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Abstract

Background: The interaction between proteins and nucleic acids plays pivotal roles
in various biological processes such as transcription, translation, and gene regulation.
Hot spots are a small set of residues that contribute most to the binding affinity of a
protein-nucleic acid interaction. Compared to the extensive studies of the hot spots
on protein-protein interfaces, the hot spot residues within protein-nucleic acids
interfaces remain less well-studied, in part because mutagenesis data for protein-
nucleic acids interaction are not as abundant as that for protein-protein interactions.

Results: In this study, we built a new computational model, iPNHOT, to effectively
predict hot spot residues on protein-nucleic acids interfaces. One training data set
and an independent test set were collected from dbAMEPNI and some recent
literature, respectively. To build our model, we generated 97 different sequential and
structural features and used a two-step strategy to select the relevant features. The
final model was built based only on 7 features using a support vector machine
(SVM). The features include two unique features such as ΔSASsa1/2 and esp3, which
are newly proposed in this study. Based on the cross validation results, our model
gave F1 score and AUROC as 0.725 and 0.807 on the subset collected from ProNIT,
respectively, compared to 0.407 and 0.670 of mCSM-NA, a state-of-the art model to
predict the thermodynamic effects of protein-nucleic acid interaction. The iPNHOT
model was further tested on the independent test set, which showed that our
model outperformed other methods.

Conclusion: In this study, by collecting data from a recently published database
dbAMEPNI, we proposed a new model, iPNHOT, to predict hotspots on both protein-
DNA and protein-RNA interfaces. The results show that our model outperforms the
existing state-of-art models. Our model is available for users through a webserver:
http://zhulab.ahu.edu.cn/iPNHOT/.
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Background
The interaction of proteins with nucleic acids is essential in many different cellular pro-

cesses, such as translation, RNA-metabolism, gene regulation, DNA replication and re-

pair, and so on [1, 2]. The understanding of the interaction between proteins and

nucleic acids sheds light on designing new functions and regulating cellular behaviors.

Mutagenesis studies on protein-protein and protein-nucleic acid interfaces provide

important clues in exploring the drivers of the interactions [3–5]. It has been shown

that the mutation of a few interface residues to alanine can dramatically decrease the

binding affinity [6, 7]. Those residues are called hotspots (HS) [8], often defined as a

residue whose mutation to alanine generates a binding free energy difference over 2

kcal/mol [9].

While hotspots on protein-protein interfaces have been extensively studied by both

experimental and computational methods [6, 9–16], the hotspots on protein-nucleic

acid interfaces are not as comprehensively investigated. Possibly, the inherent charac-

teristics, such as electrostatic and hydration of the protein-nucleic acid interfaces, make

it difficult to characterize the energetics of mutations. In addition, very few of the ener-

getic data about the residues on protein-nucleic acid interfaces were collected in the

past decades, which make the development of computational methods at a slow pace.

Some protein-nucleic acid alanine mutagenesis data from the literature were col-

lected in the ProNIT database [17]. Based on these data, several computational

methods had been developed to predict the effect of the mutagenesis or hot spots

on protein-nucleic acid interfaces [11, 18–23]. Munteanu et al. developed a model

by the combination of an SVM (support vector machine) with a genetic algorithm

(GA) as the wrapper for feature selection to predict the hot spots on protein-

nucleic acid interfaces based on solvent accessible surface area and residue conser-

vation [11]. Pires et al. used the concept of graph-based signatures to predict the

effects of the mutations on protein-nucleic acids interfaces [23]. They built a model

called mCSM-NA that can quantitatively predict the effects of the mutations in

protein coding regions on nucleic acid binding affinities. These are two methods

that can predict hot spots or mutation effect on both protein-RNA and protein-

DNA interfaces. Note that mCSM-NA provided different sub-models according to

different nucleic acid types. As for protein-RNA interfaces, Barik et al. developed a

method, HotSPRing, to predict the hot spots at protein-RNA recognition sites [18].

The model was built by using random forests based on structural and physico-

chemical features. Recently, Pan et al. developed a method, PrabHot, for predicting

hot spots on protein-RNA interfaces by collecting data from ProNIT and literature

[24]. On the other hand, for protein-DNA interfaces, Ramos et al. developed a

computational alanine scanning mutagenesis methodology to predict the hot spots

on protein-DNA interfaces [19]. Peng et al. developed a webserver, SAMPDI

(http://compbio.clemson.edu/SAMPDI), which can predict mutation effect on

protein-DNA interfaces based on modified MM/PBSA approach [20]. Similarly,

Zhang et al. developed model, PremPDI, to predict the mutation effects on

protein-DNA interfaces by using molecular mechanics force fields and fast side-

chain optimization algorithms [21]. More recently, Zhang et al. developed a feature

based model, PrPDH, to predict the hotspots on protein-DNA interfaces [22]. Note

that the computational alanine scanning method, SAMPDI and PremPDI are all
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based on molecular mechanics force fields, so these methods are more time-

consuming compared machine-learning based methods.

