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Abstract

Background: Protein-ligand docking has emerged as a particularly important tool in
drug design and development, and flexible ligand docking is a widely used method for
docking simulations. Many docking software packages can simulate flexible ligand
docking, and among them, Autodock is widely used. Focusing on the search algorithm
used in Autodock, many new optimization approaches have been proposed over the
last few decades. However, despite the large number of alternatives, we are still lacking
a search method with high robustness and high performance.

Results: In this paper, in conjunction with the popular Autodock software, a novel
hybrid version of the random drift particle swarm optimization (RDPSO) algorithm,
called diversity-guided Lamarckian RDPSO (DGLRDPSO), is proposed to further enhance
the performance and robustness of flexible ligand docking. In this algorithm, a novel
two-phase diversity control (2PDC) strategy and an efficient local search strategy are
used to improve the search ability and robustness of the RDPSO algorithm. By using
the PDBbind coreset v.2016 and 24 complexes with apo-structures, the DGLRDPSO
algorithm is compared with the Lamarckian genetic algorithm (LGA), Lamarckian
particle swarm optimization (LPSO) and Lamarckian random drift particle swarm
optimization (LRDPSO). The experimental results show that the 2PDC strategy is able to
enhance the robustness and search performance of the proposed algorithm; for test
cases with different numbers of torsions, the DGLRDPSO outperforms the LGA and
LPSO in finding both low-energy and small-RMSD docking conformations with high
robustness in most cases.

Conclusion: The DGLRDPSO algorithm has good search performance and a high
possibility of finding a conformation with both a low binding free energy and a small
RMSD. Among all the tested algorithms, DGLRDPSO has the best robustness in solving
both holo- and apo-structure docking problems with different numbers of torsions,
which indicates that the proposed algorithm is a reliable choice for the flexible ligand
docking in Autodock software.

Keywords: Flexible ligand docking, Search algorithms, Random drift particle swarm
optimization, Diversity control strategy, Solis and Wets local search, Autodock software
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Background
Protein-ligand docking methods are of the utmost importance and have been widely used in

drug discovery and other academic research areas [1]. Generally, these methods aim to predict

the experimental binding modes and affinities of small molecules within the binding site of

particular receptor targets. They offer a relatively fast and economic alternative to the standard

experimental techniques [2]. Considering the efficiency and accuracy, flexible ligand docking

is the most conventionally adopted method in protein-ligand docking [3]. It can be solved by

exploring the suitable translations, orientations and conformations of a ligand, while the pro-

tein is considered a rigid object. Many docking software packages can simulate flexible ligand

docking by using suitable search methods and scoring functions [4], among which Autodock

[5] is widely used. It is a versatile protein-ligand docking program with good accuracy and

high versatility, making it a very popular choice for drug developers. In the latest version,

Autodock uses a semi-empirical energy function as its scoring function to estimate the free

energy change upon binding, and it offers a variety of search algorithms, mainly including a

Monte Carlo simulated annealing algorithm and a genetic algorithm with the Solis and Wets

local search method, which is also called the Lamarckian genetic algorithm (LGA) [5].

Many new optimization approaches have been designed based on the Autodock soft-

ware, and a large part of them focus on the improvement of search algorithms.

SODOCK [3] is a sophisticated protein-ligand docking program based on Autodock

3.05, which uses an adaptation of the particle swarm optimization (PSO) combined

with the neighbourhood topology and the Solis and Wets local search as its search al-

gorithm. This search algorithm has already been integrated into the latest version of

Autodock, named the “Lamarckian PSO (LPSO)”. PSO@AUTODOCK [6] includes two

variants of the PSO algorithm (varCPSO and varCPSO-Ls) designed for the rapid dock-

ing of highly flexible ligands. A more recent study integrated Autodock with jMetalCpp

[7], constructing an optimization framework that provides both single- and multi-

objective algorithms that can be used to effectively solve docking problems. Other ver-

sions of Autodock [8–10] also achieved some improvements. However, despite the

large number of alternatives, we are still far from a high-performance docking program.

In terms of the search algorithms in Autodock, regardless of whether the flexible ligand

docking problem has a small or large number of search dimensions, it remains a chal-

lenging task to efficiently optimize the binding free energy with high robustness and to

find a final result close to the theoretical minimum.

To further enhance the performance and robustness of the search algorithms used in

the Autodock software for flexible ligand docking, in this paper, based on the random

drift particle swarm optimization (RDPSO) algorithm [11], we propose a hybrid search

method called the diversity-guided Lamarckian RDPSO (DGLRDPSO). In DGLRDPSO,

a novel two-phase diversity control (2PDC) strategy and an efficient variant of the Solis

and Wets [12] method are used to enhance the search ability and robustness of the

search algorithm. By using all 285 test cases in PDBbind coreset v.2016 [13] and 24

crystallographic complexes with known ligands docked to the active-site apo structures

of thrombin [14, 15], we made a performance comparison among LGA, LPSO (the

search algorithm used in SODOCK [3]), DGLRDPSO, and Lamarckian RDPSO

(LRDPSO, the canonical RDPSO combined with the Solis and Wets local search). A

docking performance comparison was made among the first three algorithms.
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The results of the performance comparison reveal that the 2PDC strategy improves the per-

formance and robustness of the DGLRDPSO so that its search performance is superior to all

the other compared algorithms in most cases. For the docking performance, the DGLRDPSO

also outperforms the LGA and LPSO for both holo- and apo-structure docking problems in

most cases, especially for the cases with highly flexible ligands, with better robustness than the

other algorithms in terms of the number of torsions. Therefore, the proposed algorithm is ex-

pected to be a good choice for flexible ligand docking.

Methods
Particle swarm optimization

Particle swarm optimization (PSO) is an important metaheuristic algorithm inspired by

the social behaviour of bird flocks and was first proposed by Eberhart and Kennedy

[16]. It is an easy and inexpensive method for performing the optimization tasks of

non-continuous, complex and global optimization problems.

