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proposed different tools and methods for finding Differentially Methylated Regions
(DMRs) among different samples, but the execution time required by these tools is
large, and the visualization of their results is far from being interactive. Additionally,
these methods show more accurate results when identifying simulated DM regions
that are long and have small within-group variation, but they have low concordance
when used with real datasets, probably due to the different approaches they use for
DMR identification. Thus, a tool which automatically detects DMRs among different
samples and interactively visualizes DMRs at different scales (from a bunch to ten of
millions of DNA locations) can be the key for shortening the DNA methylation analysis
process in many studies.

Results: In this paper, we propose a software tool based on the wavelet transform.
This mathematical tool allows the fast automatic DMR detection by simple comparison
of different signals at different resolution levels. Also, it allows an interactive
visualization of the DMRs found at different resolution levels. The tool is publicly
available at https://grev-uv.github.io/, and it is part of a complete suite of tools which
allow to carry out the complete process of DNA alignment and methylation analysis,
creation of methylation maps of the whole genome, and the detection and
visualization of DMRs between different samples.

Conclusions: The validation of the developed software tool shows similar
concordance with other well-known and extended tools when used with real and
synthetic data. The batch mode of the tool is capable of automatically detecting the
existing DMRs for half (twelve) of the human chromosomes between two sets of six
samples (whose .csv files after the alignment and mapping procedures have an
aggregated size of 108 Gigabytes) in around three hours and a half. When compared to
(Continued on next page)
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other well-known tools, HPG-DHunter only requires around 15% of the execution time
required by other tools for detecting the DMRs.

Keywords: High performance computing, DNA methylation, Wavelet transform, GPU
computing

Background
Bisulphite-treated DNA methylation analysis requires specific treatment of DNA that
modifies its sequence, as well as software tools for its analysis. Bisulphite treatment
converts unmethylated cytosines (Cs) into thymines (Ts), which gives rise to C-to-T
changes in DNA sequence after sequencing, while leaving methylated cytosines (5mCs)
unchanged. By aligning and comparing bisulphite sequencing reads to the genomic DNA
sequence, it is possible to infer DNA methylation patterns at base pair-resolution ([1]).
Hydroxymethylated samples can also be obtained from different methods, the Ten-eleven
translocation (TET) Assisted Bisulfite Sequencing (TAB-Seq) ([2, 3]), which produces
Ts in methylated and unmethylated Cs and maintains as C the hydroxymethylated Cs
(5hmC), and the oxidative bisulphate sequencing (oxBs-seq) ([4]). Different software
tools have been proposed for DNA methylation analysis like RRBSMAP ([5]), the widely
extended tool Bismark ([6]), or the most recent tools HPG-Methyl ([7, 8]). These tools
provide single-base information of the alignment and the methylation status of each input
sequence (or read). However, all these software tools yield the results as text files which
usually have sizes of tens of Gigabytes, and follow the Sequence Alignment/Map (SAM)
format or the Binary Alignment Map (BAM) format. Other tools like HPG-HMapper
([9, 10]) uses the methylation information of each base for each read present in the BAM
files to build a DNA methylation map which gives information about the methylation
level for each base of the reference genome. This map is yielded as one csv file for each
chromosome in the species. Biomedical researches then have to compare the methylation
level information in these files at different scales (DNA segments, CpG islands or coding
regions, DNA chromosomes, etc.) besides the base-pair resolution, comparing also the
results coming from different samples. Thus, many different tools for processing, display-
ing the methylation results and discovering differentially methylated regions (DMRs) have
been proposed ([11-16]). However, most of these tools are based on statistical techniques,
adding a high computational workload when applied to huge BAM or SAM files. As a
result, the execution time required by these tools is large, adding an excessive delay from
the moment of the sample extraction from the DNA sequencer until the moment when
significant information is provided to the doctor or biomedical researcher. Also, the visu-
alization of these data is far from being interactive. Another disadvantage of these tools is
that many of them are essentially R scripts, which requires programming skills from the
user. Finally, as some comparative study shows [17], these methods show more accurate
results when identifying simulated DM regions that are long and have small within-group
variation, but they have low concordance, probably due to the different approaches they
have used for DM identification. Thus, they yield very low concordance when used with
real data.

In a previous work, we proposed the building of a methylation signal and the imple-
mentation of its wavelet transform in the GPU for visualization purposes ([18]). In this
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paper, we present HPG-DHunter, a user-friendly graphical tool not only for interactive
visualization of methylation signals but also for automatic DMR detection, based on the
information generated by the Discrete Wavelet Transform (DWT). This software tool
can detect and display at different scales DMRs from different samples, and it is publicly
available at https://grev-uv.github.io/. The tool is based on transforming the methylation
(and/or hydroxymethylation) level information of each base in the reference genome into
a methylation signal, and applying the Discrete Wavelet Transform to this signal in order
to detect DMRs in the Transform space. DWT performs local averaging of the methyla-
tion signal at different resolution levels, like smoothing-based approaches do ([16]). On
the one hand, this averaging takes into account the biological variability present in the
information gathered in the methylation maps. On the other hand, this local averaging
yields a more accurate measurement of the methylation level for wider DNA segments.
However, by using a dyadic decomposition of the DWT this strategy achieves a logarith-
mic reduction in the number of values used for comparing signals and detecting DMRs,
compared to the ones used in other smoothing-based methods like [11, 14]), in such a
way that the computational workload required for detecting DMRs is reduced in orders of
magnitude. The validation of the tool is a comparison study, carried out with a real dataset
with known DMRs, which compares the results yielded with this tool to the ones yielded
by other three widely used tools, namely BSmooth [11], DSS-Single [14], and methylKit
[19]. This validation study with a real dataset shows that the proposed tool is as valid and
effective as the other well-known tools.

HPG-DHunter can efficiently detect and display DMRs for different thresholds of
methylation rate, coverage and number of samples, since the use of GPUs allows the
parallel processing of methylation signals and their interactive visualization at different
scales. To the best of our knowledge, this tool is the first one that can automatically detect
DMRs between samples in all the chromosomes for a given difference threshold. More-
over, it is the first tool that allows an interactive visualization of DMRs at different levels
of detail. The performance evaluation results show that the batch mode of the tool is
capable of detecting the DMRs in 12 chromosomes between two sets of six (human) sam-
ples (whose methylation maps have an aggregated size of 108 Gigabytes) in around three
hours and a half. When compared with the other three software tools, HPG-DHunter
only requires around 15% of the execution times required by any of them. These results
show that the tool offers biomedical researchers a valuable tool for easily finding hyper or
hypomethylation differences in any set of fastq files.

HPG-DHunter is the third and last module of HPG-Msuite (https://grev-uv.github.
io/), whose two first modules are HPG-Methyl ([7, 8]) and HPG-HMapper([9, 10]). This
comprehensive suite carries out the whole process of methylation (and/or hydroxymethy-
lation) analysis of fastq files coming from different samples, mapping the reads on the
reference genome and building a methylation map, and detecting and visualizing DMRs
between the different samples. In this way, we provide biomedical researchers with a
complete solution for studying DNA hyper and hypomethylation of any species. Figure 1
shows the pipeline workflow of the HPG-Msuite. The first module is HPG-Methyl ([7, 8]),
which takes fastq files as input and produces bam or sam files with the methylation and
alignment data. The second module is HPG-HMapper ([9, 10]), which takes the bam/sam
files as input data and produces one csv file for each chromosome and strand. Finally,
HPG-DHunter takes the csv files (one for each chromosome and strand) and builds a
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Fig. 1 Workflow for the use of HPG-Msuite, from the fastq file to the DMR detection

methylation signal showing the methylation level for each location in the chromosome.
Moreover, it can load and compare the methylation maps coming from different samples
and build different methylation signals, detecting and displaying the DMRs among them.
The rest of the paper describes in detail the implementation of HPG-DHunter and its
performance evaluation with real datasets.

