
Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299
https://doi.org/10.1186/s12859-020-03628-w

RESEARCH Open Access

Metagenomic analysis through the
extended Burrows-Wheeler transform
Veronica Guerrini1, Felipe A. Louza2 and Giovanna Rosone1*

From Annual Meeting of the Bioinformatics Italian Society (BITS 2019)
Palermo, Italy. 26-28 June 2019

*Correspondence:
giovanna.rosone@unipi.it
1Dipartimento di Informatica,
Università di Pisa, Largo B.
Pontecorvo, 3, Pisa, Italy
Full list of author information is
available at the end of the article

Abstract

Background: The development of Next Generation Sequencing (NGS) has had a
major impact on the study of genetic sequences. Among problems that researchers in
the field have to face, one of the most challenging is the taxonomic classification of
metagenomic reads, i.e., identifying the microorganisms that are present in a sample
collected directly from the environment. The analysis of environmental samples
(metagenomes) are particularly important to figure out the microbial composition of
different ecosystems and it is used in a wide variety of fields: for instance, metagenomic
studies in agriculture can help understanding the interactions between plants and
microbes, or in ecology, they can provide valuable insights into the functions of
environmental communities.

Results: In this paper, we describe a new lightweight alignment-free and
assembly-free framework for metagenomic classification that compares each unknown
sequence in the sample to a collection of known genomes. We take advantage of the
combinatorial properties of an extension of the Burrows-Wheeler transform, and we
sequentially scan the required data structures, so that we can analyze unknown
sequences of large collections using little internal memory. The tool LiME (Lightweight
Metagenomics via eBWT) is available at https://github.com/veronicaguerrini/LiME.

Conclusions: In order to assess the reliability of our approach, we run several
experiments on NGS data from two simulated metagenomes among those provided in
benchmarking analysis and on a real metagenome from the Human Microbiome
Project. The experiment results on the simulated data show that LiME is competitive
with the widely used taxonomic classifiers. It achieves high levels of precision and
specificity – e.g. 99.9% of the positive control reads are correctly assigned and the
percentage of classified reads of the negative control is less than 0.01% – while keeping
a high sensitivity. On the real metagenome, we show that LiME is able to deliver
(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03628-w&domain=pdf
http://orcid.org/0000-0001-5075-1214
mailto: giovanna.rosone@unipi.it
https://github.com/veronicaguerrini/LiME
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 2 of 25

(Continued from previous page)

classification results comparable to that of MagicBlast. Overall, the experiments confirm
the effectiveness of our method and its high accuracy even in negative control samples.

Keywords: Metagenomics, Next-generation sequencing, Classification,
Alignment-free, Assembly-free, eBWT, LCP Array

Background
Interest in metagenomics has been sparked by the recent advances in “next-generation”
DNA sequencing (NGS) technologies [1]. Metagenomics refers to the sequencing of
microbial DNA collected directly from the environment, without isolation and lab culti-
vation of individual species. The analysis of environmental samples (i.e., metagenomes)
are particularly important to figure out the microbial composition of different ecosystems
and it is used in several fields: for example, metagenomic studies in agriculture are being
used to explore the relations between microbes and plants and to detect crop diseases. Of
fundamental importance is to identify with precision the microorganisms that are present
in a metagenomic sample by comparing the biological sequences therein and assigning
them to a specific taxon.

The metagenomic tools can be preliminarily classified into two categories: reference-
based (supervised) [2–7] and reference-free (unsupervised) [8, 9]. In the first case, the
metagenomic analysis needs reference genomes and the goal is to match sequences, typ-
ically reads or assembled contigs, against a database of microbial genomes in order to
identify the taxon of each sequence. In the second case, the aim is to subdivide the reads
or the sequences assembled from metagenomic reads into discrete units, without the
need of references, so that sequences clustered together display individual populations
that comprise the microbial community. This latter approach is known as reference-free
binning [8].

In this paper, we focus on the first approach which provides taxonomic classification of
individual sequences from a metagenomic sample. A variety of strategies have been used
for the matching step of the reference-based metagenomics tools. The following partial
list gives a few examples: aligning reads, mapping k-mers, using complete genomes, align-
ing marker genes only or translating the DNA and aligning to protein sequences (see also
[10]). One can split these methods into alignment-based and assembly-based approaches
or alignment-free and assembly-free approaches [11].

Alignment-based classifiers proceed by aligning metagenome sequences against the
genomes in a reference database. The most well-known and commonly used tool for DNA
search and alignment is BLAST (Basic Local Alignment Search Tool) [12]. BLAST con-
sists of a set of algorithms that attempt to find a short fragment of a query read that aligns
with a fragment of a genome stored in the reference database.

Nevertheless, as reference databases and NGS sequencing datasets have grown in
size, this alignment strategy has become computationally expensive and alignment-free
methods have been developed. So, several techniques exist to reduce the computational
complexity of this approach. In particular, there exist many statistical/computational tools
for metagenomic classification (e.g. [2–4, 13]), many of these approaches use exact match-
ing of short words of length k (k-mers) rather than alignment and are often based on
hashing, indexing and counting k-mers.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 3 of 25

Recent surveys (for instance [14, 15]) offer a thorough benchmarking analysis by
comparing the majority of the state-of-the-art tools. A recent evaluation of tools for
metagenome classification [14] presents the most widely used tools tested on complex
and realistic datasets. According to this benchmarking analysis, Kraken [2] and CLARK
[3] result to be top-performing tools in terms of both similarity to the correct answer
and the fraction of reads classified. Note that these two tools are both k-mer based. An
alternative approach to fixed k-mers is to use spaced seeds, i.e. patterns in which some
fixed positions are allowed to be wild-cards. CLARK-S [5] is the new version of CLARK
that uses spaced seeds1 and achieves higher sensitivity with the same high precision. The
main drawback of these approaches is that they are extremely memory consuming: the
memory usage of CLARK-S, as well as of CLARK and Kraken, is high, and the results
obtained by running the lightweight version CLARK-L are indicated to be a “draft, or
first order approximation” of those obtained by running CLARK or CLARK-S. Recently, a
new version of Kraken, named Kraken 2 [7], has been introduced. It improves upon
Kraken by reducing memory usage by 85%, and allowing to use greater amounts of refer-
ence genomic data while maintaining high accuracy. There are, however, other efficient
alignment-free methods not based on k-mer counting, for instance Centrifuge [4],
which is based on a read-mapping strategy and uses the FM-index [16] to store and index
the genome database. Another recent tool based on mapping is TaxMaps [6]: it uses
a database compression algorithm that eliminates redundancy by performing a lowest
common ancestor (LCA) pre-assignment and collapse for k-mers of length greater than a
specified read length; this allows GEM mapper [17] to conduct non-exact searches in the
same manner as it would against the original database, resulting in compression that, for
the purpose of taxonomic classification, is lossless. Finally, a novel member of the BLAST
family of programs has been introduced recently: Magic-BLAST [18] is a new tool for
mapping DNA or RNA next-generation sequencing (NGS) runs against a whole genome.

Our contributions — We propose a new alignment-free, mapping-free and assembly-
free method for comparing sequences (cf. [11, 19, 20]), which is combinatorial by nature
and allows us to use little internal memory with respect to other approaches, since the
use of the internal memory mainly depends on the number of reads that one wants to
examine at the same time.

Our method is based on an extension of the Burrows-Wheeler Transform (shortly
eBWT) to a collection of sequences [21]. The eBWT has been used in several applica-
tion contexts as the circular pattern matching (cf. [22]) and the alignment-free methods
for comparing sequences (cf. [21, 23–26]). Different distance measures have been defined
and successfully applied to several biological datasets, as for instance mitochondrial DNA
genomes [21, 23], expressed sequence tags [27] and proteins [24].

Usually, when the eBWT is applied to a collection S of sequences, its output string
ebwt(S) is enriched by another data structure, called the document array da(S): a dif-
ferent color is assigned to each element of S and each symbol of ebwt(S) is associated
with a color in da(S) [28]. In other words, the array da(S) contains a sequence of colors
that depends on how the suffixes of the sequences in S are mixed in the sorted list. In

1More formally, a spaced seed S (or just a seed) is a binary string of length k, where the symbol ‘1’ requires a match in
that position, while a symbol ‘0’ allows for “don’t care”. A spaced seed is characterized by its length k and by its weight
W < k, which is the number of 1s in the string. A spaced seed always begins and ends with a 1.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 4 of 25

[21, 23], the authors define a class of dissimilarity measures that, by using the eBWT,
formalize the intuitive idea that the greater is the number of substrings shared by two
sequences u, v ∈ S , more their colors are intermixed in da(S), and the smaller is the
“distance” between u and v.

In this paper, we present a tool for the metagenomic classification task, called LiME
(Lightweight Metagenomics via eBWT), that takes as input the (extended) Burrows-
Wheeler Transform enhanced with the document array (DA) and the longest common
prefix (LCP) array [29]. These are fundamental data structures in string processing and
can be built independently from our tool (e.g. [30–35]).

The contribution of this paper is twofold, theoretical as well as practical. The theoreti-
cal result is the introduction of a novel combinatorial approach, which is alignment-free,
mapping-free and assembly-free, that can be the basis of new biological sequence analysis
methods. Our approach takes advantage of the combinatorial property of the Burrows-
Wheeler Transform (BWT) [36], already exploited by BWT-based compressors (see, for
instance [37–39]): the output of BWT shows a local similarity (occurrences of a given
letter that precede the same context tend to occur in clusters) [40–43].

From a practical viewpoint, unlike other approaches, LiME does not need to build
ad-hoc and keep in internal memory the data structures relating to the database of the
reference genomes, as it only needs to run sequential scans on the input data structures,
that may consist of a simple text file or may be in compression form. For the best of
our knowledge, LiME also is the first metagenomic classifier that runs a many-to-many
pairwise comparison and that is able to produce a similarity matrix, by comparing all
unknown sequences in the sample versus all known genomes in the collection at the same
time in order to be able to assign the correct reference to each read. In the future, such
matrix could also be used for other metagenomic applications, for instance reference-free
(unsupervised) approaches [9] or all-vs-all comparison of metagenomes [44].