In a PSO with M individual particles, the current position vector and the velocity vec-

tor of particle i (1 ≤ i ≤M) at the nth iteration are represented by Xi;n ¼ ðX1
i;n;X

2
i;n;⋯;

XN
i;nÞ and V i;n ¼ ðV 1

i;n;V
2
i;n;⋯;VN

i;nÞ , respectively, for an N-dimensional optimization

problem. The particle moves according to the following equations:

V j
i;nþ1 ¼ V j

i;n þ c1r
j
i;n P j

i;n−X
j
i;n

� �
þ c2R

j
i;n G j

n−X
j
i;n

� �
ð1Þ

X j
i;nþ1 ¼ X j

i;n þ V j
i;nþ1 ð2Þ

where i = 1, 2⋯, M; j = 1, 2⋯, N; and c1 and c2 are known as the acceleration coeffi-

cients. Vector Pi;n ¼ ðP1
i;n;P

2
i;n;⋯; PN

i;nÞ is the previous best position of particle i, called

the personal best (pbest) position, and vector Gn ¼ ðG1
n;G

2
n;⋯;GN

n Þ is the best position

among all the pbest positions in the population and is called the global best (gbest) pos-

ition. The pbest positions are updated by comparing the fitness values of the particle’s

current position and its own pbest position. The parameters r ji;n and Rj
i;n are sequences

of two different random numbers distributed uniformly in the (0, 1) interval, which is

denoted by r ji;n;R
j
i;n � Uð0; 1Þ . The velocity of a particle should be restricted in the

interval [−Vmax,Vmax] as follows:

If V j
i;n > Vmax; thenV

j
i;n ¼ Vmax

If V j
i;n < −Vmax; thenV

j
i;n ¼ −Vmax

ð3Þ

Random drift particle swarm optimization

The RDPSO is a variant of the PSO motivated by the trajectory analysis of the canon-

ical PSO in [17] and the free electron model in the metal conductors placed in an ex-

ternal electric field [18]. In RDPSO, it was assumed that the particle behaves similar to

an electron moving in a metal conductor in an external electric field. The movement of

the particle is thus the superposition of the thermal and drift motions corresponding to

the random velocity and the drift velocity, respectively. The RDPSO algorithm has a

better performance than canonical PSO in most cases, as shown in [11].
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The random velocity component VRj
i;nþ1 implements the global search, following the

Maxwell velocity distribution law, and thus is expressed as

VRj
i;nþ1 ¼ α j C j

n−X
j
i;n j φ j

i;nþ1 ð4Þ

where α > 0 is a parameter called the thermal coefficient, Cn is the mean best (mbest)

position defined by the mean of the pbest positions of all the particles, and φ j
i;nþ1 is the

sequence of the random numbers subject to a standard normal distribution, i.e., φ j
i;nþ1

� Nð0; 1Þ.
The drift velocity component VDj

i;nþ1 is used to achieve the local search of the par-

ticle. It is given by

VDj
i;nþ1 ¼ β pj

i;n−X
j
i;n

� �
ð5Þ

where β > 0 is another algorithmic parameter called the drift coefficient. pi;n ¼ ðp1i;n;
p2i;n;⋯; pNi;nÞ is the local focus of particle i in the canonical PSO and is expressed in

[17]:

pj
i;n ¼ γ j

i;nP
j
i;n þ 1−γ j

i;n

� �
Gj

n; γ
j
i;n � U 0; 1ð Þ ð6Þ

Thus, the update equations for the velocity and position vectors of the particle in the

RDPSO algorithm are given by

V j
i;nþ1 ¼ VRj

i;nþ1 þ VDj
i;nþ1 ¼ α j C j

n−X
j
i;n j φ j

i;nþ1 þ β pj
i;n−X

j
i;n

� �
ð7Þ

X j
i;nþ1 ¼ X j

i;n þ V j
i;nþ1 ð8Þ

where the value of V j
i;n should also be restricted within the interval [−Vmax, Vmax], fol-

lowing eq. (3). It is recommended in [11] that when α decreases linearly from 0.9 to 0.3

and β = 1.45, the algorithm can obtain generally better performance than the algorithms

with other parameter configurations. In this paper, RDPSO with this setting of α and β

is called the canonical RDPSO.

Two-phased diversity control strategy

In our previous work, we used the RDPSO algorithm directly in flexible ligand docking,

but it was found that in many test cases, the algorithm encountered premature conver-

gence and became trapped a local optima frequently, leading to unsatisfactory results.

To avoid premature convergence in the RDPSO algorithm, there should be good bal-

ance between the global search and local search of the particle. Particularly, in the later

stage of the search process, the particle generally has a weak global search ability. Thus,

in this paper, we propose a strategy of controlling the diversity of the swarm in RDPSO

to ensure that the particle has a constant balance between its local and global search.

As in [19], the swarm diversity is measured by the average distance from the average

point of the swarm, that is,

D Xnð Þ ¼ 1
M∙A

XM

i¼1

XN

j¼1
X j

i;n−X
j
n

h i2� �1=2
¼ 1

M∙A

XM

i¼1
Xi;n−Xn

�� �� ð9Þ

where M is the number of particles in the swarm, N is the dimensionality, and A is the
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diagonal length of the search space, which represents the size of the search area. X j
n is

the jth dimension of the mean of all particle positions.