Implementation

HPG-DHunter takes as input files the csv files (one for each chromosome and individ-
ual/sample to be analyzed), and it produces as output a csv file for each chromosome,
containing the DMRs found between the selected individuals/samples. The workflow of
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Fig. 2 Workflow for the use of HPG-DHunter

our approach is illustrated in Fig. 2. This Figure shows that HPG-DHunter first read the
files corresponding to the case and control samples (the user selects each file). Then, each
methylation signal is built and the DMR detection is carried out by processing the methy-
lation signal with the Haar Wavelet Transform (the DWT is applied to each signal). At
this point, the tool provides a visualization interface which allows the visual analysis at
different scales of any of the DMRs found, and the results of the DMR detection can be
saved in -csv files.

The building of the methylation signal and the application of the wavelet transform to
that signal are described in a previous work [18]. However, in order to make this paper

self-contained, we also summarize here these steps in the two next subsections.

Building the methylation signal
The first step consists of reading the .csv files containing the mapped samples, and com-
puting the methylation ratio of each DNA base. It must be noted that any alignment
and/or mapping tool can be used to produce these .csv files, although we have used
HPG-Methyl and HPG-Mapper for the alignment and mapping procedures, respectively.
Figure 3 shows the information that should be available in the input csv files for each
DNA location where methylation is detected (there should be a csv file for each chro-
mosome and each sample). For each location in the chromosome where a methylated
cytosine has been found, it counts the number of reads which have been found having
a cytosine, methylated cytosine, hydroxymethylated cytosine or a base different from a
cytosine aligned to that particular location. The values in column labeled as “C” shows
the number of reads containing a non-methylated cytosine in that location. The values
in the column labeled as “5mC” show the number of reads which have been found hav-
ing a methylated cytosine. These values ( the values in the column labeled as “5mC”)
include the number of reads which have been found having a hydroxymethylated cyto-
sine (column labeled as “5hmC”). It must be noted that the samples with a base different
from a cytosine (values in the column labeled as “no C” in Fig. 3) should be ignored in
the DMR search procedure ([11, 14]). We will have one file to be read per sample to be
studied (usually there are several control patients and several case patients, but there can
be also studies which analyzes different tissues from the same patient, or other cases). In
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pos C no C 5mC 5hmC

9411196 64 52 61 49
9411199 63 62 60 50
9411200 64 20 59 47
9411202 63 52 62 0

Fig. 3 Information present in the csv files

the rest of the paper, we will assume that the study to be carried out focuses on a given
chromosome (a given csv file) and different control and case patients.

Different specific issues must be taken into account when trying to identify DMRs
([15]). First, there exists a strong spatial correlation among methylated or hydroxymethy-
lated CpG islands, thus in these regions there is no need for the same coverage levels as
in other regions. Second, the coverage, sequencing depth, or number of reads aligned on
each position, is very important to properly weight the variability of the analyzed samples.
Finally, the heterogeneity in the methylation levels of different tissues, or even among cells
of the same tissue, may lead to errors in the identification of DMRs.

Taking into account these considerations, in our work we have defined the methylation
level for each cytosine in the reference genome as the methylation ratio or percentage of
methylated reads mratio for each position k, computed as:

mratioy = 5’717@ (1)
Ci + 5mCy
where 5mCy is the number of reads containing a methylated cytosine which have been
aligned onto that DNA position k, and Cj is the number of read containing non-
methylated cytosines which have been aligned onto that position (as shown in Fig. 3). In
the same way, we have computed the hydroxymethylation ratio hmratio for each position
k as:

. 5hmCy,

hmratio, = m (2)
where 54mCy, is the number of reads containing a hydroxymethylated cytosine which have
been aligned onto that DNA position k. One of the advantages of this approach based on
ratio is that it takes into account the biological variability among the different samples
processed through bisulphite sequencing. Nevertheless, due to the errors inherent to the
bisulphite treatment, the files can contain samples not belonging to the target regions of
the chemical sensors. Thus, we could find for example some reads in the csv file with a
value of 2 in the “5mC” column and also a value of 2 in the “C” column, for a coverage
ratio mratio = 1/2. Since the same ratio would result for a target region with a value of
200 in both columns, we must establish a minimum coverage threshold for filtering the
reads in the csv file. This coverage threshold should be established by the user through a

selector knob available in the proposed tool.
Once the methylation ratio has been computed, the methylation signal should be built.
Although the same process can also be carried out for the hydroxymethylation signal, for
the sake of clarity we are going to exclusively describe the computation of the methylation
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signal. Since a methylation signal X is estimated to follow a beta-binomial distribution
([11, 14]), we have computed each element x[ k] of the methylation signal X as

x[k] = mratioy (3)

It must be noted that x[ k] ranges between 0 and 1.

Wavelet transform of the methylation signal

Once the methylation signal X is built, the Discrete Wavelet Transform is iteratively
applied on the methylation signal, until the desired resolution level is reached. We have
implemented a dyadic multiresolution decomposition of the signal by iteratively applying
the following filtering algorithm:

k] = Y hl2k = 1] gl 1] 4)
I

dialk] = ) gl2k =1 (1] 5)
l

where ¢;[k] and d;[k] are the scaling and detail coefficients at resolution j, respectively, g
highpass decomposition filter of the wavelet transform, and # is the lowpass decompo-
sition for the selected Discrete Wavelet Transform. It must be noted that Eqs. 4 and 5
provide the scaling coefficients c[ k] and the detail coefficients d[k] at j + 1 level, starting
in both cases from the scaling coefficients c[ k] at j level. Both equations include a down-
sampling procedure. In particular, Eq. 4 reduces the size of ¢;1[k] to half of the size it had
in level j. Also, it must be noted that for j = 0, co[k] = x[k].

It must be noted that any orthogonal or bi-orthogonal wavelet base can be used
for the implementation of 4 and g filters. Thus, the validation study (see the
“Tool validation” section) considers different filters, whose values are not shown here for
the sake of shortness. As a representative example, we show here the filters implemented
when the HPG-DHunter module uses the Haar Discrete Wavelet Transform. The reason
is that this wavelet transform has a reduced compact support (/ and g filters are of length
equal to 2), which on the one hand results in short computation times and on the other
hand allows an efficient and simple GPU implementation. Concretely, the g and # filters
for the Haar Wavelet Transform are the following ones:

gl = [-v2/2, V272 ©)

hll]

[ﬁ/z, «/5/2] )

Starting from the original control and case signals, the different versions of the methy-
lation signals (with different resolution levels) are built by iteratively applying the DWT
to the current signals. As an illustrating example, Fig. 4 shows two methylation signals
processed with the proposed approach, such as they are displayed by HPG-DHunter. The
two colored lines correspond to the two methylation signals. The plots in the top part
of this Figure show the original methylation signals built from a DNA segment of 1241
nucleotides (from position 47830931 to position 47832172), while the rest of the plots
downwards (starting from the plot below the original signals) show the same methylation
signals iteratively built in the second, fourth, sixth, eighth and tenth iterations of the Haar
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Fig. 4 Segments of 1241 DNA positions, coming from control and case methylation signals, displayed with
different resolution levels. Each colored line corresponds to a methylation signal

transform. All these plots show on the X-axis the location of each base in the chromo-
some which is being displayed (in this case we are using human samples). On the Y-axis,
they show the ¢;[k] values.