Although a few computational methods have been developed to predict the mutation

effects on protein-nucleic acid interfaces, the data points used in these methods are

limited. For example, Pires et al. collected 331 single-point mutations to build mCSM-

NA and 79 mutations for testing [23]. Note that their datasets contain all kinds of mu-

tations not just alanine mutation. Barik et al. collected 80 alanine mutagenesis data to

build HotSPRing for predicting hotspot on protein-RNA interfaces [18]. Munteanu

et al. collected 177 mutations from ProNIT to build their hotspot prediction model

[11]. Peng et al. collected 105 all kinds of mutation to build their protein-DNA binding

free energy change prediction model [20]. For PrabHot, Pan et al. collected totally 209

mutagenesis data to build and test their model for predicting hotspot on protein-RNA

interfaces [24]. For the more recently published model, PrPDH, Zhang et al. collected

totally 214 mutagenesis data to build and test their model for predicting hotspot on

protein-DNA interfaces [22]. Thus, the generalization of those models could not be

well validated due to the limited number of data points.

Because of the limited sample sizes for only protein-DNA or protein-RNA interfaces,

in this study, alanine mutagenesis data on both protein-DNA and protein-RNA inter-

faces were collected from a comprehensive database dbAMEPNI [25] and other pub-

lished literature. Then, seven kinds of sequential or structural features were generated

for the interface residues. Based on the features, we were able to develop a knowledge-

based model to predict the HS on both protein-DNA and protein-RNA interfaces by

using a two-step feature selection strategy.

Methods
Benchmark datasets

Training dataset

The training dataset comes from dbAMEPNI database [25] which was built in our

group. The database contains alanine mutagenic effects data from ProNIT database

[17] and our curated data collected from literature between 2011 and 2017. Note that

the data collected from literature between 2017 and 2018 has been used as a part of the

independent test set.

Firstly, we identified 335 interface residues from dbAMEPNI database by defining the

interface residue as a residue whose buried solvent accessible surface area is larger than

0.0 when binding. Then, we detected redundancy among homologous proteins using

the PISCES server [26] with a sequence identity cutoff set to 25%. When the sequence

identity between two proteins is higher than 25%, we aligned the 3D structures of the

two proteins in PyMol and then observed the binding sites of the two proteins. If the

environment of the binding sites is different between the two proteins, we kept the cor-

responding binding sites. Finally, we obtained a dataset containing 293 interface resi-

dues, which come from 105 protein-nucleic acid complexes that consist of 74 protein-

DNA complexes, 30 protein-RNA complexes and 1 protein-RNA/DNA complexes. The

complexes and the 293 interface residues are listed in Table S1 of Additional file 1 and

S2 of the Additional file 2, respectively. According to Table S2, 102 interface residues

are common to the data in ProNIT. By using ΔΔG= 2.0 kcal/mol as cutoff, 86 of the
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293 interface residues are defined as hot spot residues and the remaining 207 residues

are defined as non-hot spot residues.

Independent test set

The independent test set comes from four different sources: (i) The independent test

set in Pires et al.’s work which comes from Barik et al.’s paper [18]. In their paper, they

collected 80 alanine mutations from 14 protein-RNA complexes. Note that these ala-

nine mutations were also included in the dbAMEPNI database later. After checking

these protein-RNA complexes, we found one complex (PDBID: 2Y8W) appeared in our

training dataset, so we removed this complex. The other complex 2XS2 was also re-

moved because the only one corresponding residue is not on the protein-RNA inter-

face. (ii) The independent test set reported in Pan et al.’s work [24]. In their work, they

collected 58 mutations as their independent test set. After carefully checking the 58

mutations, we found several problems of the dataset: (1) It includes 13 non-alanine mu-

tations; (2) The multiple mutants were wrongly considered as single alanine mutants.

For example, the mutants of 4JVH are all double mutants, however, they were used as

single alanine mutants in their dataset; (3) There is redundancy between 5EN1 and

5HO4. According to these problems, we removed part of the data and kept 33 data

points. We have summitted the 33 data points on the PrabHot server, and 23 PrabHot

scores (Table S4 in Additional file 2) were available for plotting the receiver operating

characteristic (ROC) and precision recall (PRC) curves. (iii) Literature corresponding to

the 3D structures of protein-nucleic acid complexes available in PDB database [27]

from 2017 to 2018. We identified 51 protein-nucleic acid complexes, and the corre-

sponding references were carefully examined to find the alanine mutation information.

From these articles, we obtained 16 alanine mutation data. (iv) The dataset used in

Peng et al.’s paper [20]. In their paper, the authors collected 105 missense mutations

from 13 proteins, of which 6 proteins (PDB code: 1FOS, 1HCQ, 2MXF, 3UFD, 4ATK

and 4RDU) were not overlapped with the data in dbAMEPDI. However, the mutations

of 4ATK and 4RDU are not alanine mutation. Thus, we obtained 32 alanine mutation

data from their paper.

