome positioning from dna sequences with improved
convolutional neural networks. Bioinformatics. 2018;34(10):1705–12.

26. Di Gangi M, Lo Bosco G, Rizzo R. Deep learning architectures for prediction of nucleosome positioning from
sequences data. BMC Bioinformatics. 2018;19(14):418.

27. Lo Bosco G, Rizzo R, Fiannaca A, La Rosa M, Urso A. A deep learning model for epigenomic studies. In: 12th
International Conference on Signal-Image Technology Internet-Based Systems (SITIS). IEEE; 2016. p. 688–92. https://
doi.org/10.1109/sitis.2016.115.

28. Di Gangi MA, Gaglio S, La Bua C, Lo Bosco G, Rizzo R. A deep learning network for exploiting positional information
in nucleosome related sequences. In: Rojas I, Ortuño F, editors. Bioinformatics and Biomedical Engineering. Cham:
Springer; 2017. p. 524–33.

29. Fiannaca A, La Paglia L, La Rosa M, Renda G, Rizzo R, Gaglio S, Urso A, et al. Deep learning models for bacteria
taxonomic classification of metagenomic data. BMC Bioinformatics. 2018;19(7):198.

30. Amato D, Di Gangi MA, Lo Bosco G, Rizzo R. Recurrent deep neural networks for nucleosome classification. In:
Raposo M, Ribeiro P, Sério S, Staiano A, Ciaramella A, editors. Computational Intelligence Methods for
Bioinformatics and Biostatistics. Cham: Springer; 2020. p. 118–27.

31. Di Gesù V, Lo Bosco G, Pinello L, Yuan G-C, Corona DFV. A multi-layer method to study genome-scale positions of
nucleosomes. Genomics. 2009;93(2):140–5.

32. Pinello L, Lo Bosco G, Yuan G-C. Applications of alignment-free methods in epigenomics. Brief Bioinformatics.
2014;15(3):419–30.

33. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper
with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. p.
1–9. https://doi.org/10.1109/cvpr.2015.7298594.

34. Chen W, Feng P, Ding H, Lin H, Chou K-C. Using deformation energy to analyze nucleosome positioning in
genomes. Genomics. 2016;107(2):69–75.

35. Liu H, Zhang R, Xiong W, Guan J, Zhuang Z, Zhou S. A comparative evaluation on prediction methods of
nucleosome positioning. Brief Bioinforma. 2013;15:. https://doi.org/10.1093/bib/bbt062.

https://doi.org/10.1016/0022-2836(86)90452-3
https://doi.org/10.1016/0022-2836(85)90396-1
https://doi.org/10.1002/bip.360300902
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.360300902
https://doi.org/10.1093/bioinformatics/bty799
https://doi.org/10.1016/j.bpj.2018.03.015
https://doi.org/10.1016/j.bpj.2018.03.015
https://doi.org/10.1093/nar/gky980
https://doi.org/10.1109/sitis.2016.115
https://doi.org/10.1109/sitis.2016.115
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1093/bib/bbt062

Amato et al. BMC Bioinformatics 2020, 21(Suppl 8):326 Page 14 of 14

36. Tensorflow. https://www.tensorflow.org/install. Accessed 07 April 2020.
37. Kingma DP, Ba J. Adam: A method for stochastic optimization. In: 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings; 2015. http://arxiv.
org/abs/1412.6980.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.tensorflow.org/install
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Sequence representation
	CORENup neural network model
	Convolutional neural networks
	LSTM network
	Merging the architectures: the CORENup network

	Datasets and training details

	Results
	Discussions
	Conclusions
	Acknowledgments
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