Figure 4 illustrates the main advantage of this approach: each iteration reduces by one-
half the number of different values in the signal, since they are computed as the average
value of two signal values in the previous iteration. As a result, the signal has a lower res-
olution but the comparison of the signal with the signals coming from other samples adds
a much lower computational workload, and it is easier to detect significantly different
values. Thus, the signals in the bottom plot have only 5 different values (the 1241 DNA
locations take are only 5 different methylation values).

In order to build the methylation signal, enough memory space should be allocated for
containing an array with as many elements as adjacent locations exists between the ini-
tial and final DNA location to be analyzed (multiplied by the number of samples to be
analyzed). The elements of the array corresponding to locations with non-zero values are
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Fig. 5 Example methylation signals for a coverage threshold of 1 as visualized in the tool interface. A lot of
DMRs (8775) are found because the minimum coverage is used

filled with the corresponding v}) values, and the whole array is copied to the GPU mem-
ory, where the next steps are carried out. Figure 5 shows an example of two methylation
signals where the coverage threshold has been set to 1, while Fig. 6 shows the resulting
methylation signals coming from the same csv files when the coverage threshold is set to
50.

HPG-DHunter stores the methylation signals in the GPU memory to carry out the two
main tasks: detection of DMRs and the visualization of the methylation signals. Each step
of the wavelet transform decomposes the signal into two halves, the first one containing
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Fig. 6 Example methylation signals for a coverage threshold of 50 as visualized in the tool interface. A few
(25) DMRs are found because all the locations not arriving to the minimum coverage are not considered
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a low resolution version of the signal with half the number of points, an the second one
containing the wavelet coefficients. Thus, after each iterative step of the wavelet trans-
form, for DMR detection purposes we only keep in the GPU memory the first half of the
signal. This half will become as the input signal for the next iterative step of the DWT.
Therefore, once the original signal is transferred to the GPU memory, no additional GPU
memory is required for performing the whole DWT iterative process.

Interactive DMR detection

The DMR detection is carried out by simply comparing the values of different trans-
formed signals with the same level of transformation. A methylation threshold should be
selected by the user (using the graphical interface described below) to determine if two or
more different signals should be considered as differentially methylated. All the methyla-
tion signals are iteratively transformed until the selected transformation level is reached.
Then, the DMR detection is carried out in three stages: the first one consists of computing
the average methylation value of all the considered signals in each group (case and con-
trol samples) for each DNA position. The second step is to find the difference (in absolute
values) between these methylation average values. If this difference exceeds the threshold
selected by the user through the interface, then that position is marked as DM. Finally,
the third step consists in grouping adjacent DM locations.

Thus, the validation process for DMR detection consists of the following process: for
each value x;[ k] (each value k of the signal in the jth transformation level), we check
that (by default) at least 25% of the 2/ values in the original methylation signal (the val-
ues x;[ k] - - - x; [k + 2 — 1] which have contributed to the value k of the signal in the jth
transformation level) have a coverage ratio higher than the coverage threshold set by the
user. In turn, this default percentage of 25% can be tuned by the user. In positive case,
that position x;[k] is kept marked as DM. Otherwise, it is not marked as DM. It must be
noted that if this validation process was carried out in the building stage of the methyla-
tion signal (by filtering those x[k] values lower than the coverage threshold) then many
values of the methylation signal would have been changed to zero, significantly chang-
ing the signal at all the transformation levels. By applying the validation process after the
DMR detection process, we guarantee that the methylation signal is faithfully computed
with respect to the methylation values in the csv input files, and so it is the DMR detec-
tion process. Figure 7 shows an example of DMR identification and visualization with a
coverage threshold of 50 reads.

It must be noted that in each transformation level each signal point represents the
weighted methylation value of several DNA locations. The selection of the most appro-
priate transformation level to be used for detecting DMRs is left to the user criterion, who
can easily repeat all the computations and visualization of the results by moving up and
down the DWT level selector (see the “DMR visualization” section). The selected level of
wavelet transformation has an effect in the width of the DMRs detected, in such a way
that 2 elevated at the selected transformation level will determine the minimum DMR
length which can be detected in this level. Therefore, the user should select the level of
DMR transformation based on the minimum DMR length which is being searched. The
transformation level used in the results section has been the 5th level in the real dataset
(and the 4th level in the case of the synthetic dataset) because we experimentally tried
different levels for considered input dataset, and we found that this was the best level.
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Fig. 7 Example of a DMR identification and visualization in the tool interface. The name of each input file is
given a color corresponding to its signal representation, and the DMR range, including the gene name, is
shown in the central window

Nevertheless, it must be noted that the same happens with the main parameters of the
other considered tools, there is no a priori default value which yields the best results for
all the input datasets. HPG-DHunter uses the csv files delivered by HPG.Mapper as input
data. Thus, the sample size cannot affect the tool sensitivity, since the tool always builds a
methylation signal for the whole genome. If the samples are greater, the methylation signal
is built in a more robust manner (with more information about each DNA location). The
sample size can only affect to the time required by aligners like Bismarck or HPG-Methyl.

The tool interface allows, by clicking on any item of the list of DMRs found, to open
the Ensemble web page (http://www.ensembl.org) in a navigator window and display the
corresponding genes and other information in the reference genome for that location, in
order to help biomedical researchers to identify the most significant DMRs for their study.
Although the tool is configured for the human reference genome, it can be easily tailored
to show the reference genome for other species.

Once the DMRs have been identified in the selected samples, the results can be stored in
a different CSV file for each chromosome. For each DMR found, this file shows two levels
of details. The first one shows the initial and final position of the DMR, the most common
names of the closest gene to that position, the distance between the DMR and this gene,
and whether the methylation difference is in favor of the cases or the control samples
(hyper/hypo). The second level of detail shows basic statistics for each of the analyzed
samples. Each line starts with the name of the sample, the name of nucleotides affected in
that DMR, the minimum, average and maximum coverage of reads, the number of reads
detecting Cs, mC, hmC and other nucleotide different from C, as well as the minimum,
average and maximum distance between locations with information. Figure 8 shows an
example of an output csv file (also a .gif format file can be selected).

Therefore, the analysis procedure for detecting DMRs with HPG-DHunter is composed
of the following steps:
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pos_init-pos_end name_1 name 2 |distance methylation
12077278-12077310 NM_080599 UPF2 115258 hipo
sample C pos covmin mid max sites C noC mC hmC  dist min  mid max
10754 7 61 86 138 2 0 6 6 1 3
140005 7 9 11 14 2 0 5 5 1 3
140377 7 4 5 7 2 0 5 5 1 3
140419 7 2 2 2 2 0 5 0 1 3
12077342-12077374 NM_080599 UPF2 115322 hipo
sample C pos cov min mid max sites C noC mC hmC dist_min mid max
10754 7 86 103 160 1 0 6 6 1 4 12
140005 7 10 11 14 1 0 6 6 1 4 12
140377 7 3 7 9 1 0 6 1 4 12
140419 11 5 5 6 5 9 7 0 1 2 6
47087582-47087614 NM_005972 NPY4R 4049 hipo
sample C pos cov min mid max sites C noC mC hmC dist_min mid max
10754 17 52 71 98 16 15 16 16 0 1 4
140005 17 49 58 65 16 15 13 15 0 1 4
140377 17 30 35 42 11 15 11 9 0 1 4
140419 17 25 30 35 11 15 12 8 0 1 4
52446174-52446206 NM_147156 SGMS1 ++62437  hiper
sample C pos  cov min mid max sites C noC mC hmC dist_min mid max
10754 16 24 44 60 14 12 11 11 0 2 4
140005 16 38 49 61 13 12 10 10 0 2 4
140377 16 50 58 67 14 12 9 7 0 2 4
140419 16 a7 52 56 13 12 11 0 0 2 4
Fig. 8 Example csv output file

Selection of the samples (csv files) to be analyzed.