For the proteins collected from the four sources mentioned above, we used PISCES

server to determine the sequence identity between them and the proteins in the train-

ing dataset using the sequence identity cutoff 25%. Similarly, we used PyMol to align

the two proteins and observe the binding sites if the sequence identity between the pro-

teins is higher than 25%. Table 1 shows those homologous pairs and their recognition

sites on the protein-nucleic acid interfaces. Figure 1 shows an example that indicates

how we aligned the structures of homologous pairs and observed their recognition

sites. As shown in Table 1, the four protein chains 4GZNC, 1AAYA, 4M9EA and

5VMVA are homologous pairs, Fig. 1 shows clearly that the referred recognition resi-

dues are different although the sequence identity between those chains are higher than

25%. In all, we obtained 124 interface residues which come from 32 protein-nucleic

acids complexes that consist of 22 protein-RNA complexes, 9 protein-DNA complexes

and 1 protein-RNA/DNA complexes (Table S3 in Additional file 1). By using ΔΔG =

2.0 kcal/mol as cutoff, 14 of the 124 interface residues are hotspot residues and 110 of

them are non-hot spot residues (Table S4 in Additional file 2).
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Table 1 Homologous pairs in both training and test dataset with the sequence identity and the
recognition sites

Protein1(dataset)a Protein2(dataset) Sequence
identity(%) b

Recognition site1c Recognition site2c

4GZNC (train) 1AAYA (train) 33 E182 R118,D120,E121,R124

4GZNC (train) 4M9EA (train) 34 E182 E446

4GZNC (train) 5VMVA (test) 27 E182 E535

5EXHC (train) 3QMGA (train) 34 T80,H81,Q82,K88 Q201,R213,Y216

4ALPA (train) 5UDZA (train) 74 F77 Y140,H148,H162

5EIMA (train) 5DNOA (train) 100 R349,K436,T437,
N477

N336,R338

5DFFA (train) 4B5FA (train) 35 R181 N207,R208

4RCJA (train) 4R3IA (train) 29 Y397 R475

3WPCA (train) 5ZLNA(test) 72 W47,F108,W96 F375,F402,Y537

5GXHA (train) 5H1KA (train) 99 F381,E197,Y474 N13,W14,Y15,R33,M357,R359

5U2RA (train) 2BPFA (train) 96 R283 K280,N294

5U2RA 5U8GA (train) 100 R283 M236

5U2RA 1BPXA (test) 100 R283 R283

5U2RA 4X5VA (train) 35 R283 N513

5U2RA 5TWPA (train) 26 R283 W434, H329

5U2RA 4XQ8B (train) 34 R283 Y505

5U2RA 5IIIA (train) 34 R283 E529

5HO4A (test) 2ERRA (train) 28 Q19,F66,E92,D49,
F24,H108

H120,F160,F158,F126

5HO4A 2KXNB (test) 28 Q19,F66,E92,D49,
F24,H108

I195,T196,P199,S194,R111

5HO4A 4CIOA 32 Q19,F66,E92,D49,
F24,H108

N106,Y44,N108

4L5RC (train) 3RN2A (train) 40 N236 K160,R244,K335,R311,K251,K198,K309,
K204

4HN5A (train) 1HCQA (test) 45 K442 S15,H18,Y19,E25,K32

4HT8A (train) 3QSUA (train) 31 Y25 K33

4HT8A (train) 4QVCD (train) 100 Y25 N48,N28,K31

3SPDA (train) 3SZQA (train) 98 H138,S142 F65

3OSGA (train) 1MSEC (train) 39 K49,R84,N139,
K138,R87,F52,K51

S187

3EQTA (test) 5JBJA (train) 43 E573 H406

1QRVA (train) 1J5NA (train) 38 V32,L97 K53,Y81,N33,R23,R36,Y28,K67,R40,Y88,
K60,M29,F48,K78,K22,K85

3OD8A (train) 3ODCA (train) 32 F44,V48 R122,L151,R138,I154

5FD3A (train) 4RKGA (train) 31 Y610,Y536 R526,R543

2I05A (train) 1ECRA (train) 100 R198 Q250,K89

2I05A (train) 4XR0A (train) 100 R198 H144
aThe first four letters are the PDB code and the fifth letter is the chain ID. The remark in the parentheses is the dataset
that the protein-nucleic acids complexes belong to
bHomologous pairs are defined using sequence identity cutoff value 25%
cThe first letter is the residue name in one letter, and the numbers after the letter is the residue sequence number in
the protein
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Feature extraction

Due to the special characteristics of the protein-nucleic acid interfaces, we generated 7

different kinds of features to build our model, which were described as below.

Physicochemical characteristics of 20 amino acids

As the basic unit that comprises a protein, it is the residues that interact with other

molecules. Different properties of the 20 residues have been deposited in AAindex [28],

10 of which were used as features to predict the hotspots on protein-protein interfaces

in previous studies [29–32]. The 10 physicochemical properties were considered as the

first 10 features as shown in Table S5 (see Additional file 1). The numerical values of

the 10 features are shown in Table S6 (see Additional file 1).