Moreover, the experiments show that our tool has a very high precision and a high
specificity, in fact our tool is able to correctly assign a read to a genome, while being able
to establish that random reads must not be assigned to any genome. Our tool can take
paired-end read collections as input - we recall that a paired-end read is a pair consist-
ing of two reads (or mates), such that the second read occurs in the genome at a known
distance after the first one. LiME is able to process the mates individually while still
recognizing the pairing information, when the input set is a paired-end read.

This work is an extended version of a paper appeared in [45], where two of the present
authors introduced a new similarity measure, based on the clustering effect of the eBWT.
The main idea consists in computing the similarity between a read and a genome by
identifying and analyzing the consecutive symbols in the output of the eBWT and their
related colors in the DA. The previous strategy did not take into account the symbols in
the International Union of Pure and Applied Chemistry (IUPAC)2 code [46], indeed they
were considered as placeholders. Moreover, in the preliminary version, several reads were
set as ambiguous, and thus not classified, by leaving a more in-depth analysis of them for
a further work.

The additional contributions over those in the conference paper [45] are: i) we modify
the analysis of the clusters by using two different similarity measure definitions: in the

2The IUPAC code has defined a standard representation of DNA bases by single characters that specify either a single
base (e.g., G for guanine, A for adenine) or a set of bases (e.g., R for either G or A).

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 5 of 25

first variant, we count how many matches of symbols there are between each read and
each genome in any cluster taking into account also the IUPAC ambiguity code (an ambi-
guity code can match with themselves or with any letter that is associated with its code);
whereas, in the second variant, only the presence of such symbols in clusters is consid-
ered and we just distinguish the belonging to different input sequences; ii) we modify the
read classification by doing a more in-depth analysis of the ambiguous reads (note that the
classification is divided into three phases and only the first phase is in common with [45]);
iii) we are able not only to classify the reads at a specific taxonomic rank such as genomes,
or any level between species and phylum, but also to classify reads at several taxonomic
levels by taking advantage of the taxonomic lineage; iv) we implement a multi-threading
version of our tool exploiting the fact that it allows a certain degree of parallelization,
indeed as stated in [45], the analysis of clusters is independent of each other, so each
thread can handle distinct parts of the input files by reading it through local buffers; we
also extend the experiments showing the performance of our tool on a real dataset.

The validation is performed by using both simulated metagenomes among those pro-
vided in the benchmarking analysis [14] and a real metagenome from the Human
Microbiome Project (HMP).

Concerning the simulated datasets, they reproduce size, complexity and characteris-
tics of real metagenomic samples containing around 20 millions of sequences (for the
positive control) in addition to a negative control set of about 5 millions of random shuf-
fled reads which mimic sequences from unknown organisms that are likely to appear in
metagenomic samples. The experiment results on the simulated data show that LiME
is competitive with the state-of-the-art tools. It achieves high levels of precision and
specificity– e.g., 99.9% of the positive control reads are correctly assigned and the per-
centage of classified reads of the negative control is less than 0.01% – keeping a high
sensitivity. Thus, on simulated datasets LiME achieves a high F1 score, which is the har-
monic mean between sensitivity and precision. Recall that a classifier obtaining a high F1
score is able to achieve both high precision and high sensitivity. Moreover, LiME is able
to deliver classification accuracy comparable to that of Magic-BLAST, TaxMaps and
CLARK-S, yet requiring less computational cost.

On the real metagenome, the accuracy of classification cannot be evaluated, since
the “ground truth” for real metagenome is not available, and thus we choose to com-
pare the classification of LiME to the other tools’ classification results. By comparing
the experimental results, we observe that LiME classifies identically the same reads as
Magic-BLAST more than the other tools do. Moreover, the number of reads that are
classified by LiME but not by Magic-BLAST is greater than that computed by CLARK-S,
Centrifuge, and Kraken 2, although LiME classifies more reads than CLARK-S,
Centrifuge and Kraken 2.

Overall, the experiments confirm the effectiveness of our method and its high accuracy
even in negative control samples.

Method
In this section, we present a new eBWT-based strategy to tackle the problem of metage-
nomic classification that is assembly-, mapping- and alignment-free and uses a little
amount of memory, in the sense that we keep the input data structures we use in exter-
nal memory, and the similarity matrix between the reads and the genomes in internal

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 6 of 25

memory. So, the space in internal memory depends only on the number of sequences that
one wants to examine at the same time and it does not depend on the size (number of
symbols) of the input.

Preliminaries and materials

Let S be a string (or sequence) of length n, and � its alphabet set, with σ = |�|. We denote
the i-th symbol of S by S[i]. Let S = {S1, S2, . . . , Sm} be a collection of m strings. We
assume that each string Si ∈ S of length ni is followed by a special symbol Si[ni + 1] = $i,
which is lexicographically smaller than any other characters in S , and does not appear in
S elsewhere — for implementation purposes, we may simply use a unique end-marker $
for all strings in S . The alphabet � is the biological alphabet {A, C, G, T} enhanced with
the degenerated base symbols (IUPAC code [46]) and the end-marker symbol.

A substring of any S ∈ S is denoted as S[i, j] = S[i] · · · S[j], with S[1, j] being called a pre-
fix and S[i, n+1] a suffix of S. A range is delimited by a square bracket if the corresponding
endpoint is included.

The Burrows-Wheeler Transform (BWT) [36] is a well-known widely used reversible
string transformation that can be extended to a collection of strings. Such an extension,
known as eBWT or multi-string BWT, is a reversible transformation whose output string
(denoted by ebwt(S)) is a permutation of the symbols of all strings in S [21] (see also
[30, 31, 34, 47, 48]). The length of ebwt(S) is denoted by N = (∑m

i=1 ni
) + m, and

ebwt(S)[i] = x, with 1≤ i≤N , if x circularly precedes the i-th suffix Sj[k, nj+1] (for some
1 ≤ j ≤ m and 1 ≤ k ≤ nj +1), according to the lexicographic sorting of the suffixes of
all strings in S . In this case, we say that the suffix Sj[k, nj + 1] is associated with the posi-
tion i in ebwt(S) and with the color j ∈ {1, 2, . . . , m} in the DA. Then, the output string
ebwt(S) is enhanced with the document array of S (denoted by da(S)) of length N where
da(S)[i] = j, with 1 ≤ j ≤ m and 1 ≤ i ≤ N , if ebwt(S)[i] is a symbol of the string Sj ∈ S .
In other words, a different color is assigned to each sequence. See Fig. 1 for an example.

The longest common prefix (LCP) array [29] of S is the array lcp(S) of length N +1, such
that lcp(S)[i], with 2 ≤ i ≤ N , is the length of the longest common prefix between the
suffixes associated with the positions i and i − 1 in ebwt(S), and lcp(S)[1] = lcp(S)[N +
1] = 0 by default.

Fig. 1 The required data structures for our running example. The set S is
{S1 = GGCGTACCA$1, S2 = GGGGCGTAT$2, S3 = ACGARTACGAC$3}, where S1 is a read and S2 and S3 are two
genomes. The symbols of ebwt(S) in the 2-clusters are in bold

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 7 of 25

The set S will be omitted if it is clear from the context. Moreover, for clarity of descrip-
tion, we denote by L(S) the sorted list of the suffixes in S , distinguishing the end-marker
symbol $, although we do not need it for our computation.

We call u-occurrence any substring u that occurs in any sequence of S .

Remark 1 Recall that ebwt(S) is implicitly associated with L(S) and all the suffixes in
S starting with the same substring u, with |u| = k, must be consecutive entries in L(S) in
the range [h, j]. Moreover, lcp[h] < k, lcp[j + 1] < k, and lcp[i] ≥ k for i = h + 1, . . . , j, and
the symbols of S that are followed by u-occurrences coincide with ebwt[h, j].

Remark 2 Let � be the total number of u-occurrences in S , with |u| = k, there exist k −1
substrings (i.e., all suffixes of u that are not equal to u) which appear at least � times in S .

Example 1 (running example) Let S = {S1 = GGCGTACCA$1, S2 =
GGGGCGTAT$2, S3 = ACGARTACGAC$3}. The substring CGT appears exactly once in
sequences S1 and S2. The two suffixes of S1 and S2 starting with CGT-occurrences occupy
consecutive positions, precisely 16 and 17 in Fig. 1, and lcp[17] = 4. Moreover, accord-
ing to Remark 2, we may note that the number of GT-occurrences is 2 and the one of
T-occurrences is 4.

Preprocessing

We recall that our tool takes as input the files containing ebwt(S), da(S) and lcp(S) of
the collection S of reads and reference genomes.

Let S = {S1, . . . , Sm} be the input collection of biological sequences comprising r reads
and g genomes, where m = r + g. More in details, Si ∈ S is a read if 1 ≤ i ≤ r and Sj ∈ S
is a genome if r + 1 ≤ j ≤ m. For simplicity, we denote by R the subset of reads and by G
the subset of genomes.

The construction of ebwt(S), da(S) and lcp(S) can be performed in internal or external
memory. We can compute ebwt(G) and da(G) with algorithm GAP [30] or eGSA [47].
Then, for each new experiment with a read collection R, we can compute ebwt(R) and
da(R) by using the algorithm BCR [31, 32] and merge them with ebwt(G) and da(G) to
compute ebwt(S) and da(S) by using the algorithm eGAP [34], which gives lcp(S) as a
by-product with no additional costs.

Notice that the used method does not affect the classification, so one can use other
algorithms to construct ebwt(S), da(S) and lcp(S) which is a good feature, since more
efficient tools can appear in the literature.

LiME

In this section, we describe how computing a similarity value between a short sequence
and a genome reference, and then we describe how to handle the reverse complement
strand of the sequence or the mates for paired-end read collections.

We outline the method that we introduced to classify short reads by assigning it to a
specific taxon according to the similarity scores computed for any genome in G through
sequential scans on ebwt(S), da(S) and lcp(S).