2 Selection of the minimum coverage threshold.

3 Selection of the transformation level. At this point, the tool can detect and display a
list of DMRs.

4 Depending on the results, any of the previous parameters can be tuned, and the
whole process could be repeated.

DMR visualization

After the DMR detection has been carried out, the results should be displayed in
a comprehensive and clear way. HPG-DHunter allows the interactive visualization of
methylation signals corresponding to any DNA segment at different levels of detail. In
particular, those segments where DMRs have been previously detected by the tool. The
visualization process uses the data generated by the DWT, and it is completely carried out
in the GPU, as described in our previous work ([18]).

We have designed a graphical interface for HPG-DHunter which allows to carry out the
whole process of DMR detection and visualization in an intuitive and friendly manner:
it allows to select the sample files to be analyzed, the type of analysis to be performed
(5mC or 5hmC), and the parameters of this analysis: the minimum coverage ratio the
samples should have to be taken into account, the DWT level to be applied to the signals,
and the DMR threshold. Figure 7 shows a snapshot of this graphical tool. The top part
of the tool is devoted to graphically displaying one of the DMRs found, while the bottom
part of the tool contains the controls to select the input files and analysis parameters, as
well as a window for listing the DMRs found in text mode. On the bottom-left corner,
it shows the buttons for selecting the type of analysis and the sample input files to be
analyzed (each file path appears in a different color, the same one used in the top window
for displaying its corresponding signal). Next to the input files box is the DMR results
box, which lists the DMR(s) found and if the case group is hyper or hypo methylated. At
the right of the results box there are the buttons for loading, analyzing (carrying out the
DMR detection) and saving the DMR list found for a given analysis (it must be noted that
different analysis with different DMR thresholds and DWT levels may be performed on
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the same sample files), as well as knobs and sliders for zoom-in and out, and interactively
exploring the adjacent regions to the DMRs. Figure 7 shows an example of identification
and visualization carried out by HPG-DHunter for a case of one control sample and one
case sample, for a coverage threshold of 50 reads, a difference methylation threshold of
0.5, and a transformation level (DWT level selector) of 2. On top of the results window,
we can see that with these parameters 8775 DMRs have been found.

Batch DMR detection

HPG-DHunter also allows the automatic DMR detection without user intervention, ana-
lyzing a selection of chromosomes (or all of them). That is, the tool can yield an output
file like the one in Fig. 8 for all the chromosomes for both a case and a control group,
studying all the samples.

Figure 9 shows the pipeline corresponding to the batch DMR detection procedure. Once
the analysis parameters and input files are selected by the user, this procedure iterates over
each one of the selected chromosomes. However, since the slowest task is the file read and
the building of the methylation signal, the procedures creates as many threads as number
of chromosomes (csv files) to be read. Then, the wavelet transform is computed (at the
selected transform level) in the GPU. This process is carried out in a batch manner, pro-
cessing file chunks which are adequate for the GPU memory size. As the GPU computing
finishes, the resulting data of each iteration is stored in CPU memory, freeing GPU mem-
ory for a new batch file. The DMR detection takes place in the CPU as explained in the
“Interactive DMR detection” section. That is, grouping the samples in control and cases
and filtering those differences between both groups which are greater than the selected
threshold. The results are stored in output files and both GPU and CPU memory are freed
up for processing the next chromosome.

Thus, in the case of batch DMR detection the following procedure should be carried
out:

1 Selection of the samples (csv files) to be analyzed, grouped in case and control.

4{ foreach chromosome |«——

upload to GPU
—_—

/

SELECT ves | | ApPPLY
case & control mC? —L> DWT
csv files
no
yes
hmC?
upload to GPU

Fig. 9 Pipeline procedure for batch DMR detection
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Selection of the type of methylation to be analyzed (mC or hmC).

Selection of the DNA thread to be used in the analysis (forward and/or reverse).
Selection of the minimum DMR threshold to be detected.

Selection of the transformation level on which DMRs will be detected.
Selection of the chromosomes to be analyzed. Analysis in batch mode.

Inspection of the DMRs found using the visualization interface.

NN O U W

Depending on the results, any of the previous parameters can be tuned, and the
whole process could be repeated.

In order to help the user in all these tasks, we have developed a visual interface with all
these parameters implemented as knobs, sliders, buttons or selectors. Figure 10 shows a
snapshot of this tool, at the exact moment when the DMR batch tool is processing 66%
of the selected input files, for a dataset comprising six control input directories and six
case input directories. In each directory there are as many files as the number of chromo-
somes considered for the study (a button allows to select to study all the chromosomes or
only a subset (selecting each chromosome number)). The output path selects the output
directory where the tool will store a file for each chromosome and study (5mC or 5hmC)
containing the DMRs found (the same data which can be seen in the visualization tool
and the associated output files, including the hyper/hypomethylation diagnosis and the
closest gene).

However, the GPU memory size also restricts the number of output files to be displayed.
Depending on the chromosome length, HPG-DHunter allows the displaying of a range
from 2 to 10 (human) chromosomes. When used for DMR search in other species, the
maximum number of chromosomes displayed may vary. Thus, a feasible way of studying
DMRs is the previous batch analysis of the considered chromosomes and then the visual-
ization of those areas of special interest from the output csv files. In this way, the tool can
analyze the DMRs found in all the chromosomes, although it can simultaneously display
the DMRs for only some of them.

Results
Tool validation
Some comparative studies [17] show that the tools based on statistical techniques and
validated with statistical significance studies like BSmooth [11] or DSS-Single [14] show
more accurate results when identifying simulated DM regions that are long and have
small within-group variation, but they have low concordance, probably due to the dif-
ferent approaches they have used for DM identification. As a result, they provide very
different results when used with real datasets, and usually there is no a clear set of “cor-
rect” DMRs in these datasets. Effectively, we first tested BSmooth [11], DSS-Single [14],
and methylKit [19] with the same real datasets, but they yielded many different DMRs
among them, without a clear set of DMRs to be detected in order to validate our tool.
Thus, in order to validate the proposed tool, we have not performed a statistical sig-
nificance study, as other tools like BSmooth [11] or DSS-Single [14] do. Instead, we have
used the NBCI's Gene Expression Omnibus with reference GEO GSE 124610 dataset,
coming from a study about the effects of ascorbic acid on the hydroxymethylation of car-
cinoma renal cells [20]. The interest of this real dataset for our validation study is based
on the known hydroxymethylation levels in the different samples, as well as the existence
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/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/10311
/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/10415
/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/140067
/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/140156
/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/140261
/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/140343

/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/10457
/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/

csv/10948
delete folder /media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/10948
up down /media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/140078
/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/140474
/media/lifercor/4AD43159D4314889/genoma/incliva/macrogen_met-orduna/
csv/140592
output path | }89/genoma/incliva/macrogen_met-orduna/resultados/C-D
v/ 5mC v/ 5hmC v forward v reverse
e all chrms selected chrms
mC min coverage e 50
hmC min. coverage F 100
DMR threshold : 0.5
DMR DWT level : 7
66% STOP

freeing memory

Fig. 10 Example snapshot of the tool designed for batch DMR detection

of some genes associated to suppressive effects of the cell tumoral action (that is, some
specific DMRs should be detected in these genes). Thus, we can check if the detection
and visualization of the hydroxymethylation levels at different scales correspond to the
results shown in that work [20]. We have focused on several genes in different chromo-
somes identified as very important by the referenced study [20]. Also, we have tested the

tools on a synthetic dataset.