Depth index and protrusion index

The surface shape complementarity between proteins and nucleic acids is an important

factor in protein-nucleic acid binding. The surface geometry of residues in the interface

is quantified using features in this study. We used the PSAIA [33] program to calculate

the depth index (DI) and protrusion index (PI) for each interface residue. The program

calculates several different kinds of depth index and protrusion index including the

average values of the entire and side chain of the residue, the maximum and minimum

values of the residue’s atoms. We used the first 4 values for each residue in both bound

and unbound state as features. More specifically, these features contain the average DI

Fig. 1 An example shows the different recognition sites between homologous protein pairs. Green:4GZN;
Cyan: 1AAY; Yellow: 4M9E; Magenta: 5VMV
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of the entire residue, the average DI of the side chain of the residue, the average PI of

the entire residue, and the average PI of the side chain of the residue.

In addition, we calculated the differences of these 4 values of each residue between

bound and unbound states by using the following equations:

ΔDIt ¼ DItu−DItb ð1Þ
ΔDIs ¼ DIsu−DIsb ð2Þ
ΔPIt ¼ PItu−PItb ð3Þ
ΔPIs ¼ PIsu−PIsb ð4Þ

where, the DItu and DItb mean the average DIs of the total residue in unbound and

bound states, respectively. The DIsu and DIsb mean the average DIs of the side chain

of the residue in unbound state and bound states, respectively. We did the same for PI.

Furthermore, we calculated the relative DIs and PIs according to the following

equations:

relDIt ¼ ΔDIt=DItu ð5Þ
relDIs ¼ ΔDIs=DIsu ð6Þ
relPIt ¼ ΔPIt=PItu ð7Þ
relPIs ¼ ΔPIs=PIsu ð8Þ

In all, we obtained 16 features related to depth index and protrusion index.

Features related to solvent accessible surface area (SASA)

The residue’s solvent accessible surface area has been used as features in previous stud-

ies [11, 14, 34–36] in predicting hotspots on protein-protein interfaces. In this study,

we used the different representations of SASA as features to build our model. The

SASA was calculated by NACCESS program [37], which calculated the SASA of a resi-

due in different scenarios, for example, the absolute SASA and the relative SASA, the

SASA of all atoms, side chain atoms, backbone atoms, polar, and nonpolar atoms of

the residue. We obtained these SASAs in both bound and unbound states.

In addition, we calculated the buried SASA that is the difference of the SASA be-

tween proteins in bound and unbound states. The buried SASA has been thought to

correlate with different energy terms such as desolvation energy. In this work, we calcu-

lated different kinds of buried absolute SASA and relative SASA mentioned above. Fur-

thermore, we considered different powers of the buried absolute SASA and relative

SASA as features. The three powers we tested are 0.5, 1.5, and 2.0.

In all, we obtained 54 features related to SASA. These features can be found in Table

S5 (see Additional file 1).

Features related to electrostatic potential

Considering the electrostatic characteristics of nucleic acids, the electrostatic potential

could be benefit for predicting hotspots on protein-nucleic acid interfaces. In this study,

we used the APBS program [38] to calculate the electrostatic potential around the pro-

teins, and the procedure to calculate the electrostatic potential of a residue has been
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described in our previous study [39]. The description of the 5 features related to elec-

trostatic potential can be found in Table S5.

Hydrogen bond features

By using the WHATIF server [40] we obtained the hydrogen bonds [41] on protein-

nucleic acid interfaces. The hydrogen bond numbers formed by the entire residue and

those of the side chain with nucleic acid were counted as two features.

Secondary structure features

A residue’s secondary structure is assigned by the DSSP program [42, 43], which out-

puts 8 different kinds of secondary structure that include H (α-helix), B (isolated β-

bridge), E (extended strand), G (3-helix), I (5-helix), T (hydrogen bonded turn), S

(bend), and blank (loops). We re-categorized them into 5 different types by combining

B, T, S as turn, and G, I as helix1. Then the 5 different types of secondary structure

were represented as binary vectors by using (1, 0, 0, 0, 0) as H, (0, 1, 0, 0, 0) as E, (0, 0,

1, 0, 0) as turn, (0, 0, 0, 1, 0) as helix1, and (0, 0, 0, 0, 1) as loops.