Our notion of similarity between sequences exploits the underlying properties of the
eBWT: (i) the clustering effect, i.e., the fact that this transformation tends to group

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 8 of 25

together symbols that occur in similar contexts in the input string collection; (ii) the fact
that if a substring u occurs in one or more sequences, then the suffixes of the collection
starting with u-occurrence are likely to be close in the sorted list of suffixes. In other
words, the greater the number of substrings shared by two sequences is, the more they
are similar.

Roughly speaking, we consider the symbols of S followed by the same substrings (i.e.,
contexts) which are clustered together in ebwt(S) and match one-to-one the symbols
belonging to R to the symbols belonging to G.

The overall scheme of the LiME algorithm can be sketched as follows:

Step 1. By reading da(S) and lcp(S) in a sequential way, we detect α-clusters, i.e., the
blocks of ebwt(S) containing symbols belonging both to R and to G and whose
associated suffixes in L(S) share a common context (u-occurrence) of a minimum
length α;

Step 2. We analyze α-clusters in order to evaluate a degree of similarity between any read
and any genome in S by using two different approaches:

(a) by reading both da(S) and ebwt(S), and
(b) by reading only da(S).

Step 3. We perform the read assignment: every read is assigned to a specific taxon either
at a given taxonomic level (if it is specified) or at any level by taking advantage of the
taxonomic lineage of taxa.

Step 1: build α-clusters collection — In Step 1, inspired by Remark 1, we build the
collection Cα of α-clusters, which are blocks of symbols delimited by a pair of indices.

Definition 1 Let α be a positive integer, lcp[1, N +1] be the LCP-array and da[1, N] the
document array associated with ebwt[1, N]. An α-cluster of ebwt(S) of size pE − pS + 1 is
any pair of indices (pS, pE) in [1, N] such that

• lcp[pS] < α, and lcp[pE + 1] < α,
• lcp[i] ≥ α, for every pS < i ≤ pE,
• there exist two indices s, t, pS ≤ s, t ≤ pE, such that da[s] ≤ r and da[t] > r,

where r is the total number of reads in S .

Example 2 (running example) By setting r = 1 and g = 2, we have R = {S1}
and G = {S2, S3}. For α = 2, the set C2 of 2-clusters of the ebwt(S) is given by
{(5, 8), (14, 17), (20, 21), (22, 25), (26, 27), (30, 32)}, as depicted in Fig. 1.

In other words, we discard the blocks of ebwt(S) whose associated suffixes do not share
a prefix of length at least α or that contain symbols belonging only to one set (R or G).
Setting a minimum LCP α is to filter out blocks corresponding to short random con-
texts (u-occurrences) which are statistically not significant, while imposing symbols from
both sets is appropriate for next step’s calculations. Moreover, since the genomes in G are
(usually) long sequences, the parameter α must be chosen smaller than the read length
(sequences in R) to have Cα not empty.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 9 of 25

Step 1 can be performed by a sequential scan over lcp(S) and da(S) allowing us to
keep the input data structures in external memory and use only a small amount of inter-
nal memory to detect α-clusters. Since the clusters do not overlap, we implemented
LiME so that it performs this construction in parallel way, by dividing the data structures
appropriately.

It is easy to see that we compute the similarity between a read Si ∈ R and a
genome Sj ∈ G by analyzing the data structures of the entire set of sequences S ,
not only the two sequences Si and Sj. This is possible according to the following
remark.

Remark 3 Let (pS, pE) be an α-cluster of ebwt(S) that contains at least a symbol of Si
and at least a symbol of Sj. Other symbols that belong to sequences in S apart from Si
and Sj may also appear in ebwt[pS, pE]. Nevertheless, we can implicitly get a new cluster
(pS′, pE′) by deleting from the ebwt(S) all symbols not belonging to Si and Sj, and for
the properties of the LCP array, it is easy to verify that (pS′, pE′) forms an α-cluster of
ebwt({Si, Sj}).

Step 2: build the similarity matrix — We compute the |R| × |G| similarity matrix by
analyzing the α-clusters detected in the previous step. The idea in this step is to use the
information from the clustering effect in ebwt(S) and the mixed colors in da(S). Also in
this step, we perform sequential scans of the input data structures.

During the second step, we analyze each α-cluster of the ebwt(S) by using one of the
two approaches:

(a) by reading both da(S) and ebwt(S),
(b) by reading only da(S),

Then, we measure the degree of similarity between each sequence in R and each genome
in G.

In the first approach, whose related measure we call αeBWT-similarity, we consider
the symbols that appear in the α-clusters by making an exact correspondence between
the symbols belonging to R and G and taking into account the ambiguity of the IUPAC
codes3. For each α-cluster, we count first the number of occurrences of symbols of each
read that we can associate with the occurrences of the same symbol of each genome
appearing in the α-cluster and then we count the ambiguity symbols of each read (resp.
genome) if they match a genome (resp. read) symbol that is associated with its code. Then,
we sum these two values.

Definition 2 Let Cα be the set of all the α-clusters associated with ebwt(S). We define
the αeBWT-similarity between two sequences Si ∈ R and Sj ∈ G as the quantity

SeBWT
α (Si, Sj) =

∑

x∈Cα

(
∑

a∈�

min
(
occa(i, x), occa(j, x)

) + δIUPAC

)

where occa(i, x) (resp. occa(j, x)) is the number of a-symbols belonging to Si (resp. Sj) in the
α-cluster x, and δIUPAC is obtained as the sum of the number of matchings between the

3We clarify that this measure differs from the measure introduced in [45], since in the preliminary work the ambiguity
symbols could match with any symbol, as if they were placeholders.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 10 of 25

remaining IUPAC ambiguity symbols of Si (resp. Sj) with any remaining symbol associated
with its code of Sj (resp. Si).

In the second approach, whose related measure we call αDA-similarity, we only consider
the number of symbols from Si ∈ R and Sj ∈ G appearing in the α-clusters, that is, we
disregard the correspondence between the symbols a ∈ � from Si and Sj in the α-cluster.
In order to do this, we scan sequentially the corresponding positions of the α-clusters in
da(S) counting the colors of Si and Sj.

Definition 3 Let Cα be the set of all the α-clusters associated with ebwt(S). We define
the αDA-similarity between two sequences Si ∈ R and Sj ∈ G as the quantity

SDA
α (Si, Sj) =

∑

x∈Cα

min
(
occ(i, x), occ(j, x)

)

where occ(i, x) (resp. occ(j,x)) is the number of symbols belonging to Si (resp. Sj) in the α-
cluster x.

Note that 0 ≤ SeBWT
α (Si, Sj) ≤ SDA

α (Si, Sj) ≤ min(ni, nj) + 1 − α, where ni (resp. nj)
is the length of Si (resp. Sj). So, we can normalize the similarity values within the range
[0, 1] dividing them by min(ni, nj) + 1 − α.

Let S = {S1, . . . , Sr , Sr+1, . . . , Sr+g}. For each i = 1, . . . , r and k = 1, . . . , g, we build the
matrix of similarity Mα of dimension r × g, where

Mα[i] [k] = SeBWT
α (Si, Sj)

min(ni, nj) + 1 − α

for the first approach, and

Mα[i] [k] = SDA
α (Si, Sj)

min(ni, nj) + 1 − α

for the second approach.

Example 3 (running example) For α = 2, both the αeBWT-similarity and the αDA-
similarity between S1 and S2 are given by the sum 0 + 1 + 1 + 1 + 1 + 1 = 5, which by
normalizing holds SeBWT

2 (S1, S2)/8 = SDA
2 (S1, S2)/8 = 0.625.

On the other hand, the αeBWT-similarity between S1 and S3 is given by SeBWT
2 (S1, S3) =

1 + 0 + 0 + 0 + 0 + 1 = 2, by normalizing SeBWT
2 (S1, S3)/8 = 0.250. Note that, since the

ambiguity symbol R is associated with A and G, we have one match in the last cluster (i.e., R
matches with G). While the αDA-similarity is given by SDA

2 (S1, S3) = 1+1+0+0+0+1 =
3, which normalized is 0.375.

We observe that SDA
α (Si, Sj) differs from SeBWT

α (Si, Sj) and from the measure defined
in [45], since it does not take into account whether a symbol is an ambiguous character
or not, so we expect the classification w.r.t. SeBWT

α (Si, Sj) to be more precise and less
sensitive than that w.r.t. SDA

α (Si, Sj), while computing SDA
α (Si, Sj) should be faster than

SeBWT
α (Si, Sj). The experiments reported on both simulated and real datasets confirm

these facts.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 11 of 25

Both approaches of Step 2 allow to analyze α-clusters independently: indeed, we can
analyze the clusters in Cα one by one through |Cα| iterations, or in parallel exploiting the
fact that α-clusters are pairs of indices not overlapping.

Single-read and Paired-end read collections — LiME is designed to work either with
single-read collection or with paired-end reads of any insert size. In addition, both the
original sequences and their reverse complements must be considered in order to keep
reads properly oriented (original reads’ strand directions are unknown). Paired-end reads
(and their reverse complement) are treated initially as two single reads, so that they can
overlap and align in several ways. Then, our tool exploits the pairing information during
the classification step, which we describe in the next paragraph. Therefore, in case of
single-read collections, we keep two read sets, R and RRC , with forward and reverse
complement. After performing the procedures at Step 1 and Step 2 for the data structures
of both R∪G and RRC ∪G, to perform classification we use the information coming either
from R ∪ G or from the reverse complement RRC ∪ G. On the other hand, if we have a
paired-end read collection made of sets R1 and R2, the available information to perform
the read classification comes from both paired-end reads and their reverse complements:
thus, after performing the first two steps for the four input data structures (R1 ∪G, RRC

1 ∪
G, R2 ∪ G and RRC

2 ∪ G), we obtain four similarity matrices, denoted by M1F
α , M1RC

α ,
M2F

α , and M2RC
α , and to classify the pair of reads, we recollect the pairing information.