Selection of the wavelet transform
For validation purposes, we have considered in our tool not only the Haar wavelet trans-
form used in [18], but other wavelet transforms: the Bi orthonormal 3.1, 3.3, and 3.5

Page 15 of 27
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transforms [21], as well as the Spline wavelet transform [22]. The idea is to test the tool
with several different transforms, and select the one which detects all the known DMRs
while detecting the less number of false positives.

We have established fixed values for a set of parameters (regardless they are adequate or
not from a biological point of view), and we have used them for all the considered wavelet
transforms. The fixed values are: 6th level of wavelet transformation (windows containing
64 DNA positions), minimum coverage of 100 samples, DMR identification threshold of
0.25, and a ratio of 7% of positions with minimum coverage per window (4 positions with
minimum coverage in each 64 position window).

Table 1 shows if each of the considered transform has detected (x) or not (-) DMRs
within the most important genes (NBPF1, AKT3, KMT2C, and DOCKS), where the ref-
erence study [20] assumes that it should appear DMRs. Also, this table shows the total
number of DMRs detected in chromosome 7. These results show that the Haar wavelet
transform obtain the best results, since it detects the DMRs in the four genes. The
Biorthogonal 3.1 and the Spline 2.2 transforms do not detect the DMRs in the AKT3 nor
in the KMT2C genes. However, the Biorthogonal 3.1 detects almost double the number
of DMRs detected by the Haar transform, suggesting that this wavelet transform detects
a number of false positives. Thus, we have considered the Haar and the Spline 2.2 as the
two best options.

Next, starting from the results shown in the first test we have setup a second detection
test, using a wider set of genes described as important in the referenced study [20] and
testing exclusively the Haar and the Spline 2.2 wavelet transforms. This time we have
decreased the DMR identification threshold to 0.1, in order to increase the number of
DMRs detected. Table 2 shows the results for this test.

Table 2 shows that there are differences in the DMR detection for the tested genes, since
the Haar transform detects DMRSs in six of the nine genes, while the Spline 2.2 transform
detects DMRs in five of the nine genes. Since we must select one wavelet transform to
comparatively test our tool with other tools, we have selected the one which seems to
provide the best results for these real data. Thus, we have used the Haar wavelet transform
as the default wavelet used by HPG-DHunter for DMR detection.

Comparison with other tools using a real dataset

Next, we have performed a comparison study for detecting DMRs in the same real dataset
[20] using other three tools: BSmooth [11], DSS-Single [14], and methylKit [19]. Each
of these tools include a number of parameters which can be tuned by the researcher,
depending on the dataset to be used and the target of the research carried out. In order
to make a fair comparison and an effective validation, we have followed two different
approaches: first, we have tuned the main parameter for each tool (the one establishing

Table 1 DMR detection in genes NBPF1, AKT3 (chrom. 1), KMT2C (chrom. 7), and DOCK8 (chrom. 9),
as well as total number of DMRs detected

wavelet type NBPF1 AKT3 KMT2C DOCK8 #DMRs
HAAR X X X X 446
BIOR 3.1 X - - X 805
BIOR3.3 X - - - 172
BIOR 3.5 X - - - 291
SPLINE 2.2 X - - X 107
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Table 2 Second DMR identification test, using HAAR and SPLINE 2.2 wavelet transforms

chr gene haar spline #DMRs haar #DMRs spline
1 NBPF1 X X 2737 617
1 AKT3 X - 2737 617
4 CWH43 X X 2101 956
7 KMT2C X - 1695 886
8 ZHX1 - - 1481 732
9 DOCK8 X X 1028 319
10 PRKG1 X X 1175 561
10 MXI - - 1175 561
15 SMAD6 - X 605 308

the threshold difference between two samples to consider it as a DMR) until each tool has
detected the DMRSs in all the nine genes cited in the renal carcinoma study [20]. Then, we
have studied the DMRs found by each tool. Previously, the dataset was filtered to obtain a
minimum coverage of 50 reads for all the samples. For the second comparative approach,
we have tuned the main parameter value for each tool until it has led to the detection of a
similar number of genes with detected DMRs in all the tools (hundreds).

Concretely, for the first approach the BSmooth parameter Cutoff had to be varied from
4 to 0.005. For DSS-Single, the Threshold parameter had to be varied from 3 to 0.01. For
methylKit, the Diff parameter ranged from 25 to 0.5, and the gvalue ranged from 0.5 to
0.01. Finally, the HPG-DHunter Threshold parameter ranged from 0.4 to 0.01, and the
DWTT levels used for this study were 6 and 5 (although the results shown here were the
ones with the 6th. transformation level because they were better than the ones with the
5th transformation level). Table 3 shows the values for these parameters that had to be
set in order for each tool to detect the known DMRs in each chromosome. The methylKit
column shows both the Diff / qvalue pair of values set in each case. In order to show how
far from its default values each tool has been tuned, the last three rows show the average
value computed from the previous seven values, their standard deviation, and the default
value used by the tool.

Table 3 show that the DMRs in chromosomes 8 and 15 are the most difficult ones to
be detected, since all the tools require for these chromosomes the most extreme changes
from the default values in order to detect them. Also, the last three rows show that HPG-
DHunter and BSmooth have default values which fall within the interval [avg + std.dev],
indicating that it has not been necessary to significantly change the default values in these

Table 3 Parameter values set for finding the known DMRs

Chrom. BSmooth DSS-Single methylKit HPG-DHunter
chrl 1 05 25/0.01 040

chr4 0,75 1 5/05 0.25

chr7 4 05 15/0.01 035

chr8 0,1 05 5/05 0.07

chr9 1 05 15/0.01 0.40

chr10 0.5 1 17/0.01 040

chr15 0.1 1 3/04 0.06

Avg. 1.06 0.71 12.14%/0.24 0.255

Std. Dev 1.35 0.27 8.07%/0.25 0.16

Default 2 1.00E-05 25%/0.01 0.25
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Table 4 Number of DMRs and different percentages of genes when the tools are tuned to detect
DMRs in the known genes

BSmooth DSS-Single methylKit HPG-DHunter
A-Total DMRs 10717 9022 51074 8595
B-DMRs in genes 5515 4576 18177 3863
C-genes with DMRs 1594 2245 2422 1886
%DMRs in Genes(B/A) 51.46 50.72 35.59 44.94
%Genes in DMRs tota(C/A) 14.87 24.88 4.74 2194
%Genes in (DMRs in gen)(C/B) 28.90 49.06 13.32 48.82

tools to make them detect the known DMRs. However, both methylkit and DSS-Single
have some parameters whose default value is far from the required value to make these
tools detect the known DMRs. This issue makes more difficult for the user to properly
tune these tools for detecting DMRs which are difficult to detect.

Table 4 shows the results yielded by each of the considered tools in raw numbers, as well
as some indicative percentages. The first row shows the total number of DMRs detected
by each tool, denoted as A. The second row, denoted as B, shows the number of these
DMRs which have been detected within the limits of a gene. The third row, denoted as C,
shows the number of genes in which a DMR has been detected by each tool. The rest of
the rows show, in terms of percentage, the ratios B/A and C/A, in order to measure the
behavior of the tools.