Sequence conservation features

Based on our previous works [39, 44], we obtained 5 features from the PSSM file gener-

ated by PsiBlast. The first one is the information entropy that represents the conserva-

tion of the corresponding sequence position. In addition, we defined two kinds of

relative conservation based on the weighted observed percentage of each kind of resi-

dues for each sequence position as follows:

CNSV REL1wop ¼ P̂ra=P̂A ð9Þ

CNSV REL2wop ¼ P̂rm=P̂A ð10Þ

where, P̂x ¼ Px þ 1, Px is the weighted observed percentage of residue type x at the cer-

tain sequence position, with the formulas designed to avoid division by 0. PA is the

weighted observed percentage of the residue type “alanine” at the certain sequence pos-

ition. Label ‘rm’ means the residue type with the maximum percentage, and ‘ra’ means

the actual residue type at that sequence position. And ‘wop’ is the abbreviation of

‘weighted observed percentage’. Similarly, we also defined two kinds of relative conser-

vation based on the position specific scores in the position specific scoring matrix

(PSSM) as follow:

CNSV REL1pps ¼ Sra−SA ð11Þ

CNSV REL2pps ¼ Srm−SA ð12Þ

where, Sx is the position specific score of residue type x on the certain sequence pos-

ition. Labels ‘ra’, ‘rm’, and ‘A’ have the same meaning as above, and ‘pps’ is the abbrevi-

ation of ‘position specific score’.

In all, we obtained 97 features in this study, and the z-scores were calculated to

standardize all the features.
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Feature selection

Feature selection has become an important step for building machine learning models,

especially for high-dimensional applications. By feature selection, redundant and irrele-

vant features can be removed, and we can also avoid over-fitting, improve model per-

formance and provide faster and more cost-effective models.

Previous study [44] shows that a hybrid two-step feature selection strategy is effective

to detect relevant feature subset. In this work, we combined decision tree and sequen-

tial forward feature selection as a two-step strategy to determine the relevant feature

subset. First, we used a MATLAB function FITCTREE to select a feature subset. FITC-

TREE conducts the CART decision tree algorithm, which gives the best subset of fea-

tures to discriminate hotspots and non-hot spot residues. A decision tree is a tree

whose internal nodes are tests on input patterns and whose leaf nodes are categories of

patterns. Then, we used the sequential forward feature selection (SFS) method to deter-

mine the final feature subset.

For comparison, we also used NSGA-II (Non-dominated Sorting Genetic Algorithm

II) and Boruta algorithm to select the features. NSGA-II (Non-dominated Sorting Gen-

etic Algorithm II) is a popular method for multiple objective optimization [45]. The

Boruta algorithm is a wrapper-base feature selection method, which built using random

forest [46].

Evaluation with SVM

Support vector machine (SVM) has been used to build models for predicting hotspots

on protein-protein interfaces in several previous studies [11, 14, 15, 34], due to its low

complexity and robust output. In this study, SVMlight [47] and the radial basis function

were used to train our models. The two parameters, G and C, were optimized by a grid

search with G values from 0 to 2 and C values from 0 to 40. To avoid over-fitting, we

used the leave-one-out cross validation to evaluate the models. Then, the model was

further validated on an independent test set.

Due to the imbalance of our data set, the overall accuracy is heavily biased by the ac-

curacy of the negative examples. Therefore, we provide several different metrics, sensi-

tivity (SEN), specificity (SPE), accuracy (ACC), precision (PRE), F1 score and Matthew

correlation coefficient (MCC) to evaluate the performances of different models. These

metrics are defined as follows:

SEN ¼ TP= TP þ FNð Þ ð13Þ
SPE ¼ TP= TN þ FPð Þ ð14Þ
ACC ¼ TP þ TNð Þ= TP þ FN þ TN þ FPð Þ ð15Þ
PRE ¼ TP= TP þ FPð Þ ð16Þ
F1 score ¼ 2TP= 2TP þ FN þ FPð Þ ð17Þ

MCC ¼ TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð18Þ

where, TP, FP, TN and FN represent the numbers of true positive (predicted hot spot

residues are actual hot spots), false positive (predicted hot spot residues are actual non-

hot spots), true negative (predicted non-hot spot residues are actual non-hot spots) and
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false negative (predicted non-hot spot residues are actual hot spots), respectively. In

addition to these 6 parameters, the Areas under the Curve (AUC) of the Receiver Oper-

ating Characteristic (ROC) curve and the Precision-Recall curve (PRC) were also used

as metrics to evaluate our model. The ROC curve shows the relationship between true

positive rate and false positive rate, and the area under the curve of ROC curve

(AUROC) indicates how strongly the model separates the positive and negative exam-

ples. The PRC curve shows the relationship between precision and recall, and the area

under the curve of PRC curve (AUPRC) can also evaluate the model’s performance.

Statistical analysis to detect the relationship between features and hotspots (Wilcoxon

rank sum test)

Statistical analysis is useful to reveal the role of each feature on differentiating hot spots

from non-hot spots. Because the normal distribution of our data was not guaranteed,

the t-test could not be used to analyze the selected features. Instead, the Wilcoxon

Rank Sum test was used in the statistical analysis. The Wilcoxon Rank Sum test is a

nonparametric test to assess whether two samples of observations come from the same

distribution. The RANKSUM function in MATLAB was used in this statistical analysis.