By this definition, D(Xn) measures the dispersion of the distribution of all the parti-

cles’ positions in the search space and is known as the swarm diversity [19]. A larger

D(Xn) generally corresponds to the relatively more dispersed distribution of the parti-

cles and implies a stronger global search ability of the particle swarm. On the other

hand, a smaller D(Xn) represents a more aggregated distribution of the particle and

therefore means a stronger local search ability of the swarm. For the RDPSO and other

PSO algorithms, the diversity is relatively large during the early stage of the search

process so that the global search ability of the particle swarm is stronger. At this point

in the process, the rapid decrease in diversity is desirable to balance the exploration

and exploitation of the swarm. However, during the later stage of the search process,

the diversity may decline to such a small scale that the particles aggregate into a small

area and further global search becomes impossible, and premature convergence occurs

as a result if the global optimal solution is not in this area. Therefore, to avoid prema-

ture convergence and thus improve the search performance of the algorithm, applying

a diversity control strategy is an effective way to control the variation of the swarm di-

versity during the search process. In particular, the controlling strategy for swarm di-

versity should allow for a gradual decrease in diversity so that a certain level of

diversity is maintained to ensure that the swarm has animation for further search.

With the above justification, in this paper, we propose a diversity control strategy for

RDPSO to improve the algorithmic performance. In this improved RDPSO, the swarm diver-

sity is measured at each iteration and is controlled according to the following strategy.

A. Lower bound of the diversity values

First, we propose a strategy of linearly decreasing the lower bound of the diversity

values by

DLn ¼ 1−n=n maxð Þ� DL1−DLn maxð Þ þ DLn max ð10Þ

where n represents the nth iteration of the algorithm and n _max is the maximum

number of iterations. Empirically, DL1 and DLn _max are set to be 0.75 ∗D(X1) and

0.002 ∗D(X1), respectively. Both of these parameters are associated with the diversity

value of first iteration D(X1) since the positions of the particles are set randomly at the

beginning of the search. The linear decreasing lower bound of the diversity makes the

particles’ search scope reduce smoothly, searching more globally at the beginning, to

avoid a significant drop in swarm diversity, and searching more locally at the end to

find a result with high solution precision.

B. Normal convergence of particles

If the diversity value is higher than the lower bound and the algorithm is not in the di-

vergence phase, which is described in subsection C, the particles converge normally,

following eqs. (7) and (8), where the values of α and β are selected as those in the ca-

nonical RDPSO. The value of Vmax is set as:

V j
max ¼ X j

max−X
j
min

� �
=2 ð11Þ
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where X j
max and X j

min are the maximum and minimum values that the particles can

reach in the jth dimension, respectively.

C. Divergence of particles

When the swarm diversity becomes lower than the lower bound, the particles stop con-

verging to prevent the diversity from dropping constantly. To this end, the particles are

forced to diverge until the swarm diversity increases to DUn, the upper bound of the di-

versity fixed at 0.95 ∗D(X1). When the diversity reaches DUn, the particles can be dis-

tributed over the search space, and the swarm is then converted to the mode of normal

convergence with the newly enhanced global search ability.

For the purpose of making the particle swarm diverge, we can set α and β to high

values as follows to lead the particles to escape from both the gbest and pbest positions:

Dr Xnð Þ ¼ D Xnð Þ=D X1ð Þ ð12Þ

α ¼ α0= Dr Xnð Þð Þc1 ð13Þ

β ¼ β0= Dr Xnð Þð Þc2 ð14Þ

where Dr(Xn) measures the degree of dispersion of the particle swarm, with D(X1) used

as a baseline for the diversity. It should be noted that during the divergence process,

the particles have little chance to find a better solution; thus, the main purpose is to

disperse the particles so that the particles can search more globally in the convergence

stage. As such, in equations (13) and (14), the reciprocal form of Dr(Xn) is used to

make α and β increase dramatically while decreasing the swarm diversity, and as a re-

sult, the swarm diversity can increase to a high value after only a few iterations. Here,

we set α0 = 9 and β0 = 3, where c1 and c2 are employed to adjust the changing ampli-

tudes of α and β. Our preliminary experiments showed that setting c1 = 1 and c2 = 0.7

can help the diversity increase to the upper bound very quickly.

D. Accelerated convergence of particles

The preliminary experiments on some benchmark functions showed that the diversity may

not be able to drop to the lower bound since the particles probably converge too slowly. In

this case, the final solutions obtained may be poor due to the weak local search ability of the

algorithm. To address this problem, we design an acceleration mechanism in which the pbest

position of the particle Pi, n is set to be its local attractor pi, n if the swarm diversity fails to

reach the lower bound after accr ∗ n _max iterations in the current convergence phase. Here,

accr is generally no less than 0.003. Such an acceleration mechanism can force the pbest posi-

tions to move closer to the gbest position, making the particles search in a smaller scope and

thus decreasing the swarm diversity.

The above diversity control strategy is called the two-phased diversity control (2PDC)

strategy, as the iterative process of the RDPSO has been divided into the convergence

phase and the divergence phase. With such a strategy, premature convergence can be

effectively avoided, and a good balance between the global search and local search abil-

ities can be achieved.
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Solis and Wets local search method and the hybrid search algorithm

To further increase the possibility of finding the global optimal solution, the Solis and Wets

local search method is employed in this work [12]. The Solis and Wets method is a stochastic

heuristic for continuous parameter spaces, which introduces a probabilistic element. Its primal

purpose is the local optimization of functions that do not provide gradient information [12].

Basically, the local optimization starts by exploring a random direction in the search space

and generally follows this direction with random movements as long as the fitness function

continues to improve. The continued improvements lead to an expansion of the random

search steps, whereas the continued failings narrow the search [5]. In our experiments, the

maximum number of iterations in the Solis and Wets method is set to 300; the maximum

number of consecutive successes or failures before doubling or halving the local search step

size is set to 4; and the lower bound of the step size, which is also the termination criterion

for the local search, is set to 0.01. In the hybrid algorithm, this local search method is only ap-

plied to the best particle in each iteration. For a more specific procedure of the algorithm, one

can refer to [12].