Actually, our theoretical approach holds also if one uses a unique data structure for both
mates and their reverse complements (without replicating the genomes) and if one uses
the reverse complement of the genome set (rather than the read set).

Step 3: classification— The last step consists in assigning a unique provenance to any
read in the input collection. In this step, one can specify a minimum taxonomic level
(e.g., genome, species, genus or higher) that will be the minimum rank considered in the
classification by LiME. Indeed, LiME can classify at higher levels by taking advantage of
the taxonomic lineage of taxa.

To perform the assignment we need to take into account both strands (forward and
reverse-complement) or, if a paired-end reads collection is available, we take both strands
of each paired-end read.

Here, we consider the case where the input collection is paired-end (we have |R1| =
|R2| = r). Thus, for any index i, with 1 ≤ i ≤ r, the entry Ri of a paired-end collection is
associated with four different reads each one belonging to one of the sets R1, RRC

1 , R2,
RRC

2 . Recall that, as output of Step 2, we obtained respectively the four similarity matrices
M1F

α , M1RC
α , M2F

α , and M2RC
α , each one of size r × g, where g is the size of the genome

set G.
We remark that if we have a single-read collection, we can proceed similarly skipping

the information about the mates R2 and RRC
2 .

To assign each entry Ri to a taxonomic rank, we have to analyze the i-th row of each
similarity matrix, denoted by M1F

α [i], M1RC
α [i], M2F

α [i] and M2RC
α [i].

Our classification strategy proceeds according to the difficulty in classifying any entry
Ri by using first separately and then jointly the information belonging to an individual
mate.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 12 of 25

We set a threshold value β (0 ≤ β < 1) and we attempt to classify Ri only if there is
at least one similarity value in M1F

α [i], M1RC
α [i], M2F

α [i], M2RC
α [i] greater than β . Such

a parameter β may affect the classification accuracy: it is easy to see that decreasing the
value of β implies a major number of reads that may be classified (increasing sensitivity)
at the cost of a larger probability of error (decreasing precision).

For each Ri, in a first phase, we compute the maximum value Mx
i , with x =

1F , 1RC, 2F , 2RC, in each row Mx
α[i] and we take the maximum Mi of these values, i.e.,

Mi = max Mx
i . In general, we only consider the genomes in G = {G1, . . . , Gg} that approx-

imately reach, with the entry Ri, a similarity value equal to Mi (i.e., with tolerance of 0.02).
If Mi ≤ β the entry Ri is said to be not classified.

If the specified minimum taxonomic rank is genome, the entry Ri is said to be clas-
sified to Gj only if there exists a unique j such that Mx

α[i] [j] is approximately equal to
Mi, whereas it is classified to a taxon T if all genomes Gj, such that Mx

α[i] [j] is approxi-
mately equal to Mi, belong to the same taxonomic unit T within the specified minimum
taxonomic rank. In the case there exist more genomes Gj (1 ≤ j ≤ g), with Mx

α[i] [j]
approximately equal to Mi belonging to distinct taxonomic units, Ri is said to be ambigu-
ous. In the next paragraph, we join the paired-end information for a re-examination of
ambiguous reads.

Re-examination of ambiguous reads– In this second phase, we only consider ambigu-
ous entries. For each entry Ri, we build the set Ii of indices q such that, for at least one
x = 1F , 1RC, 2F , 2RC, Mx

α[i] [q] is approximately equal to the maximum Mi (i.e. with
tolerance of 0.02).

For each genome Gj such that j ∈ Ii, we take the maximum M′
i obtained by sum-

ming both M1F
α [i] [j] and M1RC

α [i] [j] with their corresponding mate. If we have only one
genome Gk (with k ∈ Ii) corresponding to the maximum value M′

i, we are able to assign
Ri to Gk or simply to its corresponding taxon at the specified rank. Whereas Ri is classified
to a taxon T if all such genomes Gk (with k ∈ Ii) that reach M′

i belong to the same taxo-
nomic unit T within the specified minimum taxonomic rank. Otherwise, Ri still remains
ambiguous, and we proceed with the last classification phase, as follows.

Then, we compute the maximum M′′
i obtained by summing both M1F

α [i] [j] and
M1RC

α [i] [j] with their corresponding mate, for all j = 1, . . . , g (hence not only for j ∈ Ii).
We select the indices h (1 ≤ h ≤ g) such that the sum between either M1F

α [i] [j] and its
mate, or M1RC

α [i] [j] and its mate, is M′′
i . The procedure then follows as above.

However, if the entry Ri still remains ambiguous, then we are not able to classify. Thus,
eventually we can either leave Ri as ambiguous, if the taxonomic level of classification is
fixed, or classify it at higher ranks by taking advantage of the taxonomic lineage of taxa.

Note that in both re-examinations, we take the strand that gives the maximum similarity
score, rather than using the summed score of both strands, as it might create a bias in the
read classification.

Results
In this section, we describe and test our prototype tool, named LiME [49], implemented
in C++. It is arranged as a pipeline that runs the three steps described in the previous
section. We distinguish two approaches according to the used similarities: LiMEeBWT

when SeBWT
α is used, and LiMEDA when SDA

α is used.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 13 of 25

In order to evaluate the performance of LiME, we have designed a series of tests with
various paired-end read datasets: on both simulated and real datasets. Moreover, to guar-
antee a fair evaluation among tools, in these experiments, we used customized uniform
reference databases with the aim to eliminate any confounding effects of differences
between default databases (as specified in [50]).

We compare LiME with five sswell-known tools recently introduced that allow to build
customized databases: CLARK-S [5], that uses spaced k-mers rather than simple k-mers;
Centrifuge [4], that adapts the data structures of read-mapping algorithms based on
the BWT and the FM-index [16] (such as Bowtie [51], which provides very fast alignment
with a relatively small memory footprint); Kraken 2 [7], that is based on a probabilis-
tic, compact hash table to map minimizers to lowest common ancestors taxa; TaxMaps
[6], that is a taxonomic mapping tool, where the reads are mapped in single-end mode
to an indexed database using GEM mapper [17]; Magic-BLAST [18], that is a tool for
mapping DNA or RNA sequences against a whole genome or transcriptome4. In order
to align reads, Magic-BLAST uses a BLAST database that can be customized based on
a desired set of sequences. However, unlike Nucleotide-nucleotide BLAST (BLASTN),
Magic-BLAST is aware of paired-end sequencing and the best alignments are selected
based on the alignment quality of the pair.

On simulated datasets

Dataset description. For the experiments on simulated data, we have used the col-
lections made available by the benchmarking analysis carried out in [14]. Indeed, the
authors of [14] evaluate the most widely used tools for metagenome classification by test-
ing them on complex and realistic datasets, which have been designed ad-hoc for this
benchmarking analysis and made publicly available [52].

In particular, we perform the validation of our approach by using two sets of
metagenomes, randomly selected, among those provided by Lindgreen et al. [14]: the
two datasets of paired-end reads setA2 and setB2 reproduce the size, complexity and
characteristics of real metagenomic samples containing around 20 millions of sequences
of length 100 belonging to 17 different phyla. Some phyla are included in equal pro-
portions, whereas some others vary more substantially between the two sets (see ([14],
Supplementary Table S1)).

Moreover, as to test the reliability of the tools, each dataset has been enhanced with a set
of simulated negative control sequences to mimic sequences from “unknown” organisms
(i.e., their genomes are not present in the reference database) that are likely to appear in
metagenome samples – see [14] for further details. Each of these negative control subsets
added to setA2 and setB2 includes around 5 million of random shuffled reads.

We precise that the original datasets, downloadable from [14], are not exactly the
datasets setA2 and setB2 we use for our evaluations [53]. In fact, we first removed a group
of reads associated with the phylum of Eukaryotes whose species provenance was not
specified in [14]. Second, since we use a custom database and up-to-date taxonomy data
(such as taxonomy id, or accession numbers) downloaded from the NCBI website [54], we
preferred not to include in sets setA2 and setB2 groups of reads associated with 3 genomes
whose entries in the NCBI database have been indicated as expiring.

4A transcriptome is a collection of RNA molecules derived from genes, whose biological information is required by the
cell at a particular time.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 14 of 25

The reference database G we use for these experiments comprises 930 genomes from
686 species belonging to 17 phyla as indicated in ([14], Supplementary Table S2).

Validation step. In our experiments, we consider only read assignments at species level,
and thus all non-random reads assigned to higher taxonomic levels (i.e., more species
could be assigned to them) are counted in FN.

As the provenance of the simulated reads is known, we denote by TP (true positives)
the number of reads correctly classified (i.e., assigned to their right species), by FP (false
positives) the number of reads erroneously classified, and by FN (false negatives) the
number of reads unassigned, from which we can calculate the quality metrics: sensitivity
SEN, precision PREC, and the F1 score that is the harmonic mean between sensitivity and
precision,

SEN = TP
TP + FN

, PREC = TP
TP + FP

, F1 = 2TP
2TP + FP + FN

.

For simulated negative control sequences that do not belong to any known species, we
can set TN as the number of random reads that are correctly not mapped to any species,
and calculate the specificity

SPEC = TN
t

, where t is the total number of random shuffled reads.

Experiments Our tool is able to classify the reads to several taxonomic levels such as
genomes, species or phylum. For the experiments reported in Figs. 2 and 3, we set the
taxonomic rank of classification to species.

To run Magic-BLAST, Centrifuge, Kraken 2 and TaxMaps we use the default
values provided for paired-end reads. CLARK-S can run with default values only and
the results are filtered by using the recommended option -highconfidence (e.g.,
assignments with confidence score < 0.75 and gamma score < 0.03 are discarded).

For LiME, we set the minimum length of the common context α = 16, since the length
of each paired-end read is 100, and we provide results for minimum similarity scores
β = 0.25.

We additionally processed these datasets with different parameters (see “Discussion”
section, and Figs. 4 and 5) and show that for fixed α, the greater the value β is, the more
the sensitivity decreases and the precision increases.