Results and discussion
Composition and position distribution of the residues in the datasets

To give an intuition of the interface residues on protein-nucleic acids interfaces, we an-

alyzed the composition and position distribution of the residues in our datasets. Figure 2

shows the percentages of the 19 types of residues in our training dataset, independent

test set and both of the data sets. It is clear that the two positive charged residues,

Fig. 2 The percentages of the 19 types of residues in our datasets
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ARG and LYS, have the highest frequencies. This is normal because of the negative

charges of phosphate groups of nucleic acids.

The position of the interface residues in the datasets were described by a CORE_RIM

feature that was proposed in our previous paper [14]. The CORE_RIM value is defined

as the (SAStau-SAStab)/SAStau, note that SAStau and SAStab are the feature 29 and

39 in Table S5 in Additional file 1. Figure 3 shows that overall our datasets include

both residues on core and rim parts of the interfaces, although the residues in core po-

sitions are a little bit more than the residues in rim positions (see the blue bars). In

addition, the ratio of core residues in the training dataset is higher than that of the in-

dependent test set.

Feature selection

The correlations between the 97 features

In this study, we generated totally 97 features which come from 7 different kinds of

structural or sequential properties. The features from each structural or sequential

properties may be interdependent and the features from different properties could be

also interdependent. We calculated the correlation coefficients between different fea-

tures. Figure 4 shows the correlation coefficients between different features. It shows

that the features from the same structural or sequential properties are easily inter-

dependent, for example, the feature 29–48 are highly correlated because they are all

solvent accessible surface area related features and the features 49–80 are also highly

correlated because they are based the differences of solvent accessible surface areas

Fig. 3 The position distribution of the residues in our datasets by using CORE_RIM values
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between bound and unbound states. The features from different structural or sequen-

tial features are generally less interdependent, for example, the correlation between

electrostatic potential features (features 81–85) are generally independent to other

features.

According to the correlation analysis between different features, a feature selection is

necessary to find an optimal feature subset to build our model.

Features selected by decision tree

As shown in List 1, the decision tree selected 20 features from 97 original features,

which include 3 physicochemical features of amino acids, 7 features related to depth

index and protrusion index, 6 features related to solvent accessible surface area, 2 fea-

tures related to electrostatic potential, 1 feature related to secondary structure, and 1

feature related to conservation.

List 1. The features selected by Decision tree. The number in the parenthesis is cor-

responding to the feature number in Table S5.

ΔDIs (20), CNSV (93), ΔSASsa1/2 (50), ΔPIs (22), Helix (88), esp1 (81), esp3 (83), SASpau(37), Na (1), ΔDIt (19), SASbau
(33), ΔSASnr1/2 (68), PIsu (14), DIsb (16), SAStau (29), Nphb (3), PItu (13), ΔSASta1/2 (49), Hdrpo (4), DItb (15)

The final feature subset selected by SFS

From the preliminary subset of features selected by decision tree, we further used a

sequential forward feature selection (SFS) process to determine the final subset of

Fig. 4 The correlation coefficients between the generated 97 features
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features as input of the final model. In each round of the SFS process, different feature

combinations were used to train models by SVM, and the cross-validation results (F1

score) were used to evaluate these feature combinations. Thus, the contribution of each

remaining feature was identified, then the features contribute more were selected. This

strategy was also used in Yang et al.’s work [48]. We selected the top three feature

combinations in each round for the next round. Table S7 in the Additional file 1 shows

the features selected in each round and the corresponding cross validation F1 scores.

The results show that the predictive performance is convergent at the 7th round. The

best cross-validated F1 score is 0.684. The corresponding feature combination contains

7 features, which are Nphb, PItu, ΔDIs, SAStau, ΔSASsa1/2, esp3, and Helix. Nphb is

the number of potential hydrogen bonds of the residue, which means the number of

possible hydrogen bonds that a residue can formed with other molecules. PItu is the

total protrusion index of the residue in unbound state. ΔDIs is the difference of the side

chain depth indexes between bound and unbound states. SAStau is the total absolute

SASA of the residue in the unbound state. ΔSASsa1/2 is the square roots of the differ-

ences of the absolute SASAs of residue side chain between unbound and bound states.

esp3 is the electrostatic potential of the neighbor residues and the target residue. Helix

describes if the residue lies in a helix secondary structure.

Based on these 7 features, we built our final model, iPNHOT (identification of

protein-nucleic acid interaction hot spots), using SVM. The parameters of G and C for

radial basis function used in the final model are 0.1 and 40.0, respectively. The cross-

validation results show that our model achieved 0.628, 0.750, 0.684, and 0.829 for recall,

precision, F1 score and accuracy, respectively.

In addition, we plot the ROC and PRC curves based on the cross-validation results as

shown in Fig. 5a and b. The AUROC and AUPRC are 0.832 and 0.668, respectively.