As the local search method is based on the Lamarck evolution mechanism, the hybrid

algorithm combining the RDPSO, 2PDC strategy and the Solis and Wets method is

named the diversity-guided Lamarckian RDPSO (DGLRDPSO) algorithm, which is im-

plemented in the Autodock software in this work. The procedure of the algorithm is

outlined below.
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Data set
To empirically evaluate the effectiveness of the DGLRDPSO algorithm in docking,

the PDBbind coreset v.2016 (http://www.pdbbind-cn.org), which is also used as the

data set in the CASF benchmark (http://www.pdbbind-cn.org/casf.asp), was

employed. This data set includes 285 test cases, which are all known ligands

docked into the holo-structures [13]. The PDB codes of all the test cases are listed

in Table 1 and classified according to the number of torsions. Additionally, to

evaluate the docking performance in apo structures, which is the more common

scenario in real docking problems, a set of 24 human thrombin (PDB codes listed

in Table 3) crystallographic complexes with known ligands were used in addition

to the active-site ligand-free structures of thrombin [14, 15].

Table 1 Test cases classified by the number of torsions

Ntora PDB

0 3jya, 3udh, 4kzu

1 1bcu, 1gpn, 2xys, 3arv, 3rsx, 4ddk

2 1c5z, 1o5b, 1r5y, 1 s38, 2iwx, 2weg, 2yki, 3ary, 3g2z, 3gv9, 3kr8, 3pxf, 3twp, 3u5j, 3zt2, 4f09, 4gfm, 4jsz, 4
k77, 4kzq, 4mme, 4owm, 4u4s

3 1e66, 1gpk, 1qkt, 1uto, 1ydr, 2pog, 2wer, 3acw, 3ao4, 3bgz, 3g3l, 3gy4, 3kgp, 3pyy, 3wtj, 4cr9, 4de1, 4de3,
4e6q, 4ih5, 4j21, 4llx, 4m0y, 5c28

4 1q8u, 1syi, 2al5, 2cbv, 2hb1, 2j7h, 2v00, 2wcn, 2wtv, 2ymd, 3b27, 3dx1, 3f3a, 3f3c, 3g0w, 3 g2, 3lka, 3n7a,
3qqs, 3rr4, 3u8k, 3u8n, 4abg, 4ddh, 4dli, 4hge, 4ivb, 4j28

5 1nc3, 1o3f, 1oyt, 1p1n, 1p1q, 1 ps3, 1q8t, 2r9w, 2wn9, 2xj7, 3d4z, 3d6q, 3dd0, 3fcq, 3fur, 3gbb, 3jvr, 3qgy,
3rlr, 3ryj, 3uuo, 4e5w, 4f9w, 4gkm, 4ih7, 4ivc, 4 k18, 4kz6, 4m0z, 4mgd, 4pcs, 4qac, 5aba

6 1lowh, 1pxn, 1w4o, 2brb, 2c3i, 2j78, 2p15, 2qe4, 2xnb, 3dx2, 3dxg, 3e93, 3ebp, 3f3d, 3f3e, 3gc5, 3k5v,
3l7b, 3r88, 3syr, 3ui7, 3uo4, 4bkt, 4ivd, 4jxs, 4rfm, 4twp, 5dwr

7 1nc1, 1y6r, 1yc1, 1z9g, 2fvd, 2vvn, 2w66, 2wvt, 2 × 00, 2xbv, 2xii, 2zb1, 3b65, 3cj4, 3e92, 3ehy, 3fv2, 3g2n,
3nq9, 3up2, 4ciw, 4de2, 4djv, 4eor, 4f2w, 4j3l, 4jfs, 4jia, 4lzs

8 1bzc, 1sqa, 1ydt, 1z95, 2br1, 2cet, 2qbr, 2v7a, 2w4x, 2xb8, 2xdl, 2zcq, 2zy1, 3aru, 3b5r, 3fv1, 3ge7, 3ivg,
3jvs, 3mss, 3n76, 3n86, 3p5o, 4dld, 4qd6, 4wiv

9 4k1i, 1mq6, 1nvq, 1o0h, 2y5h, 2zda, 3e5a, 3gnw, 3u9q, 3wz8, 4cra, 4crc, 4f3c, 4ty7, 4w9i, 4x6p

10 1z6e, 2qbp, 2qnq, 3arq, 3ejr, 3nx7, 3oe4, 3ozt, 3zdg, 3zsx, 4w9c

11 1vso, 2qbq, 2vw5, 2wca, 2yfe, 2zcr, 3b68, 3nw9, 3oe5, 3ozs, 3ueu, 4agn, 4eky, 5c2h

12 2p4y, 2wbg, 3b1m, 4agp, 4agq, 4ea2, 4eo8

13 1 h22, 2fxs, 2yge, 3coz, 3kwa, 3myg, 3uev, 4cig, 4w9h, 5a7b

14 1g2k, 1lpg, 1qf1, 3coy, 4 g0

15 1a30, 1 h23, 3arp, 3tsk, 3uew, 3zso, 4ogj

16 1u1b, 3bv9, 3utu

17 1eby, 3o9i, 3pww, 3uex, 4tmn

18 5tmn

19 4w9l

20 2vkm

23 4gid

24 3prs

33 3uri

36 3ag9
aNumber of torsions
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Hardware and experimental setting

The docking experiments were run on a personal computer with an Intel® i7–6850 core

3.60 GHz processor, 12-GB RAM and an Ubuntu 16.04 Linux platform. Based on the

PDBbind coreset, the proposed DGLRDPSO algorithm and the compared algorithms,

including LGA, LPSO, and LRDPSO, were all implemented in Autodock version 4.2.6.

In our experiments, the default docking configurations of Autodock 4.2.6 are used.

The grid size was set to be 60 × 60 × 60 points with a spacing of 0.375 Å, which corre-

sponds to a cube with an edge length of 22.5 Å; the search area of each test case was

centred on the predicted binding site; the initial swarm size was set to 150; the total

number for all the particles’ fitness to be evaluated was set to 2.5 × 106, including the

fitness evaluated in the search algorithms themselves and in the local search method. It

should be noted that for all the compared algorithms, the components in all the dimen-

sions of each particle’s position, which represent the translations, orientations, and tor-

sion angles of the ligand, were all randomly initialized within the corresponding ranges.