In Figs. 2 and 3, we report the classification results for the simulated datasets setA2
and setB2. It is possible to observe that both LiMEeBWT and LiMEDA, together with
Magic-BLAST and Kraken 2, show higher precision than taxMaps, Clark-S and
Centrifuge on both datasets. Moreover, both LiMEeBWT and LiMEDA, together with
Clark-S, Centrifuge, and taxMaps, achieve higher sensitivity than Kraken2 and
Magic-BLAST on both datasets. The specificity and the F1 score achieved by both
LiMEeBWT and LiMEDA are comparable or superior to those of the other classifiers.

Finally, there is experimental evidence that taking into account the eBWT symbols
(LiMEeBWT) rather than considering only the provenience of the symbols (LiMEDA) leads
to achieve a higher precision at the cost of a lower sensitivity.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 15 of 25

Fig. 2 Comparison between LiME and other sequence classification tools. The results here are shown for
Sensitivity, Precision, F1-score and Specificity as evaluated at the species rank on the dataset setA2. Full results
are available in Additional file 1: Table S1

Fig. 3 Comparison between LiME and other sequence classification tools. The results here are shown for
Sensitivity, Precision, F1-score and Specificity as evaluated at the species rank on the dataset setB2

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 16 of 25

Fig. 4 Comparison of accuracy by using on dataset setA2. The results here are shown for sensitivity, precision,
F1-score and Specificity as evaluated at the species using various parameter values on the dataset setA2. Full
results are available in Additional file 1: Table S1

On real datasets

Dataset description. For the experiments on real data, we have used a paired-end
read collection from the Human Microbiome Project (HMP). The real metagenome
SRR1804065 is a DNA tool sample of a female participant generated by using Illumina
sequencing, that has been previously studied in [9, 55]. The paired-end reads have length
100 bps and their total number in the original dataset was 21,873,781. Since the “ground
truth” is not available for a real metagenome and a large number of reads may belong to
unknown species, we first filtered this dataset by using BLAST: we mapped reads against
the whole nucleotide sequence database with a sequence identity of 98%, and discarded
the pairs of reads that do not map to any genome. The resulting dataset SRR1804065
comprises 5,654,624 paired-end reads.

The reference database G we use for this experiment comprises 3,423 genomes from
1,499 species belonging to 42 phyla.

Validation step. Because a real metagenomic dataset is from real sequencing experi-
ments, we cannot be certain of the true taxonomic origin of each individual fragment,
and consequently we cannot report sensitivity and precision for this dataset. However,
we evaluate the concordance between the reads’ classifications performed by the tested
tools at the species level. First, we report for each classifier the following quantities: (a)
the number of reads that are assigned at the species level, (b) the number of reads with a
classification at higher taxonomic levels than species, (c) the number of reads that are not
classified.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 17 of 25

Fig. 5 Comparison of accuracy by using on dataset setB2. The results here are shown for sensitivity, precision,
F1-score and Specificity as evaluated at the species using various parameter values on the dataset setB2. Full
results are available in Additional file 1: Table S1

Furthermore, with the purpose of comparing our method to the state-of-the-art tools,
we represent the reads classified at the species level as set elements. Then, to measure the
similarity of classification between two tools, we compute the similarity between the two
sets of classified reads by using the Jaccard similarity coefficient.

The Jaccard coefficient J(A, B) is defined as the size of the intersection divided by the
size of the union of the two sets A and B, i.e., |A ∩ B|/|A ∪ B|.

For our purposes, the set A (resp. B) is the set of reads classified by a tool (resp. by a
competitor) at the species level, thus we denote by t the total number of reads classified
joining the two classifications. On the one hand, we can consider the identifiers of the
reads, so that the intersection Iid = A ∩ B is given by those reads that are classified by
both tools at the species level. On the other hand, we can consider the species assigned to
those reads, so that the intersection Ias = A ∩ B is given by those reads that are assigned
by both tools to the same taxonomic unit. In order to quantify the concordance between
the two tools on the basis of the Jaccard coefficient, we calculate the two agreement rates

rid = |Iid|
t

and ras = |Ias|
t

.

Experiments Also for the real metagenome, in order to guarantee a fair evaluation, we
use a customed reference database for all the tested tools.

As for simulated reads, the taxonomic level we choose to classify reads is the deep level
of species. In fact, although our tool can classify reads at different taxonomic levels, we
fixed the taxonomic level to fairly compare our tools to the others.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 18 of 25

Table 1 Analysis results of the real metagenome (SRR1804065) at species level

SRR1804065 Reads % Reads % Reads %
assigned at assigned at unassigned
species level higher rank

LiMEeBWT 4,524,097 80.007 1,019,702 18.033 110,825 1.960

α = 16, β = 0.25

LiMEDA 4,563,319 80.701 991,361 17.532 99,944 1.767

α = 16, β = 0.25

Kraken 2 4,497,709 79.540 1,085,413 19.195 71,502 1.264

taxMaps 4,331,521 76.601 1,240,035 21.930 83,068 1.469

CLARK-S 4,414,957 78.077 0 0 1,239,667 21.923

Centrifuge 4,461,655 78.903 1,170,321 20.697 22,648 0.401

Magic-BLAST 4,392,446 77.679 1,081,523 19.126 180,655 3.195

Best scores are in bold

For Magic-BLAST we use default values provided for paired-end reads, and for
CLARK-S we use the recommended option -highconfidence to filter the classifi-
cation results. Centrifuge, Kraken 2 and taxMaps use default values, while LiME
uses the parameters α = 16 and β = 0.25, as we did for simulated reads.

Table 1 reports for each tool the number of reads that are assigned to a particular
species, the number of reads that are assigned to higher taxonomic levels, and the num-
ber of unclassified reads. Note that CLARK-S classifies reads only at a given taxonomic
level, thus the number of reads assigned to higher ranks is 0.

On the real metagenome, our approach achieves the highest number of classified reads
at the species level: as shown in Table 1, both LiMEeBWT and LiMEDA classify a number of
reads larger than CLARK-S, Centrifuge, Kraken 2, Magic-BLAST and taxMaps,
while the smallest number of unclassified reads is reached by Centrifuge.

In Table 2, we show numerically how much the classification results differ among pairs
of tools. In particular, we perform a direct comparison between our tool and the others
tools, for completeness we also report the comparison between Magic-BLAST and the
others tools, since we built the customized reference database by means of BLAST. How-
ever, we do not report a direct comparison between other pairs of tools, as it is out of
the scope of this work. More precisely, in Table 2, we compare the classification results
of both LiMEeBWT and LiMEDA to those of CLARK-S, Centrifuge, Magic-BLAST,
Kraken 2 and taxMaps. By comparing LiMEeBWT and Magic-BLAST, it results not
only that the percentage of individual reads classified by both tools is the 95.2% of all
classified reads, which is the highest value in Table 2, but also that the 93.6% of all classi-
fied reads is assigned to the same taxon by LiMEeBWT and Magic-BLAST. All the other
percentages reported in Table 2 are strictly lower.

Analogously to the experiments on simulated data, our strategy using the first approach
(LiMEeBWT) classifies a smaller number of reads than the second approach (LiMEDA),
however the agreement rates rid and ras in Table 2 between Magic-BLAST and our strat-
egy are higher using the first approach. In Fig. 6, thus, we report only a more in-depth
analysis of the classification differences between LiMEeBWT and the other tools, however
similar observations can be deduced for LiMEDA by looking at Table 2. In Fig. 6, we eval-
uate the classification concordance comparing LiMEeBWT, Magic-BLAST and another
tool. In each picture, the sets of classified reads are represented by a Venn diagram: the
reads lying in the intersection of two/three sets are those classified by both/all tools.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 19 of 25

Table 2 Classification comparison on real metagenome (SRR1804065) by using the agreement rates
rid = |Iid|/t and ras = |Ias|/t

t |Iid| rid(%) |Ias| ras(%)

LiMEeBWT and Kraken 2 4,631,891 4,389,915 94.776 4,270,991 92.208

LiMEeBWT and taxmaps 4,619,370 4,236,248 91.706 4,171,501 90.305

LiMEeBWT and CLARK-S 4,898,446 4,039,348 82.462 3,971,990 81.087

LiMEeBWT and Centrifuge 4,667,402 4,318,350 92.521 4,208,552 90.169

LiMEeBWT and Magic-BLAST 4,566,885 4,349,658 95.243 4,274,772 93.604

LiMEDA and Kraken 2 4,657,542 4,403,486 94.545 4,274,384 91.773

LiMEDA and taxmaps 4,648,287 4,246,553 91.357 4,175,008 89.818

LiMEDA and CLARK-S 4,924,196 4,054,080 82.330 3,976,705 80.758

LiMEDA and Centrifuge 4,694,705 4,330,269 92.237 4,212,149 89.721

LiMEDA and Magic-BLAST 4,602,062 4,353,703 94.603 4,276,833 92.933

Magic-BLAST and Kraken 2 4,614,673 4,275,482 92.650 4,186,614 90.724

Magic-BLAST and taxmaps 4,512,340 4,211,627 93.336 4,188,458 92.822

Magic-BLAST and CLARK-S 4,823,733 3,983,670 82.585 3,925,157 81.372

Magic-BLAST and Centrifuge 4,647,144 4,206,957 90.528 4,086,148 87.928

Best scores are in bold

The number of individual reads classified by all the three tools is greater in Fig. 6c when
comparing LiMEeBWT, Magic-BLAST and Kraken 2, while comparing LiMEeBWT,
Magic-BLAST and CLARK-S such number is the smallest (see Fig. 6a).

Moreover, we notice that the highest number of reads that are classified by one single
tool only is registered for CLARK-S (see Fig. 6a).

In Fig. 6, we report, in addition, the percentage of reads with a concordant classifi-
cation among both/three tools: the assignments performed by LiMEeBWT are closer to
Magic-BLAST (as shown in Table 2), without however largely differing from those per-
formed by all the other tools. In fact, according to Fig. 6a, d among the reads that are
classified by all the three tools, around 98% of them are assigned to the same taxon by
all. Overall, for the real metagenome the agreement rates among the tested tools are
high, and LiME classification meets that of state-of-the-art classifiers, such as CLARK-S,
Centrifuge, Kraken 2 and taxMaps.