Our previous work [14] in predicting hotspots on protein-protein interfaces showed

that differences between the leave one-residue out cross validation and the leave one-

protein out cross validation is small. Briefly, the leave one-residue out cross validation

is the standard leave one out cross validation in our case, for a sample in our dataset is

corresponding to a residue. When we do the leave one-protein our cross validation, the

samples belong to a protein were used as the validation set and the samples belong to

the other proteins were used to train a model. In this work, we also did a leave one-

Fig. 5 The ROC and PRC curves of the cross-validation results of iPNHOT and the predictive results of
mCSM-NA on the training data set. A. ROC curves; B. PRC curves
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protein out cross validation based on the final feature subset. The results indicated that

the leave one-protein out cross validation achieved the sensitivity, specificity and F1

score of 0.535, 0.894 and 0.597, respectively, which is worse than that of the leave one-

residue out (i.e. the standard leave one out) cross validation.

Models based on all features or the features selected only by decision tree or SFS

To validate the effectiveness of our two-step feature selection process, we also built

models based on all 97 features (AFmodel), the 20 features selected only by decision

trees (DTmodel), and the features selected only by SFS (SFSmodel), respectively. As

shown in Table 2, the AFmodel gives the lowest predictive accuracies compared with

other models. The iPNHOT model is superior to DTmodel on all the six evaluation

metrics. We inferred that using all features or the 20 features selected by decision tree

may have over-fitted the models. In addition, we did the SFS feature selection based on

the original 97 features, although it is five more times time-consuming than our two-

step feature selection process for each round. Table S8 in the Additional file 1 shows

the SFS process, it was convergent at the 9th round. Table 2 shows that the SFSmodel

is superior to iPNHOT model on all the six evaluation metrics except specificity, how-

ever, the SFSmodel are easily overfitted.

To further demonstrate the effectiveness of our two-step feature selection strategy,

we also combined NSGA-II and SVM to select the relevant feature subset and optimize

the G and C parameters of SVM. We tried different populations (50–250) and different

generations (50–250) of NSGA, as shown in Fig. 6, the best F1 score is 0.671 which

was obtained when population and generation were set to 200 and 200, respectively. In

addition, we also built model based the features selected by Boruta algorithm, which se-

lected 16 features. Based on the selected features, we did the cross validation on the

training dataset and obtained the best F1 score 0.523. Thus, we show that our two-step

feature selection strategy is superior to GA and Boruta algorithm in this study.

Comparison of different classifiers on the selected 7 features

To evaluate the effectiveness of the SVM learning method in predicting the hot spots

within protein-nucleic acid interfaces, we compared the performance of models built

by different machine learning algorithms (KNN, naïve Bayesian (NB) and Logistic Re-

gression (LR)) based on the selected 7 features. Table 3 shows that the model built

based on SVM (iPNHOT) achieved the highest recall (0.628), the highest precision

(0.750), the highest accuracy (0.829), the highest F1 score (0.684), and the highest MCC

(0.572) compared with other models. These results indicated that the SVM model

Table 2 Cross-validation results of models based on all features and the features selected by only
decision tree, only sequential forward selection, and our two-step feature selection process

Models REC PRE SPE ACC F1 score MCC

iPNHOT 0.628 0.750 0.913 0.829 0.684 0.572

DTmodel 0.570 0.681 0.889 0.795 0.620 0.485

SFSmodel 0.709 0.763 0.908 0.850 0.735 0.631

AFmodel 0.442 0.567 0.860 0.737 0.497 0.327
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outperformed the models built by KNN, naïve Bayesian, logistic regression based on

the selected 7 features.

In addition, to further evaluate the effectiveness of our feature selection process and

the SVM learning method in predicting the hot spots on protein-nucleic acid interfaces,

we also compared our iPNHOT model with the random forest model built using all the

97 features. We used all the 97 features because random forest classifier is an ensemble

learning method and the diversity of trees is important for the algorithm. One of the

important steps of the random forest algorithm is to select a feature subset randomly,

then to determine an optimal feature from the feature subset to divide the examples.

Thus, the diversity of the trees can be enhanced by using all features. We tried different

tree numbers and selected the one which gives the best predictive accuracy. The opti-

mal tree number is 68. Table 3 shows that iPNHOT achieved higher values than the

Fig. 6 The different F1 scores obtained with different populations and generations of NSGA-II

Table 3 Cross validation results of different classifiers based on the selected 7 features

Learning algorithms REC PRE SPE ACC F1 score MCC

KNN1 0.570 0.533 0.792 0.727 0.551 0.355

KNN3 0.512 0.595 0.855 0.754 0.550 0.384

KNN5 0.454 0.574 0.860 0.741 0.507 0.338

NB 0.384 0.579 0.884 0.737 0.462 0.308

LR 0.302 0.520 0.884 0.713 0.382 0.226

Random Foresta 0.430 0.649 0.903 0.765 0.517 0.384

SVM (iPNHOT) 0.628 0.750 0.913 0.829 0.684 0.572
aThe Random forest model is based on the all 97 features generated in this study, and the corresponding tree number
is 68
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random forest model for all the six evaluation metrics, demonstrating that our two-step

feature selection strategy and the SVM learning method are effective in predicting hot

spot on protein-nucleic acid interfaces.