Each test case was docked 30 times by using all four tested algorithms.

The DGLRDPSO algorithm adopted the parameter settings mentioned in section 2.

With respect to the other algorithms, in LGA, the crossover rate was set to 0.8 and the

mutation rate was set to 0.02; in LPSO, the inertia weight decreased linearly from 0.9

to 0.4 and c1 = c2 = 2.05; in LRDPSO, α decreased linearly from 0.9 to 0.3 and β = 1.45.

For the Solis and Wets method, all the parameters in these three algorithms were set in

the same way as those in the DGLRDPSO (mentioned in section 2.4), except that in the

LGA, there is a probability of 0.06 to perform a local search on each individual [5].

Scoring function

In Autodock 3.05, an empirical binding free energy function has been used as the scor-

ing function to estimate the docked energy of a docking conformation. The total

docked energy of a candidate solution X can be expressed as:

minEtotal Xð Þ ¼ Evdw þ Ehbond þ Eelec þ Einternal þ Edesolvation ð15Þ

where the first three terms are the van der Waals force, hydrogen bonding, and electro-

static potential, respectively. The sum of the three are the intermolecular energies. Ein-

ternal is the internal energy of the ligand, also containing the first three terms. Edesolvation
models desolvation upon binding and the hydrophobic effect [3]. Thus, the docked en-

ergy is the sum of the intermolecular interaction energy between the ligand and the

protein and the intramolecular interaction energy of the ligand. A detailed explanation

of this function can be found in [5].

Results and discussion
Evaluation indexes

In this paper, the results of the different algorithms are compared in terms of three

evaluation indexes, i.e., the final docked energy, the binding free energy and the root

mean squared deviation (RMSD).

The docked energy is calculated by the scoring function during the whole searching

process by equation (15), and the final docked energy directly reflects the performance

of the search algorithms. A lower final docked energy corresponds to a better search

performance of the algorithm.
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The binding free energy is only reported at the end of docking, which is the sum of

the intermolecular energy and the torsional free energy. In Autodock, this evaluation

index is used to rank the final docking conformations, and its value is instructive for

the selection and specific research of the final conformations. The binding free energy

should be distinguished from the final docked energy because it does not include the

internal or intramolecular interaction energy of the ligand. The reason for this is that

this part of the energy cannot improve the accuracy of the binding free energy model,

while for the docked energy, it truly affects the docking results [5].

RMSD is another frequently used index to evaluate docking conformations [20]. It is

the displacement of atoms in a docked pose compared to the X-ray crystal protein-

ligand structure (reference structure) and is calculated by

rmsd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

d2
i

vuut ð16Þ

where di is the Euclidean distance between N pairs of equivalent atoms i. As a general

criterion, an RMSD with no more than 2 Å for a docking result is usually considered to

be successful [20]. In our experiments, this evaluation standard is also adopted. It

should be noted that a lower docked energy or lower binding free energy does not al-

ways imply a better RMSD but only implies the higher possibility of a successful dock-

ing result.

Search performance analysis

In this section, the final docked energy for all the test cases in PDBbind coreset v.2016

was compared among the different search algorithms since the final docked energy can

directly demonstrate the performance of the search algorithms. Since there are 285 test

cases tested by four algorithms, to show the results more clearly, the difference between

the reference value and the result of the tested algorithm (Dref) is defined as

Dref ¼ Valuetest−Valueref ð17Þ

where Valueref and Valuetest are the compared indicator value (e.g., mean value, best

value) of the reference algorithm and the tested algorithm, respectively. In each test

case, the reference algorithm is considered to have the lowest value of the compared in-

dicator. Hence, the Dref value of the reference algorithm itself is obviously 0, and for

the non-reference algorithms, a higher Dref of an algorithm corresponds to a worse al-

gorithmic performance.

With the above definition, the box plots of the Dref results, including the mean values

and best values of the final docked energy for all the test cases in PDBbind coreset

v.2016, are shown in Fig. 1a and Fig. 1b, respectively. Note that there are many test

cases in PDBbind coreset v.2016, the specific Dref of the mean values and best values

for the final docked energy thus cannot be illustrated in detail in this section, and plot-

ting the Dref results in one figure can only provide the visualization of the difference

between different search algorithms for all the docking test cases (both the Dref values

for each test case and the plots for Dref results can be seen in Additional file 1). By

contrast, the box plots in Fig. 1 show some statistical information of the Dref results,
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which can intuitively reflect the overall difference in the final docked energy results of

all 285 docking test cases between different search algorithms.

In both Fig. 1a and Fig. 1b, the interquartile range (the height of the box), the

medium value, and the maximum value (the minimum value for all algorithms is 0) of

the DGLRDPSO algorithm are all close to 0 and much smaller than those of the other

algorithms, especially for the Dref of the best values. This means that in most test cases,

DGLRDPSO can (or nearly) obtain the best results for both the mean values and the

best values of the final docked energy among all the algorithms. Moreover, for Fig. 1a,

most of the outliers for the Dref of the DGLRDPSO are concentrated near its max-

imum values, but they are even smaller than the maximum values of the other three al-

gorithms. This phenomenon, along with the small interquartile range of DGLRDPSO

in Fig. 1a, demonstrates that the robustness of the proposed algorithm is much higher

than that of the other three algorithms. With respect to the Dref of the best values, the

advantage of the DGLRDPSO over the other algorithms is more remarkable than the

Dref of the mean values according to Fig. 1b, implying that the DGLRDPSO performs

better in finding results with higher quality than all the other algorithms. In addition,

by comparing LRDPSO with the proposed algorithm, we find that most of the Dref

values of the best results obtained by LRDPSO are comparable to those obtained by

DGLRDPSO, except for several outliers with relatively large values. However, its per-

formance shown in Fig. 1a is almost the worst among all the compared algorithms,

which indicates that the 2PDC strategy can significantly improve the robustness of the

proposed algorithm and further increase the probability for DGLRDPSO to find a lower

energy than LRDPSO within a limited number of trails.