Discussion
In this section we analyze the impact of the parameters α and β and discuss the data
structures and the resource usage.

Parameter sweeps In Figs. 4 and 5, we looked at parameters relating to the minimum
length α of the context in Step 1 and to the threshold value β in Step 3. The parameter
sweep analyzed values in the interval [16, 22] for α and in the interval [0.15, 0.40] for β .

We note that, in both approaches, the parameter sweeps give approximately the same,
near-optimal levels of accuracy (see Additional file 1: Table S2, for further details). The
experimental results confirm that, fixed α, the parameter β affects the classification accu-
racy: indeed, decreasing the value of β implies a major sensitivity at the cost of a minor
precision. So, the trend of the sensitivity curve decreases, while that of precision increases
reaching almost 100%. This suggests performance is not overly sensitive to particular
parameter settings. From the analysis of the parameter sweep results and from reported
experimental results during the comparisons with other tools, it seems that α = 16 and
β = 0.25 is a good sensitivity-precision trade-off.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 20 of 25

Fig. 6 Graphical representations of the results in Table 2: (a) related to LiMEeBWT, Magic-BLAST and
CLARK-S, (b) related to LiMEeBWT, Magic-BLAST and Centrifuge, (c) related to LiMEeBWT,
Magic-BLAST and Kraken 2, (d) related to LiMEeBWT, Magic-BLAST and taxMaps. The black
numbers inside each circle if summed give the number of reads classified by the corresponding tool. The
percentage under each number denotes the percentage of classified identically reads among two/three
tools (see Additional file 1: Table S5)

Observations on the data structures. We recall that our tool takes as input the files
containing ebwt(S), da(S) and lcp(S) of the collection S of reads and reference genomes.
This task can be achieved using, for example one of the following tools, BCR [32, 56],
eGSA [47, 57], gSACA-K [58, 59], GAP [30] or eGAP [34, 60]. It is interesting to note that
the data structures for the genome database used by our strategy can be built once and
stored, and then, for each new experiment, we can build the data structures for the read
collection and merge the two data structures. More precisely, as the set G of genomes is
the same for each experiment, we can build the data structures of G only once, by using
eGSA for instance, and keep them stored. Then, for each new experiment, we can build
the data structures for each read collection R, for instance, by using BCR (a tool for very
large collection of short reads), and finally, merge the two data structures, by using eGAP,
and obtain those for the entire collection S . On the other hand, by exploiting the mathe-
matical properties of the permutation associated with the eBWT and LCP array, by using
BCR [31, 32], we could build once the data structures for G and then update with the sym-
bols from R (hence, without constructing the eBWT of reads) in order to obtain the data
structures for S . However, to find the best method for building our data structures is not
in the aim of this paper.

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 21 of 25

We also remark that the data structures used by our strategy are intrinsically dynamic:
by taking advantage of the inherent properties of the eBWT and LCP array (see, in partic-
ular, ([31], Remark 3.6)), the collection S can be modified by inserting or removing single
sequences. This may allow to modify the read dataset by inserting or removing a group of
reads, or to update the reference database with newly arranged set of genomes, allowing
us to modify α-clusters accordingly.

Moreover, we note that in the recent literature there are several papers with the aim of
introducing new lightweight and parallel computational strategies for building the data
structures we use in our tool, see for instance [33, 35].

In this paper, we use algorithm eGAP [34, 60] to merge ebwt(R) and da(R) (built by
BCR tool) with ebwt(G) and da(G) (built by eGSA tool) and obtain ebwt(S) and da(S),
so that the array lcp(S) is given as a by-product of the algorithm. In particular, by using
the option -trlcp (see [60]), one can compute lcp(S) with values truncated in k, where
k is the longest string length in the read collection. This merging procedure performs
O(N × k) sequential scans. In order to use eGAP for our scope, we can set any k > α to
minimize the number of steps.

Resources The construction of the required data structures is independent of our
method, so one can use any strategy according to the resources available, preferring for
example a tool that works in internal memory rather than in external memory, or vice-
versa. In addition, such data structures also allow to efficiently compress the original files
(FASTA or FASTQ), see for instance [61, 62]. Note that, the other tools (Centrifuge,
CLARK-S, Kraken 2, taxMaps and Magic-BLAST) build ad-hoc data structures for
the database used in the classification. For instance, CLARK-S needs about 120 GB
of RAM for the database used for its classification of the simulated datasets, while
Centrifuge, Kraken 2 and taxMaps need about 10 GB of RAM. Moreover, some
tools require some information to be specified at the time of building a database, for
instance Clark-S requires to set the rank level and Kraken 2 requires to set the k-mer
length. Thus, they do not have the same flexibility in choosing how to build these data
structures and the same independence from the parameter sweeps as LiME.

Classification experiments were performed by using a DELL PowerEdge R630 machine,
24-core machine with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz, with 128 GB of
shared memory. The system is Ubuntu 14.04.2 LTS.

Regarding the time of classification steps, Kraken 2 is the fastest tool, while
Magic-BLAST and taxMaps are the slowest ones (taxMaps took about 13 hours for
classifying the simulated dataset setA2). Full results for the dataset setA2 are available in
Additional file 1: Table S3.

Observe that for the classification of the dataset setA2, Clark-S is the tool that
requires the most internal memory. While the internal memory used by LiME is about
19,034 MB for the similarity matrix and 786 MB for the other auxiliary data structures.

Moreover, we observe that LiME, unlike other methods, processes all the reads at the
same time, so that in the current implementation we need to keep in internal memory
the whole similarity matrix. If one wanted to run our tool on a system without enough
RAM to store the similarity matrix, one could either store that matrix on an external
file or one could build the list of the clusters for all the reads, and then consider one
read per time analyzing only the clusters that contain symbols of that read. In the latter

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 22 of 25

case, the required time for Step 2 and Step 3 of LiMEeBWT is a few milliseconds and the
maximum resident set size is only 16,240 KB. Full results for the dataset setA2 are available
in Additional file 1: Table S3.

So, on the basis of the available resources, one could choose the number of reads to be
compared simultaneously, in order to get the desired time-memory trade-off.

Finally, since our method scans sequentially the required data structures, we could ana-
lyze unknown sequences of very large collections by using mainly external memory and
reduce the internal memory usage.

The multi-threading version of our tool exploits the fact that our strategy allows a cer-
tain degree of parallelization thanks to the analysis of clusters that is independent of each
other, so each thread can handle distinct parts of the input files by reading it through local
buffers (Additional file 1: Table S4).

Moreover, we noticed that LiMEDA is faster than LiMEeBWT. This experimental evi-
dence can be easily understood, as LiMEDA saves time scanning only the DA, rather than
both DA and eBWT during the cluster analysis. More specifically, with respect to our
three-step method, LiMEDA is time-saving concerning the completion of the second step
(as the first and the third step are the same for both approaches). However, the execu-
tion time of the third step largely depends on the number of not-null similarity scores
calculated during the second step. Thus, the higher the sensitivity is, the more likely the
execution time of the third step could increase.

Conclusion
In this paper, we present a versatile, alignment-free and lightweight tool for metagenomic
classification, named LiME, that, by sequentially scanning fundamental string data struc-
tures (eBWT, LCP and DA) allows us to efficiently identify the genome to which each
read belongs.

Our method is based on two possible approaches: the first approach LiMEeBWT takes
into account the different symbols in eBWT that precede a common context between
the read and the genome that we are comparing. The second approach LiMEDA takes
into account only the colors in DA of each read and the genome that we are comparing.
Experiments on both simulated and real datasets corroborate our intuition that the first
approach is more precise and less sensitive than the second approach, while keeping high
precision and sensitivity in both cases.

Moreover, we compare LiME (both approaches) with the state-of-the-art tools:
Magic-BLAST, CLARK-S, Centrifuge, Kraken 2 and TaxMaps, which have
recently been introduced.

In the experiments, we focused the attention on species level classification, but LiME
can also work at higher taxonomic levels such as genus, family, class or phylum. Further
experiments at phylum level on simulated datasets show that the relative phylum abun-
dance estimated by LiME meets the dataset composition designed in [14] with very high
precision. More precisely, LiMEeBWT on setA2 (resp. setB2) has 95.55% (resp. 95.95%) of
sensitivity, and thus the F1 score achieved is 97.66% (resp. 97.91%). In particular, we obtain
only 129,470 (resp. 40,895) ambiguous reads and 824,036 (resp. 779,515) not classified
reads and we correctly classify 20,478,036 (resp. 19,419,539) in setA2 (resp. setB2).

For the real metagenome dataset, as the “ground truth” is not available and a large num-
ber of reads may belong to unknown species, we first filtered the downloaded dataset by

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 23 of 25

using BLAST and extracted information to build a customized reference database. Since
Magic-BLAST is based on BLAST, we may consider the results of Magic-BLAST as a
benchmark for the classification results. We can thus observe that only 42,788 reads of
the considered real dataset classified by Magic-BLAST are not classified by LiMEeBWT.
Our tool classifies, indeed, the same reads as the aligner Magic-BLAST for the 95.2%.
Whereas CLARK-S, (resp. Centrifuge, Kraken 2, and TaxMaps) fails to classify
408,776 (resp. 185,489, and 116,964, and 180,819) reads, which on the contrary are clas-
sified by Magic-BLAST. Furthermore, our tool assigns 93.6% of the reads to the same
taxons as the aligner Magic-BLAST does.

Finally, we observe that the notion of LCP-interval [63] is a particular α-cluster (pS, pE)

in which at least an index i, pS < i ≤ pE, is equal to α. Moreover, there exist several
methods that are based on clustering of eBWT symbols with [62, 64, 65] or without the
LCP array [21, 23]. Unlike these methods based on the partitioning of the LCP values, we
do not impose any constraint on the α-cluster size.