The first row of Table 4 shows that HPG-DHunter detects the lowest number of DMRs,
but the numbers in the third row show that the number of genes in which DMRs have
been found is not very different among the considered tools, suggesting that those DMRs
found in other places can be false positives. It is worth mention that the number of
genes in which HPG-DHunter has found DMRs is within the range of the other three
tools. The percentages shown in the last rows show that again the percentages yielded by
the proposed tool are also within the range yielded by the other tools. Finally, it should
be highlighted that HPG-DHunter and DSS-Single obtain the best percentages (last two
rows), with the important difference that, as shown in Table 3, it is much more difficult to
tune DSS-Single than HPG-DHunter to obtain these results.

Next, we have studied the concordance of the considered tools. Table 5 shows the
amount of identical genes where DMRs have been detected by some subsets of the con-
sidered tools, in order to measure if these tools detected the same DMRS or not. We
have denoted each tool by the first letter of his name. Thus, B correspond to BSmooth,
D denotes DSS-Single, M stands for methylKit, and H denotes HPG-DHunter. When any
of these letter shows an overline, it means the complementary set. That is, the column
labeled as B-D-M-H shows the number of DMRs which have been detected by BSmooth,
DSS-Single and methylKit and have not been detected by HPG-DHunter.

The mostleft column in Table 5 shows that all the four considered tools have identified
855 matching genes with DMRs. Comparing these numbers with the ones in the third row
of Table 4, it can be seen that the number of matching genes with DMRs found by all the
tools is around 50% of the DMRs found by BSmooth (the one with the lowest number of
genes with DMRs). That is, there is a very low concordance among the DMRs found by the
different tools, as predicted in other studies [17]. Also, assuming that the 855 matching
genes in which all the four tools have detected DMRs are likely to be the correct DMRSs,
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Table 5 Number of matching genes with DMRs for different subsets of tools

Chrom. B-D-M-H B-D-M-H B-D-M-H B-D-M-H B-D-M-H
chr 133 42 15 21 54

chra 157 38 1 1 125
chr7 23 10 0 5 100
chr8 137 5 1 137 4

chro 51 27 0 14 39
chr10 89 69 7 2 31

chr1s 265 19 5 9 30
TOTAL 855 210 29 189 383

then the numbers in the third row of Table 4 indicate the number genes in which wrong
DMRs or false positives have been detected (the higher number of genes with DMRs, the
more false positives detected by each tool, since all of them exceed 855). In that row, the
proposed tool detects the second lowest number of genes, validating the tool as a more
accurate tool than methylKit or DSS-Single.

The rest of the columns in Table 5 show the number of genes in which each tool has not
detected DMRs and the other three tools have done it. When comparing these columns
with the third row of Table 4 we can see that, although BSmooth detects 1594 genes
with DMRs and HPG-Hunter detects 1886 genes, HPG-Hunter fails to detect only 210
“correct” genes, while BSmooth fails to detect 383 “correct” genes. That is, the proposed
tool detects more false positives but misses less “correct” DMRs. It is worth mention that
the column corresponding to methylKit shows the lowest number of genes, and the reason
for this behavior can be the remarkable number of DMRs found by this tool, as shown in
the first row of Table 4. Since this tool detects five times more DMRs than the second one
(detecting much more false positives), it detects DMRs in all the genes where the rest of
tools also detects DMRs.

The average length of the DMRs identified in each chromosome by all the methods in
the paper, as well as the absolute methylation difference between the two groups sam-
ples, are shown in Table 6. For each considered method, the column labeled as “Length”
shows the average DMR length found in each chromosome, while the column labeled
as “Diff” shows the absolute methylation difference between the two groups of samples.
The negative or positive numbers depend on which group shows the highest methy-
lation. The DMR length distribution shows a very high variability not only among the
considered chromosomes for a given tool, but also among the tools. For example, the
average length of the DMRs found by DSS-Single in chromosome 8 is 361 nucleotides and
1222 nucleotides in chromosome 4. The average length of the DMRs found by BSmooth
in these chromosome are 122 and 185 nucleotides, respectively, and the ones found by
HPG-DHunter are 79 and 75, respectively. In this sense, HPG-DHunter shows the lowest
variability among chromosomes. A case apart is Methylkit which, since it considers each
nucleotide as a posible DMR and therefore all their DMRs have a length of 1 nucleotide
(instead of a single DMR of three adjacent nucleotides, this tool yields 3 DMRs of
length 1).

For the second comparative approach (tuning the main parameter value for each tool
until it has led to the detection of a similar number of genes with detected DMRs in all the
tools), we finally used a value of 1.0 for the BSmooth Cutoff parameter. For DSS-Single,
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Table 6 Average DMR lengths and absolute methylation differences between the group samples

BSmooth DSS-Single methylKit HPG-DHunter

Chrom. Length Diff. Length Diff. Length Diff. Length Diff.

1 136 12.90 392 -18.70 1 18387.35 73 -555.83
4 185 1.02 1222 -8.02 1 35655.10 75 -437.74
7 79 -2.79 373 -10.51 1 19936.31 73 -314.50
8 122 1247 361 -6.15 1 -2379.04 79 -355.87
9 78 4.14 368 -5.69 1 27117.98 75 -242.54
10 m -0.08 1064 -6.60 1 2133346 72 -265.63
15 72 12.55 820 -7.26 1 25010.34 81 -285.62

the Threshold parameter was 0.5. For methylKit, we used a Diff parameter of 25%, and
a qvalue of 0.5. Finally, the HPG-DHunter Threshold parameter was 0.35. Table 7 shows
the results yielded by each tool for this approach.

Table 7 shows that the tuning of each tool has achieved that the number of genes with
DMRs are similar, ranging (in that order) from 1229 to 1605. For these numbers of genes
with DMRs, HPG-DHunter detects the second lowest number of DMRs (first row), which
indicates that this tool is as effective as the other ones (it detects a number of DMRs which
is in the range of the rest of the tools).

Next, Table 8 shows the number of genes in the considered chromosomes where differ-
ent subsets of tools detected DMRSs, similarly to Table 5. The first row in Table 8 shows
that the number of DMRs that are detected by all the tools is very low, compared to the
number of DMRs detected separately (first row of Table 7). Also, this table shows that the
number of genes with DMRs “missed” by HPG-DHunter is within the range of the values
yielded by the other tools.

Finally, Table 9 shows the number of DMRs found in the genes which are know to have
DMRs [20]. The last row shows the number of these genes in which each tool has found
DMRs (the number of non-zero values in that column).

Table 9 indicates how effective is each tool for finding the known DMRs when they
detect a similar number of DMRs, and it shows that the proposed tool is capable of detect-
ing DMRs in the highest number of known genes. These results prove HPG-DHunter as
a tool as valid and effective as the other three ones for DMR detection on real datasets.

Comparison with other tools using a synthetic dataset

Next, we have performed a comparison study for detecting DMRs in a synthetic dataset
using the same tools. In order to generate the synthetic dataset, we have used WGBSSuite
[23], an stochastic generator developed to test and compare statistical methods, as the
reference tools used in this evaluation, to generate differentially methylated base pairs.