To further analyse the search performance of the proposed algorithm, we plot, in

Fig. 2, the convergence performance of the lowest final docked energy for four selected

test cases. The curves for each search algorithm in Fig. 2 are plotted by recording the

docked energy (e.g., the fitness value of the historical best particle in the current iter-

ation) in each iteration during the whole search process. Due to space limitations, we

cannot plot the convergence performance for all 285 test cases, and thus, we selected

the four test cases that cover the different numbers of torsions to observe the conver-

gence performance for the different docking problems whose search dimensionalities

Fig. 1 The box plots for the Dref results of the final docked energy. a The box plot for the Dref results of
the mean final docked energy, (b) The box plot for the Dref results of the best final docked energy

Li et al. BMC Bioinformatics          (2020) 21:286 Page 11 of 20



range from low to high. As the figure shows, when there are only a few torsions in the

test case (e.g., 4j21), the DGLRDPSO algorithm can quickly find a relatively low energy,

and its final docked energy is comparable to those of other algorithms; when the num-

ber of torsions becomes higher, DGLRDPSO converges much more slowly, sometime

failing to find a low enough energy at the beginning but overcoming the energy barrier

during the evolving process and thus obtaining a much better result than the other al-

gorithms at the end. It should be noted that although LRDPSO can occasionally find a

final docked energy equivalent to that found by the DGLRDPSO in highly flexible lig-

and docking problems (e.g., 1u1b), it cannot perform well in all test cases (e.g., 3e5a

and 3ag9) due to its poor robustness, which further demonstrates the effectiveness of

the 2PDC strategy.

Referring to the box plots of the Dref results and the specific analysis of the conver-

gence performance for several test cases, we can conclude that DGLRDPSO has the

best performance and robustness among all the compared algorithms. In addition,

these results also illustrate that DGLRDPSO performs much better than LRDPSO in

most cases, especially in terms of robustness. Therefore, we further evaluated only

LGA, LPSO and DGLRDPSO by comparing their docking performance in the following

sections.

Fig. 2 Convergence performance of the lowest final docked energy for four selected test cases during the
evolving process. a The convergence performance comparison for 4j21, (b) The convergence performance
comparison for 3e5a, (c) The convergence performance comparison for 1u1b, (d) The convergence
performance comparison for 3ag9
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Holo-structure docking analysis

To evaluate the docking accuracy of the different algorithms, Fig. 3 illustrates the box

plot for the number of successful dockings (with an RMSD of no more than 2 Å) out of

30 runs for LGA, LPSO and DGLRDPSO (the overview plot for this criterion is shown

in Additional file 1). Note that Fig. 3 is plotted according to the successful docking

numbers and not by the Dref values, since the real successful docking rate of each

search algorithm, which is an important criterion to evaluate the docking accuracy,

cannot be illustrated by the Dref values. However, the Dref values of the successful

docking numbers for each test case can be accessed in Additional file 1.

According to Fig. 3, the interquartile range of the DGLRDPSO is the smallest among

the three algorithms, which also demonstrates the robustness of the proposed algo-

rithm. The LPSO, as shown by all the quartile lines in Fig. 3, has the worst performance

compared to the other two algorithms in most cases in terms of the successful docking

numbers. For LGA, the upper quartile line in Fig. 3 is 30, which is higher than that of

DGLRDPSO and is much higher than that of LPSO, meaning that LGA can find 30 or

nearly 30 successful docking conformations in more test cases than the other two algo-

rithms. More specifically, comparing the results of the successful docking numbers of

LGA and DGLRDPSO in Additional file 1, we can find that LGA is able to obtain a

large number of successful dockings for many less flexible ligand test cases (torsions <

9). However, for highly flexible ligand ones (torsions ≥ 9), LGA has no significant ad-

vantage over DGLRDPSO. Thus, the reason why the statistical results of LGA are bet-

ter than those of DGLRDPSO in terms of successful docking numbers in Fig. 3 is

conjectured to be that the low-torsion test cases account for the majority of the

PDBbind coreset v.2016. To justify this, Table 2 lists some statistics of the RMSD re-

sults for the three compared algorithms. According to Table 2, it is clear that for the

less flexible ligand docking problems, the average successful docking number of LGA is

larger than those of the other two algorithms, although the result of DGLRDPSO is

close to that of LGA. Meanwhile, for the highly flexible ligand test cases, the advantage

of DGLRDPSO over the others is more significant, which definitely verifies the afore-

mentioned conjecture. Nevertheless, DGLRDPSO is still considered to have the best

performance in terms of the RMSD-related results among all the compared algorithms,

since it can obtain the best results for four terms, as shown in Table 2, and for the

Fig. 3 The box plot for the number of successful docking results (RMSD ≤ 2 Å)

Li et al. BMC Bioinformatics          (2020) 21:286 Page 13 of 20



other two terms, there are insignificant differences between the results of DGLRDPSO

and the results of the best algorithms.

Figure 4a shows the statistical results of the Dref for the mean values of the binding

free energy. The robustness of DGLRDPSO is found to be the best among all the com-

pared algorithms, which is similar to the results obtained by the final docked energy

comparison analysis. In most cases, the DGLRDPSO algorithm can obtain the best

mean binding free energy, since all the quartile lines of DGLRDPSO in Fig. 4a are close

or equal to 0. Unlike the results for the mean final docked energy, LPSO shows better

robustness and performance than LGA in terms of the mean binding free energy, for

according to the specific Dref values in Additional file 1, the difference between the

mean energy of LGA and that of the reference one becomes larger as the number of

torsions increases.