In conclusion, we believe that our tool can be useful in a variety of applications both in
metagenomics and in genomics.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03628-w.

Additional file 1: Table S1. Classifier comparison of accuracy on simulated data. Table S2. Comparison of LiME
accuracy using various parameter values Table S3. Comparison of computational performance. Table S4. Thread
scaling evaluation results. Table S5. Microbiome comparison results

Abbreviations
NGS: Next-generation sequencing; BWT: Burrows-wheeler transform; eBWT: Extended burrows-wheeler transform; DA:
Document array; LCP: Longest common prefix; LiME: Lightweight metagenomics via eBWT; BLAST: Basic local alignment
search tool; IUPAC: International union of pure and applied chemistry; LCA: Lowest common ancestor; HMP: Human
microbiome project; FP: False positives; TP: True positives; FN: False negatives; TN: True negatives

Acknowledgments
The authors are very grateful to the anonymous referees: their remarks were helpful in substantially improving this paper
by pointing out some inaccuracies in the first version. Moreover their suggestions have enhanced the readability of the
paper.

About this supplement
This article has been published as part of Volume 21, Supplement 8 2020: Italian Society of Bioinformatics (BITS): Annual
Meeting 2019. The full contents of the supplement are available at https://bmcbioinformatics.biomedcentral.com/
articles/supplements/volume-21-supplement-8.

Authors’ contributions
VG and GR designed the main approach and the main algorithmic ideas. All authors contributed to improve the design,
analysis and algorithms, and wrote the manuscript. VG and FAL implemented the algorithms. VG and GR designed and
performed the experiments. All authors read and approved the final manuscript. GR is the PI of the project that
supported this study.

Funding
GR is partially, and VG is totally, supported by the project MIUR-SIR CMACBioSeq (“Combinatorial methods for analysis
and compression of biological sequences”) grant n. RBSI146R5L. FAL acknowledge the financial support of Brazilian
Agencies CNPq and CAPES. Publication costs are funded by the project MIUR-SIR CMACBioSeq grant n. RBSI146R5L.

Availability of data and materials
The tool LiME is freely available for academic use at https://github.com/veronicaguerrini/LiME. Information to download
the datasets used and analysed in the current study is available in the Datasets directory of the same Github repository.
The datasets can also be available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

https://doi.org/10.1186/s12859-020-03628-w
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-8
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-8
https://github.com/veronicaguerrini/LiME

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 24 of 25

Competing interests
The authors declare that they have no competing interests.

Author details
1Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, Pisa, Italy. 2Faculty of Electrical Engineering,
Federal University of Uberlândia, Uberlândia, Brazil.

Received: 16 June 2020 Accepted: 22 June 2020 Published: 16 September 2020

References
1. Pedersen MW, et al. Ancient and modern environmental DNA. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):.

https://doi.org/10.1098/rstb.2013.0383.
2. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol.

2014;15(3):46. https://doi.org/10.1186/gb-2014-15-3-r46.
3. Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic

sequences using discriminative k-mers. BMC Genomics. 2015;16(1):236. https://doi.org/10.1186/s12864-015-1419-2.
4. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic

sequences. Genome Res. 2016;26(12):1721–9. https://doi.org/10.1101/gr.210641.116.
5. Ounit R, Lonardi S. Higher classification sensitivity of short metagenomic reads with CLARK-S. Bioinformatics.

2016;32(24):3823–5. https://doi.org/10.1093/bioinformatics/btw542.
6. Corvelo A, Clarke WE, Robine N, Zody MC. taxMaps: comprehensive and highly accurate taxonomic classification of

short-read data in reasonable time. Genome Res. 2018. https://doi.org/10.1101/gr.225276.117.
7. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with kraken 2. Genome Biol. 2019;20(1):257. https://

doi.org/10.1186/s13059-019-1891-0.
8. Wang Y, Leung HC, Yiu SM, Chin FY. MetaCluster 5.0: a two-round binning approach for metagenomic data for

low-abundance species in a noisy sample. Bioinformatics. 2012;28(18):356–62. https://doi.org/10.1093/
bioinformatics/bts397.

9. Girotto S, Pizzi C, Comin M. MetaProb: accurate metagenomic reads binning based on probabilistic sequence
signatures. Bioinformatics. 2016;32(17):567–75. https://doi.org/10.1093/bioinformatics/btw466.

10. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly.
Brief Bioinforma. 2017;20(4):1125–36.

11. Zielezinski A, Vinga S, Almeida J, Karlowski W. Alignment-free sequence comparison: Benefits, applications, and
tools. Genome Biol. 2017;18:186. https://doi.org/10.1186/s13059-017-1319-7.

12. Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
https://doi.org/10.1016/S0022-2836(05)80360-2.

13. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with kaiju. Nat Commun.
2016. https://doi.org/10.1038/ncomms11257.

14. Lindgreen S, Adair KL, Gardner PP. An evaluation of the accuracy and speed of metagenome analysis tools. Sci Rep.
2016;6:19233. https://doi.org/10.1038/srep19233.

15. McIntyre ABR, Ounit R, Afshinnekoo E, et al. Comprehensive benchmarking and ensemble approaches for
metagenomic classifiers. Genome Biol. 2017;18(1):182. https://doi.org/10.1186/s13059-017-1299-7.

16. Ferragina P, Manzini G. Opportunistic data structures with applications. In: 41st Annual Symposium on Foundations
of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA; 2000. p. 390–8. https://
doi.org/10.1109/SFCS.2000.892127.

17. Marco-Sola S, Sammeth M, Guigó R, Ribeca P. The GEM mapper: fast, accurate and versatile alignment by filtration.
Nat Methods. 2012;9(12):1185–8. https://doi.org/10.1038/nmeth.2221.

18. Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. Magic-BLAST, an accurate RNA-seq aligner for
long and short reads. BMC Bioinformatics. 2019;20(405):. https://doi.org/10.1186/s12859-019-2996-x.

19. Vinga S, Almeida J. Alignment-free sequence comparison – a review. Bioinformatics. 2003;19(4):513–23. https://doi.
org/10.1093/bioinformatics/btg005.

20. Mantaci S, Restivo A, Sciortino M. Distance measures for biological sequences: Some recent approaches. Int J
Approx Reasoning. 2008;47(1):109–24. https://doi.org/10.1016/j.ijar.2007.03.011.

21. Mantaci S, Restivo A, Rosone G, Sciortino M. An extension of the Burrows-Wheeler Transform. Theoret Comput Sci.
2007;387(3):298–312. https://doi.org/10.1016/j.tcs.2007.07.014.

22. Hon W, Ku T, Lu C, Shah R, Thankachan SV. Efficient algorithm for circular burrows-wheeler transform. In:
Combinatorial Pattern Matching - 23rd Annual Symposium, CPM 2012, Helsinki, Finland, July 3-5, 2012. Proceedings;
2012. p. 257–68. https://doi.org/10.1007/978-3-642-31265-6_21.

23. Mantaci S, Restivo A, Rosone G, Sciortino M. A new combinatorial approach to sequence comparison. Theory
Comput Syst. 2008;42(3):411–29. https://doi.org/10.1007/s00224-007-9078-6.

24. Yang L, Zhang X, Wang T. The Burrows-Wheeler similarity distribution between biological sequences based on
Burrows-Wheeler transform. J Theor Biol. 2010;262(4):742–9. https://doi.org/10.1016/j.jtbi.2009.10.033.

25. Cox AJ, Jakobi T, Rosone G, Schulz-Trieglaff OB. Comparing DNA sequence collections by direct comparison of
compressed text indexes. In: WABI. LNBI 7534; 2012. p. 214–24. https://doi.org/10.1007/978-3-642-33122-0_17.

26. Louza FA, Telles GP, Gog S, Zhao L. Algorithms to compute the burrows-wheeler similarity distribution. Theor
Comput Sci. 2019;782:145–56. https://doi.org/10.1016/j.tcs.2019.03.012.

27. Ng K-H, Ho C-K, Phon-Amnuaisuk S. A hybrid distance measure for clustering expressed sequence tags originating
from the same gene family. PLoS ONE. 2012;7(10):. https://doi.org/10.1371/journal.pone.0047216.

28. Muthukrishnan S. Efficient algorithms for document retrieval problems. In: Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. USA: Society for Industrial and Applied Mathematics; 2002. p. 657–66.

29. Manber U, Myers G. Suffix arrays: A new method for on-line string searches. In: Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms. USA: Society for Industrial and Applied Mathematics; 1990.
p. 319–27.

https://doi.org/10.1098/rstb.2013.0383
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1101/gr.210641.116
https://doi.org/10.1093/bioinformatics/btw542
https://doi.org/10.1101/gr.225276.117
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1093/bioinformatics/bts397
https://doi.org/10.1093/bioinformatics/bts397
https://doi.org/10.1093/bioinformatics/btw466
https://doi.org/10.1186/s13059-017-1319-7
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1038/ncomms11257
https://doi.org/10.1038/srep19233
https://doi.org/10.1186/s13059-017-1299-7
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1038/nmeth.2221
https://doi.org/10.1186/s12859-019-2996-x
https://doi.org/10.1093/bioinformatics/btg005
https://doi.org/10.1093/bioinformatics/btg005
https://doi.org/10.1016/j.ijar.2007.03.011
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1007/978-3-642-31265-6_21
https://doi.org/10.1007/s00224-007-9078-6
https://doi.org/10.1016/j.jtbi.2009.10.033
https://doi.org/10.1007/978-3-642-33122-0_17
https://doi.org/10.1016/j.tcs.2019.03.012
https://doi.org/10.1371/journal.pone.0047216

Guerrini et al. BMC Bioinformatics 2020, 21(Suppl 8):299 Page 25 of 25

30. Egidi L, Manzini G. Lightweight BWT and LCP merging via the gap algorithm. In: String Processing and Information
Retrieval - 24th International Symposium, SPIRE 2017, Palermo, Italy, September 26-29, 2017, Proceedings; 2017.
p. 176–90. https://doi.org/10.1007/978-3-319-67428-5_15.