Table 7 Number of DMRs and gene percentages found when all the tools yield similar number of
genes with DMRs

BSmooth DSS-Single methylKit HPG-DHunter
A-Total DMRs 7006 4552 13181 5374
B-DMRs in genes 3674 2368 6519 2493
C-genes with DMRs 1229 1536 1539 1605
%DMRs in Genes(B/A) 5244 52.02 49.46 46.39
%Genes in DMRs total(C/A) 17.54 33.74 11.68 29.87

%Genes in (DMRs in gen)(C/B) 3345 64.86 2361 64.38
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Table 8 Number of matching genes with DMRs for different subsets of tools

Tools chrl chr4 chr7 chr8 chr9 chr10 chr15 Total
B-D-M-H 140 68 78 50 47 51 41 475
B-D-M-H 35 Inl 21 20 16 10 16 129
B-D-M-H 19 16 17 10 11 6 10 89
B-D-M-H 25 17 20 14 15 20 10 121
B-D-M-H 67 33 32 27 29 22 35 245

The first step for building a synthetic dataset is to analyze a real dataset to extract sta-
tistical information to parameterize WGBSSuite. We have generated a dataset with two
groups and two samples each one, coming from chromosome 1 of the renal carcinoma
study [20]. Using these samples, WGBSSuite yielded the main statistical values shown in
Table 10. Using these data for configuring the generation of the synthetic dataset, WGB-
SSuite generated a new dataset containing two groups (samples) of one sample (replicate)
each. We introduced as input data a differential methylation threshold value of 0.3 and
ten thousand methylated locations, and for these input values the WGBSSuite analy-
sis determined a DNA segment of around 18,300,000 base pairs with 4,394 differentially
methylated locations.

In order to make a fair comparison in this case, we have tuned the main parameter for
each tool (the one establishing the threshold difference between two samples to consider
it as a DMR) using the similar values shown in Table 3, the ones for which the reference
tools obtained the best results for the real dataset.. In the case of HPG-DHunter, since
the length of the DMRs this synthetic dataset can be of any length (including a single
base pair), we tuned the tool for the DWT levels 2, 3, and 4, and finally was the 3rd
transformation level the one which provided the best results for this tool. Also, the value
of the threshold has been shifted to the range of 0.04-0.2. Changing the range of the values
for the main parameter in the reference tools yielded, in general, worse results for these
tools .

Table 11 shows the number of true positive DMRs found by the considered tools when
each of the main parameter values is used (we consider that a true positive DMR found by
a tool is a DMR covering one or more of the positions marked as a differentially methy-
lated base pair by WGBSSuite). For each tool, Table 11 shows two columns for each
considered tool. The left one shows the main parameter value used in that tool, and the
right column shows the number of positive DMRs for that parameter value.

Table 9 Number of DMRs found in the genes which are known to have DMRs

gene BSmooth DSS-Single methylKit HPG-DHunter
NBPF1 4 1 1 1
AKT3 1 2 4 2
CWH43 0 0 0 0
KMT2C 3 1 0 1
ZHX1 0 1 0 0
DOCK8 1 1 0 1
MXI 0 0 0 3
PRKG1 0 0 5 2
SMAD6 0 0 0 0
# of matches 4 5 3 6
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Table 10 Parameterization values yielded by WGBSSuite

Avg. diff. in methylation proportion 0.3823
Std. dev. in diff. in methylation proportion 0.1242
Max. diff. in methylation proportion 0.8092
Prob. of success in a methylated region 0917
Prob. of success in a unmethylated region 0.095
Avg. coverage in a methylated region 53
Avg. coverage in an unmethylated region 63
Phase diff (difference between groups to validate DMR) 03

Table 11 shows for all the tools a similar behavior to the one observed for a real dataset.
All the tools except Methylkit need a significant variation of the main parameter from
their default value in order to detect the greatest amount of true DMRs. One reason
for this behavior can be the fact that WGBSSuite generates a single-base pattern and
Methylkit is the only tool which internally works on a single-base basis.

Nevertheless, in order to make a fair comparison we also need to know the ratio of true
and false positives found by each tool to yield the results in Table 11, as well as the ratio of
the total differentially methylated base pairs in the synthetic dataset found by each tool.
Table 12 shows these values for the considered tools for each number of true DMRs found
by each tool (each value appearing in Table 11). The hit rate is shown in the columns
labeled as “Hit’, and the percentage of differentially methylated base pairs in the synthetic
dataset found by each tool is shown in the columns labeled as “%” We have computed
the hit ratio as the ratio of the number of true DMRs found by each tool divided by the
number of total DMRs found by that tool. Thus, the ratio of false positives would be one
minus the hit rate.

Table 12 shows that BSmooth manages to detect almost all the differentially methy-
lated base pairs in the synthetic dataset (99.7%) at the cost of detecting more the double
of true DMRs (the 4383 true DMRs found are only 44.8% of the total DMRs found by
the tool). Similar figures are yielded by DSS-Single, which manages to detect 4098 true
DMRs (93.3% of the existing ones), but this number is only 44.1% of the total number of
DMRs detected by this tool. That is, it detects more false than true positives. Methylkit
shows a very different behavior. It shows a very high hit ratio for all the values of the Diff
parameter, detecting a very low ratio of false positives. It also detect a high proportion of
the existing DMRs in the dataset (82.4%). Finally, HPG-DHunter shows a high hit ratio
for all the threshold values considered, although the percentage of DMRs in the dataset

Table 11 True positives yielded by each tool for different parameter values and the synthetic dataset

BSmooth DSSSingle methyKit HPG-DHunter
Cutoff DMRs Thres DMRs Diff DMRs Thres DMRs
4 0 Te-5 4 25 3212 0.2 146
3 0 0.01 564 20 3608 0.15 427
2 0 0.05 1544 15 3620 0.1 2369
1 61 0.1 1950 10 3620 0.06 3681
0.75 1465 0.5 3212 5 3620 0.05 3794
0.5 3396 0.75 3651 3 3620 0.04 3856
0.25 4128 1 4098

0.1 4383
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Table 12 Hit rate and percentage of DMRs in the synthetic dataset found by each tool for different
parameter values

BSmooth DSSSingle methylKit HPG-DHunter

DMRs Hit % DMRs Hit % DMRs Hit % DMRs Hit %
0 0 0 4 1.0 0.1 3212 1.000 73. 146 0.942 33
0 0 0 564 0.815 128 3608 0.999 82.1 427 0.936 9.7
0 0 0 1544 0.753 35.1 3620 0.996 824 2369 0.945 539
61 0.61 14 1950 0728 444 3620 099 824 3681 0934 838
1465 0.552 333 3212 0.599 73.1 3620 0.996 824 3794 0.924 86.3
339 0.501 773 3651 0.523 83.1 3620 099 824 3856 0.885 87.8

4128 0478 93.9 4098 0441 933
4383 0448 99.7

detected is low for high threshold values. Nevertheless, for low threshold values HPG-
DHunter manages to find more true DMRs than Methylkit, with a slightly lower hit ratio.
These results validate HPG-DHunter as a tool for DMR detection which has similar con-
cordance with other well-known and extended tools when used with real and synthetic
data.

Performance evaluation

This section presents the performance evaluation (in terms of execution time) of the pro-
posed tool when processing a real dataset consisting of samples coming from human
patients. The data were provided by the INCLIVA Instituto Investigacién Sanitaria del
Hospital Clinico de Valencia (https://www.incliva.es/), for carrying out a medical study
about the effects of DNA methylation in patients with Diabetes Mellitus2 (DM2). The
DNA samples were extracted from four different patient groups, denoted as A, B, C and
D. Group A denotes those patients who do not suffer from DM2 (control patients) and do
not show resistance to insulin treatment. Group C denotes control patients (not suffering
from DM2) who are resistant to insulin. Group B denotes those patients suffering from
DM2 (case patients) who do not show resistance to insulin. Finally, group D denotes those
patients suffering from DM2 and showing resistance to insulin. The purpose of the study
is to find the DMRs among each possible pair of these groups. The dataset is composed of
96 fastq files, corresponding to six samples (six different individuals) per group. The data
for each individual are stored in two fastq files (forward and reverse) for a (paired-end)
methylation dataset. The aggregated size of all the fastq files coming from all the patients
was 1 Terabyte.