In addition to the Dref of the mean binding free energy, the box plot for the Dref of

the lowest binding free energy among all the successful docking conformations (herein-

after called the lowest successful binding free energy) is illustrated in Fig. 4b. It should

be noted that if the RMSDs of the final docking conformations found by an algorithm

for a test case are all larger than 2 Å (the number of such test cases for each algorithm

is recorded in Table 2), the corresponding lowest successful binding free energy is re-

corded as 0, and the corresponding Dref is thus the inverse of the reference energy

value. According to Fig. 4b, the interquartile range, the medium value, and the

Table 2 Statistics of the RMSD results for LGA, LPSO and DGLRDPSO

LGA LPSO DGL
RDPSO

Average successful docking number for all test cases 16.2 11.09 15.93

Average successful docking number for less flexible ligand test cases
(torsions < 9)

19.4 12.43 18.0

Average successful docking number for highly flexible ligand test cases
(torsions ≥ 9)

8.84 7.95 11.06

Number of failed docking test cases 36 43 29

Average of RMSD’s Mean Values for all test cases (Å) 2.41 2.87 2.26

Average of RMSD’s Best Values for all test cases (Å) 1.20 1.17 1.10

Fig. 4 The box plot for the Dref results of the binding free energy. a The box plot for the Dref of the mean
binding free energy, (b) The box plot for the Dref of the lowest binding free energy among all the
successful docking conformations
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maximum value of the LGA algorithm are the worst among all the compared algo-

rithms, which is similar to its performance in the mean binding free energy, implying

that the LGA algorithm does not perform well in finding a conformation with a lower

binding free energy in most cases compared to the other two algorithms. For LPSO, al-

though the interquartile range and the maximum value are close to 0, the number of

outliers shown in Fig. 4b is more than that of DGLRDPSO, which means that it shows

worse robustness than DGLRDPSO in terms of the lowest successful binding free en-

ergy. The maximum and minimum values of DGLRDPSO in Fig. 4b are both 0, which

means that in most test cases, DGLRDPSO can obtain the best result in terms of the

lowest successful binding free energy. The outliers of DGLRDPSO with relatively high

values in Fig. 4b represent test cases in which the proposed algorithm failed to find one

successful docking conformation (see statistical results in Additional file 1).

Table 3 lists some statistical results of the conformations with the lowest binding free

energy and the lowest successful binding free energy for the three compared algo-

rithms. It should be pointed out that if the search algorithm failed to find a successful

docking conformation, its rank of the conformation with the lowest successful binding

free energy is recorded as 31, 1 larger than the number of trials. According to Table 3,

in all three terms, DGLRDPSO is the best among the three algorithms. This means that

for the proposed algorithm, the conformations with the lowest successful binding free

energy have the best average ranks, and in many cases, these conformations are top-

scored conformations. Thus, it can be concluded that DGLRDPSO has the best per-

formance in finding a correct conformation with a low enough binding free energy

among all search methods, since once DGLRDPSO can find one or more successful

docking conformations, it is generally able to find the successful docking conformation

with the highest rank and lowest binding free energy among all the compared

algorithms.

Apo-structure docking analysis

As the test cases in PDBbind coreset v.2016 are all known ligands docked to holo-

structures, 24 ligands were docked to the active site of the apo structures of the human

thrombin (PDB code 1vr1) using flexible ligand docking methods. Table 4 lists the in-

formation and the statistical results for all these test cases docked by LGA, LPSO and

DGLRDPSO.

Similar to the analysis for the holo-structure docking in the last section, Table 4 also

records the number of successful dockings, the mean binding free energy, and the low-

est successful binding free energy obtained by the three compared algorithms for all

Table 3 Statistics of the lowest-energy-related conformations for LGA, LPSO and DGLRDPSO

LGA LPSO DGL
RDPSO

Number of test cases which can identify the correct binding conformation with
the lowest binding free energy as the criterion

181 187 195

Average RMSD of the conformations with the lowest binding free energy for all
test cases (Å)

2.10 2.05 1.93

Average rank of the conformations with the lowest successful binding free
energy for all test cases

7.54 8.14 6.42
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test cases. In addition, Fig. 5 shows the energy versus RMSD plots for the four selected

test cases to compare the docking performance of LGA, LPSO and DGLRDPSO more

specifically. The four selected test cases in Fig. 5 are representative of all of the test

cases. For 1ay6, LGA and DGLRDPSO were able to find successful docking conforma-

tions, and for 1a61, all the compared algorithms failed. LPSO and DGLRDPSO gener-

ated successful docking for 1fpc, and all the compared algorithms were successful for

1lhd. The energy versus RMSD plots for the other test cases are not shown in this

paper because of space limitations.

The “Wins” results in Table 4 show that the DGLRDPSO algorithm performs the best

among all algorithms in all three terms, and the distributions of points representing the

conformations generated by the DGLRDPSO in Fig. 5 further demonstrate that the

proposed algorithm has a higher probability of finding the conformations with both

Table 4 Statistical results for the apo-structure docking conformations found by LGA, LPSO and
DGLRDPSO