31. Bauer MJ, Cox AJ, Rosone G. Lightweight algorithms for constructing and inverting the BWT of string collections.
Theor Comput Sci. 2013;483(0):134–48. https://doi.org/10.1016/j.tcs.2012.02.002.

32. Cox AJ, Garofalo F, Rosone G, Sciortino M. Lightweight LCP construction for very large collections of strings.
J Discrete Algoritm. 2016;37:17–33. https://doi.org/10.1016/j.jda.2016.03.003.

33. Bonizzoni P, Vedova GD, Nicosia S, Pirola Y, Previtali M, Rizzi R. Divide and conquer computation of the
multi-string BWT and LCP array. In: Sailing Routes in the World of Computation - 14th Conference on Computability
in Europe, CiE 2018, Kiel, Germany, July 30 - August 3, 2018, Proceedings; 2018. p. 107–17. https://doi.org/10.1007/
978-3-319-94418-0_11.

34. Egidi L, Louza FA, Manzini G, Telles GP. External memory BWT and LCP computation for sequence collections with
applications. Algoritm Mol Biol. 2019;14(1):6–1615. https://doi.org/10.1186/s13015-019-0140-0.

35. Bonizzoni P, Della Vedova G, Pirola Y, Previtali M, Rizzi R. Multithread multistring burrows-wheeler transform and
longest common prefix array. J Comput Biol J Comput Mol Cell Biol. 2019;26(9):948–61. https://doi.org/10.1089/
cmb.2018.0230.

36. Burrows M, Wheeler DJ. A Block Sorting data Compression Algorithm. Technical report, DIGITAL System Research
Center. 1994.

37. Restivo A, Rosone G. Balancing and clustering of words in the Burrows-Wheeler transform. Theor Comput Sci.
2011;412(27):3019–32. https://doi.org/10.1016/j.tcs.2010.11.040.

38. Mantaci S, Restivo A, Rosone G, Sciortino M, Versari L. Measuring the clustering effect of BWT via RLE. Theor
Comput Sci. 2017;698:79–87. https://doi.org/10.1016/j.tcs.2017.07.015.

39. Gagie T, Navarro G, Prezza N. Optimal-time text indexing in bwt-runs bounded space. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018; 2018. p. 1459–77. https://doi.org/10.1137/1.9781611975031.96.

40. Mantaci S, Restivo A, Sciortino M. Burrows-Wheeler transform and Sturmian words. Information Processing Letters.
2003;86:241–246.

41. Simpson J, Puglisi SJ. Words with simple Burrows-Wheeler transforms. Electron J Comb. 2008;15(1). https://dblp.uni-
trier.de/rec/bibtex/journals/combinatorics/SimpsonP08.

42. Restivo A, Rosone G. Burrows-Wheeler transform and palindromic richness. Theor Comput Sci. 2009;410(30-32):3018–26.
43. Ferenczi S, Zamboni LQ. Clustering Words and Interval Exchanges. J Integer Sequences. 2013;16(2):13–21.
44. Choi I, Ponsero AJ, Bomhoff M, Youens-Clark K, Hartman JH, Hurwitz BL. Libra: scalable k-mer-based tool for

massive all-vs-all metagenome comparisons. GigaScience. 2018;8(2):. https://doi.org/10.1093/gigascience/giy165.
45. Guerrini V, Rosone G. Lightweight metagenomic classification via ebwt. In: Algorithms for Computational Biology -

6th International Conference, AlCoB 2019, Berkeley, CA, USA, May 28-30, 2019, Proceedings. Cham: Springer; 2019.
p. 112–24. https://doi.org/10.1007/978-3-030-18174-1_8.

46. Cornish-Bowden A. Nomenclature for incompletely specified bases in nucleic acid sequences: rcommendations
1984. Nucleic Acids Res. 1985;13(9):3021–30. https://doi.org/10.1093/nar/13.9.3021.

47. Louza FA, Telles GP, Hoffmann S, de Aguiar Ciferri CD. Generalized enhanced suffix array construction in external
memory. Algoritm Mol Biol. 2017;12(1):26–12616. https://doi.org/10.1186/s13015-017-0117-9.

48. Prezza N, Rosone G. Space-efficient computation of the LCP array from the burrows-wheeler transform. In: 30th
Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019, Pisa, Italy; 2019. p. 7–1718.
https://doi.org/10.4230/LIPIcs.CPM.2019.7.

49. LiME. GitHub repository. https://github.com/veronicaguerrini/LiME. Accessed 26 March 2020.
50. Ye SH, Siddle KJ, Park PC, Sabeti DJ. Benchmarking metagenomics tools for taxonomic classification. Cell.

2019;178(4):779–94. https://doi.org/10.1016/j.cell.2019.07.010.
51. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to

the human genome. Genome Biol. 2009;10(3):25. https://doi.org/10.1186/gb-2009-10-3-r25.
52. Simulated datasets. http://www.gardner-binflab.org/our_research/. Accessed 1 Nov 2019.
53. Datasets. https://github.com/veronicaguerrini/LiME/tree/master/Datasets. Accessed 1 Nov 2019.
54. NCBI Taxonomy. ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy. Accessed 1 Nov 2019.
55. Sobih A, Tomescu AI, Mäkinen V. Metaflow: Metagenomic profiling based on whole-genome coverage analysis

with min-cost flows. In: Research in Computational Molecular Biology; 2016. p. 111–21. https://doi.org/10.1007/978-
3-319-31957-5_8.

56. BCR_LCP_GSA. GitHub repository. https://github.com/giovannarosone/BCR_LCP_GSA.git. Accessed 1 Nov 2019.
57. eGSA. GitHub repository. https://github.com/felipelouza/egsa.git. Accessed 1 Nov 2019.
58. Louza FA, Gog S, Telles GP. Inducing enhanced suffix arrays for string collections. Theor Comput Sci. 2017;678:

22–39. https://doi.org/10.1016/j.tcs.2017.03.039.
59. gSACA-K. GitHub repository. https://github.com/felipelouza/gsa-is.git. Accessed 1 Nov 2019.
60. eGAP. GitHub repository. https://github.com/felipelouza/egap.git. Accessed 1 Nov 2019.
61. Cox AJ, Bauer MJ, Jakobi T, Rosone G. Large-scale compression of genomic sequence databases with the

Burrows-Wheeler transform. Bioinformatics. 2012;28(11):1415–9. https://doi.org/10.1093/bioinformatics/bts173.
62. Janin L, Rosone G, Cox AJ. Adaptive reference-free compression of sequence quality scores. Bioinformatics.

2014;30(1):24–30. https://doi.org/10.1093/bioinformatics/btt257.
63. Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with enhanced suffix arrays. J Discrete Algoritm.

2004;2(1):53–86. https://doi.org/10.1016/S1570-8667(03)00065-0.
64. Prezza N, Pisanti N, Sciortino M, Rosone G. Detecting mutations by ebwt. In: 18th International Workshop on

Algorithms in Bioinformatics, WABI 2018, August 20-22, 2018, Helsinki, Finland; 2018. p. 3–1315. https://doi.org/10.
4230/LIPIcs.WABI.2018.3.

65. Prezza N, Pisanti N, Sciortino M, Rosone G. SNPs detection by eBWT positional clustering. Algoritm Mol Biol.
2019;14(1):3. https://doi.org/10.1186/s13015-019-0137-8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-319-67428-5_15
https://doi.org/10.1016/j.tcs.2012.02.002
https://doi.org/10.1016/j.jda.2016.03.003
https://doi.org/10.1007/978-3-319-94418-0_11
https://doi.org/10.1007/978-3-319-94418-0_11
https://doi.org/10.1186/s13015-019-0140-0
https://doi.org/10.1089/cmb.2018.0230
https://doi.org/10.1089/cmb.2018.0230
https://doi.org/10.1016/j.tcs.2010.11.040
https://doi.org/10.1016/j.tcs.2017.07.015
https://doi.org/10.1137/1.9781611975031.96
https://dblp.uni-trier.de/rec/bibtex/journals/combinatorics/SimpsonP08
https://dblp.uni-trier.de/rec/bibtex/journals/combinatorics/SimpsonP08
https://doi.org/10.1093/gigascience/giy165
https://doi.org/10.1007/978-3-030-18174-1_8
https://doi.org/10.1093/nar/13.9.3021
https://doi.org/10.1186/s13015-017-0117-9
https://doi.org/10.4230/LIPIcs.CPM.2019.7
https://github.com/veronicaguerrini/LiME
https://doi.org/10.1016/j.cell.2019.07.010
https://doi.org/10.1186/gb-2009-10-3-r25
http://www.gardner-binflab.org/our_research/
https://github.com/veronicaguerrini/LiME/tree/master/Datasets
https://ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy
https://doi.org/10.1007/978-3-319-31957-5_8
https://doi.org/10.1007/978-3-319-31957-5_8
https://github.com/giovannarosone/BCR_LCP_GSA.git
https://github.com/felipelouza/egsa.git
https://doi.org/10.1016/j.tcs.2017.03.039
https://github.com/felipelouza/gsa-is.git
https://github.com/felipelouza/egap.git
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1093/bioinformatics/btt257
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.4230/LIPIcs.WABI.2018.3
https://doi.org/10.4230/LIPIcs.WABI.2018.3
https://doi.org/10.1186/s13015-019-0137-8

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Our contributions —

	Method
	Preliminaries and materials
	Preprocessing
	LiME
	Step 1: build -clusters collection —
	Step 2: build the similarity matrix —
	Single-read and Paired-end read collections —
	Step 3: classification—
	Re-examination of ambiguous reads–

	Results
	On simulated datasets
	Dataset description.
	Validation step.
	Experiments

	On real datasets
	Dataset description.
	Validation step.
	Experiments

	Discussion
	Parameter sweeps
	Observations on the data structures.
	Resources

	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03628-w.
	Additional file 1

	Abbreviations
	Acknowledgments
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