The hardware platform used in the performance evaluation consists of a computer
based on the Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz processor, with 12 cores and 2
threads per core, and a 64 Gb RAM memory, as well as a GeForce GTX 1080 graphic card,
with 2560 cores and 8 Gb GDDR5X RAM memory. The procedure steps implemented in
the GPU have been carried out using the CUDA 10.1.105 library.

The first pre-processing task consists of the alignment and methylation analysis of the
fastq files, and it has been carried out using the HPG-Methyl tool ([7, 8]), producing as
many .bam files as fastq files are in the dataset. The second pre-processing task has con-
sisted of the building of a methylation map using HPG-HMapper ([9, 10]), yielding 48
.csv files, two for each chromosome (since the samples were paired-end, we have one file
for the forward and other one for the reverse strand) for each sample (patient). The first
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step for processing the samples has been the building of the methylation signal for each
sample, as described in the Implementation Section. Following the instructions of the
INCLIVA medical staff, we have computed the average signal of each group as the average
value of the six signals in each group, in order to take into account the variability exist-
ing among patients and/or tissues. At this point, we have used the batch DMR detection
tool for computing the DWT of the signals and finding DMRs between each two average
signals coming from different groups.

Table 13 shows the execution time required for computing the DWT of the signals
(including the average signal) and the batch DMR detection between each possible pair of
groups for each of the chromosomes shown in the mostleft column. The selection of these
chromosomes was indicated by the INCLIVA staff as the most likely chromosomes to
show DMRs. The total aggregated size of the csv files corresponding to these 12 chromo-
somes was 108.414 Mbytes, that is, around 108 Gigabytes of data. The last row shows the
aggregated time (measured in minutes) required to find the DMRs in all these chromo-
somes. In this case, the input parameters were a DMR threshold of 0.35 and a DWT level
of 6. Table 13 shows that, as it could be expected, no significant differences arise when
we compare the different columns of the table, but there are some differences among the
rows (chromosomes), due to their length. That is, the execution time is proportional to
the chromosome length, but it is not affected by the shape and/or differences between
the methylation signals. Also, this table shows that the total execution time required for
computing the DWT and finding DMRs is around thirty five minutes for each pair of
groups, for a total aggregated time of around three and a half hours for processing the 108
Gigabytes dataset.

For comparison purposes, we have also executed methylKit [19], BSmooth ([11]) and
DSS-Single ([14]) on the same dataset. That is, we have executed these other tools using
the .csv files yielded by HPG-HMapper as the input files. However, at this point, it is worth
mention that methylKit performs a pre-processing step on the csv input data files, in order
to adapt the data to the format required for this tool. In this pre-processing, methylKit
filters those DNA locations where any of the samples do not reach the minimum coverage.
As a result, the dataset actually used for DMR detection has a significantly smaller size
than the input data files. On the contrary, HPG-DHunter performs the filtering based on

Table 13 Execution times (ms.) required for batch DMR detection among all the groups

Chrom. A-D A-B A-C B-C B-D C-D

22 94399 103456 96638 112233 107983 104961
20 103958 111796 104936 120412 115308 115132
17 190331 206827 192663 221405 210298 205949
13 74378 78857 75617 79799 80081 77474

12 180999 196676 183465 203209 196508 191967
1 214391 231394 215500 245430 236118 231187
9 172293 185016 173362 194221 190247 184382
8 148693 157845 151269 162844 159958 154460
7 190588 204318 192951 214982 207414 202518
4 154287 162503 155872 165420 159543 158972
3 218035 233437 219794 246532 235429 231717
2 270559 289130 274293 302823 292595 284348

Total (min.) 3355 36.02 3394 37.82 36.52 3572
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coverage after reading the input data, when the methylation signal is built. Therefore, in
order to make a fair comparison we have measured the required time for HPG-DHunter
and methylKit since the instant when the csv files are started to be read until the instant
when DMRs are yielded. In order to let BSmooth and DSS-Single take advantage from the
pre-processing carried out by methylkit, we have used this pre-processed dataset as the
input for both BSmooth and DSS-Single. Although we have compared the results for the
same sample groups shown in Table 13, we show here only the results corresponding to
the A-D DMR search, for the sake of shortness. The results for the rest of the groups were
very similar. This dataset (the csv files for groups A and D) has a size of 16.784 Mbytes,
around 16 Gigabytes.

Table 14 shows that HPG-DHunter only requires a small fraction of the execution time
required by the other tools to detect the DMRs in all the considered chromosomes. Look-
ing at the last row, we can see that the total time required by HPG-DHunter for all the
considered chromosomes is around 15% of the time required by BSmooth, which is the
tool with the second shortest execution time. These results validate the proposed tool as
an efficient tool for batch DMR detection.

Conclusions and future work

In this paper, we have proposed a new tool named HPG-DHunter, a software tool for
detecting and visualizing DMR from different samples. The tool is based on transforming
the methylation information existing in the CSV files into a methylation signal, and using
the Wavelet transform to process this signal in such a way that the computational work-
load required for detecting DMRSs is reduced in orders of magnitude in regard to other
methods. HPG-DHunter can efficiently detect and display DMRs for different methyla-
tion thresholds, coverage and number of samples, since the use of the GPU allows the
parallel processing of methylation signals and their interactive visualization at different
scales.

The validation study using real and synthetic data has shown, in a comparison study
with other well-known and extended tools, the good balance between accuracy and sen-
sibility of HPG-DHunter. The performance evaluation results shows that the batch mode
of the tool is capable of automatically detecting the existing DMRs for half (twelve) of

Table 14 Execution times (milliseconds) required for DMR detection in different tools

Chrom. methylKit BSmooth DSS-Ssingle HPG-DHunter
22 490603 492606 490508 94399
20 643062 642859 670401 103958
17 990127 989304 991321 190331
13 726562 725685 724213 74378
12 1229539 1220503 1221206 180999
I 1279281 1273718 1274000 214391
9 1164930 1161675 1173081 172293
8 958367 957953 953994 148693
7 1401475 1394688 1449790 190588
4 1420670 1402048 1449776 154287
3 1581448 1574495 1575470 218035
2 2034938 2017989 2196166 270559

Total (min.) 23202 230.89 236.17 3355
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the human chromosomes between two sets of six samples (whose .csv files after the
alignment and mapping procedures have an aggregated size of 108 Gigabytes) in around
three hours and a half. When compared to other well-known tools, HPG-DHunter only
requires around 15% of the execution time required by other tools for detecting the
DMRs.

These results show that the proposed tool offers biomedical researchers a valuable tool
for easily finding hyper or hypomethylation differences in any set of fastq files.

As a future work to be done, we plan to implement the proposed tool as an Internet-
based service, in such a way the user uploads the fastq files, our server computes the
DMRs in batch mode, and later the user can interactively visualize the results through
a web interface. Also, we plan to add DMR visualization functionalities, including box-
plot of methylation levels between groups in one or several DMRs, heatmap of DNA
methylation levels of a list of DMRs, genes, pathways etc..

Availability and requirements

Project name: HPG-Dhunter

Project home page: https://github.com/grev-uv/hpg-dhunter.

Operating system: Linux Ubuntu 16.0 LTS or higher.

Programming language: C.

Other requirements: 64 bit Intel CPU compatible with SSE4.2, Nvidia driver (v384 or
higher), CUDA API (v9 or higher).

License: GNU GPLv3.

Restrictions to use by non-academics: non applicable.
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