PDBa Ntorb LGA LPSO DGLRDPSO

NSc MEd LEe NS ME LE NS ME LE

1bcu 2 0 −3.09 – 0 −3.01 – 0 −2.77 –

1aht 7 0 −3.24 – 0 −5.05 – 0 −5.13 –

1ay6 9 1 −7.42 −8.51 0 −9.18 – 3 −9.38 −10.59

1bhx 9 1 −6.90 −8.04 0 −11.61 – 0 −11.82 –

1tom 9 5 −8.17 −9.17 18 −11.36 −12.39 15 −11.49 −11.86

1uma 9 0 −3.60 – 0 −6.36 – 0 −7.18 –

1afe 10 0 −6.02 – 1 −9.64 −9.76 2 −9.48 − 9.75

1bb0 10 5 −7.46 −8.86 2 − 12.47 −13.89 4 −12.80 −14.00

1a61 12 0 −7.14 – 0 −12.92 – 0 −13.47 –

1b5g 12 0 −7.57 – 1 −12.66 −11.59 1 −12.87 −12.36

1ba8 12 0 −5.62 – 0 −11.76 – 2 −11.80 −13.57

1a3b 13 0 −3.63 – 0 −8.48 – 0 −8.68 –

1fpc 13 0 −6.94 – 4 −11.62 −12.09 3 −11.42 −11.67

1tbz 13 1 −7.41 −9.81 2 −13.95 −13.90 4 − 13.95 −14.84

1a46 14 4 −7.35 −9.85 4 −14.23 −15.37 1 −14.53 −15.87

1ae8 14 2 −5.58 −6.88 14 −10.82 −11.17 17 −11.10 −11.63

1lhc 14 1 −6.47 −8.80 0 −11.76 – 2 −12.01 −12.89

1lhg 14 3 −5.26 −6.95 8 −10.77 −12.13 7 −11.00 −12.25

1a4w 15 0 −5.99 – 0 −13.68 – 1 −13.88 −14.69

1a5g 15 1 −7.19 −7.94 0 −13.02 – 1 −13.37 −15.05

1lhd 15 3 −5.47 −7.09 4 −10.79 −12.04 9 −11.15 − 12.27

1aix 16 1 −4.74 −6.15 2 −11.76 −11.70 2 −11.62 −12.25

1lhe 16 0 −4.30 – 1 −11.47 −12.39 2 −11.58 −12.26

1awf 25 0 2.56 – 0 −6.06 – 0 −6.42 –

Wins 4 1 1 6 3 4 11 20 13
aThe PDB code of the thrombin crystallographic complex
bThe number of torsions of the corresponding ligand
cThe number of successful dockings
dThe mean binding free energy for 30 final docking conformations
eThe lowest binding free energy among all the successful docking conformations
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lower binding free energy and smaller RMSD in most cases. Table 4 shows that, in

many test cases, LGA failed to find a successful docking conformation within 30 trials.

Moreover, the energy-related results in Table 4 and all the plots in Fig. 5 reveal that

the energy of the conformations found by LGA is much worse than those found by the

other two algorithms. This demonstrates that LGA can hardly obtain a low-energy re-

sult just as it performs in the holo-structure test cases. With respect to the LPSO, its

mean binding free energy is comparable to that of the DGLRDPSO and performs better

in terms of low-energy conformations in some test cases (see 1fpc in Fig. 5). However,

in most of the test cases, DGLRDPSO can still find conformations with much lower en-

ergy in some trials and thus obtains lower RMSDs (see 1ay6, 1a61, and 1lhd in Fig. 5),

since DGLRDPSO has a stronger ability to overcome the energy barriers than LPSO.

Even in those test cases in which no algorithm can find one successful docking con-

formation, DGLRDPSO also has the best performance so that it can find the conforma-

tions closest to the reference conformation (e.g., 1a61).

According to the aforementioned analysis, it can be concluded that DGLRDPSO is

generally superior to LGA and LPSO in terms of binding free energy and RMSD, espe-

cially for highly flexible ligand docking problems, and its robustness is the best among

Fig. 5 Energy versus RMSD obtained by LGA, LPSO, and DGLRDPSO. a Energy versus RMSD plot for 1ay6,
(b) Energy versus RMSD plot for 1a61, (c) Energy versus RMSD plot for 1fpc, (d) Energy versus RMSD plot
for 1lhd
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the compared methods. However, the efficiency of these docking methods should be

taken into consideration, since it is not worth consuming too much computational time

to obtain better docking performance and robustness of the algorithm in some real

docking applications, e.g., virtual screening [2]. Hence, Table 5 lists the average docking

time for each holo-structure (test cases in Table 1) and apo-structure (test cases in

Table 4) test case over 30 runs performed by each of the three compared algorithms.

The individual docking times for each test case performed by each of the compared al-

gorithms are recorded in Additional file 2. Table 5 shows that DGLRDPSO is the most

efficient algorithm among all methods in terms of the average docking time and the

average Dref values for docking time.

Conclusions
Flexible ligand docking is one the most frequently used methods in protein-ligand

docking. To solve this problem, heuristic algorithms are popular and effective methods

for finding the suitable sites and conformations of the ligands. In this paper, based on

the Autodock software package and its scoring function, a novel algorithm called

diversity-guided Lamarckian random drift particle swarm optimization (DGLRDPSO) is

proposed. In this algorithm, the 2PDC diversity control strategy and the local search

method are used to further improve the performance and robustness of the RDPSO al-

gorithm. The simulation results from the comparison among LGA, LPSO and LRDPSO

on PDBbind coreset v.2016 show that the 2PDC strategy gives the proposed algorithm

generally better performance and robustness than LPSO and LGA and LPSO, as shown

by the mean and best final docked energy. With respect to the docking performance,

DGLRDPSO can generally find better docking conformations than LGA and LPSO in

terms of the binding free energy and RMSD for both holo- and apo-structure docking

test cases. In particular, its advantage over LGA in terms of RMSD is more remarkable

for highly flexible ligand docking problems than for less flexible ones. Moreover,

DGLRDPSO shows better robustness than the other compared algorithms in terms of

the number of torsions. Therefore, the proposed DGLRDPSO algorithm is expected to

be a reliable choice for flexible ligand docking in Autodock software.

Our future research will focus on further modification of the proposed algorithm to

make it applicable for other complicated docking problems, such as docking with side-

chain flexibility and blind docking.
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Additional file 1. Docking performance statistics of each holo-structure test case for all tested algorithms. The
additional file 1 includes three tables that contain the statistics of the final docked energy, binding free energy and
RMSD results for the holo-structure docking results of each test case.

Additional file 2. Docking time expense of all the test cases for LGA, LPSO and DGLRDPSO. The additional file 2
includes one table that contains the docking time expense of all the holo- and apo-structure docking test cases for
all the related tested algorithms.

Table 5 Statistics of the docking time for all test cases taken by LGA, LPSO and DGLRDPSO

LGA LPSO DGLRDPSO

Average docking time of each test case 4992 s 4637 s 4582 s

The average Dref value for the docking time of each test case 680 s 326 s 270 s
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