Evaluation of our model on the independent test set

The generalization of the iPNHOT model was evaluated on the independent test set.

Table 4 shows that the recall, the specificity, the accuracy on the independent test set is

0.571, 0.845, 0.815 that is close to the cross-validation recall, specificity, accuracy of

0.628, 0.913, 0.829, respectively, which shows the good generalization of the iPNHOT

model.

Comparison with other methods

Our iPNHOT model is a single model which was built to predict the interface hot spot

residues on both protein-RNA and protein-DNA interfaces. The SBHD server [11] is

also for predicting hotspot residues on both protein-RNA and protein-DNA interfaces,

however, it is not available now. mCSM-NA server [23] contains modules to predict

mutagenic effect of residues on both protein-RNA or protein-DNA interfaces, and it is

available to the community. HotSPRing [18] and PrabHot [24] are two models for pre-

dicting hot spots on protein-RNA interfaces. However, HotSPRing server does not

work well because no results could be obtained for submitted jobs. PrabHot server only

outputs the predicted scores for predicted hotspot residues. In addition, PrabHot de-

fined the hotspot residues by using a cutoff value 1.0 kcal/mol, which is different from

the cutoff value 2.0 kcal/mol used in this study. Thus, the AUROC and AUPRC are the

only metrics that can be compared between PrabHot and iPNHOT. PrPDH [22] is a re-

cently developed method for predicting hotspot on protein-DNA interfaces. In the

method, the authors also defined the hot spot residues by using the cutoff value 1.0

kcal/mol. However, only 11 of the 32 residues in the independent test set that are on

the protein-DNA interfaces are not used to train the PrPDH model, thus it is not suit-

able to compare our model with this method because of the small number of samples.

First, we compared our model to mCSM-NA on both the training data set and the in-

dependent test set. The prediction results for all examples in the training data set and

the independent test set are shown in Table S2 and Table S4 (see Additional file 2), re-

spectively. As shown in Table 4, the cross-validation results of iPNHOT outperform

the predictive results of mCSM-NA according to all the 6 evaluation metrics. However,

only part of the training data set, collected from ProNIT, has been used to train the

Table 4 Comparison with mCSM-NA on both the training data set and the independent test set

Datasets Methods REC PRE SPE ACC F1 score MCC

Training dataset mCSM-NA 0.419 0.356 0.686 0.608 0.385 0.100

iPNHOT 0.628 0.750 0.913 0.829 0.684 0.572

Training dataset (ProNIT)a mCSM-NA 0.297 0.647 0.907 0.686 0.407 0.264

iPNHOT 0.676 0.781 0.892 0.814 0.725 0.589

Independent test set mCSM-NA 0.571 0.163 0.627 0.621 0.254 0.129

iPNHOT 0.571 0.320 0.845 0.815 0.410 0.329
aThe subset of the training data set which includes 102 residues collected from ProNIT
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mCSM-NA model. To fairly compare with mCSM-NA, we extracted the 102 interface

residues obtained from ProNIT, and compared the predictive results between iPNHOT

and mCSM-NA on these 102 data points. Table 4 indicates that iPNHOT outperforms

mCSM-NA on all the metrics except specificity.

In addition, we also compared iPNHOT with mCSM-NA on the independent test set.

Table 4 shows that iPNHOT outperforms mCSM-NA on all the metrics except recall.

In addition to the 6 performance metrics, we also plotted the ROC curves and PRC

curves to compare different methods. Figure 5a shows the ROC curves based on the

predictive results of mCSM-NA vs. iPNHOT on the training data set. For the 106 data

collected from ProNIT, the area under the curve (AUROC) of mCSM-NA is 0.668 that

is substantially lower than the AUROC of iPNHOT (0.831). Figure 7a shows that the

AUROC of mCSM-NA is 0.742 which is lower than the AUROC of iPNHOT (0.754)

on the independent test set. Figure 5b shows the PRC curves on the training data set.

For the 106 data collected from ProNIT, the area under the PRC curve (AUPRC) of

mCSM-NA is 0.590 that is substantially lower than the AUPRC of iPNHOT (0.730).

Figure 7b shows that the AUPRC of mCSM-NA is 0.458 which is higher than the

AUPRC of iPNHOT (0.256) on the independent test set.

According to the results mentioned above, our iPNHOT model is superior to

mCSM-NA on 6 metrics including precision, specificity, accuracy, F1 score, MCC and

AUROC, and mCSM-NA is superior to iPNHOT on only 1 metric that is AUPRC on

the independent test set. As for PRC curve, although some researchers reported that

PRC is suitable to evaluate the imbalanced dataset, others reported that the PRC curve

are easily affected by the example with the largest output value [49], and the empirical

PRC curve are highly imprecise estimate of the true curve, especially in the case of a

small sample size and the class imbalance in favor of negative examples [50]. The PRC

curve of our model on the independent test set demonstrates the opinions of the latter

two papers. Thus, overall iPNHOT model outperforms the mCSM-NA model.

In addition, we compared the AUROC and AUPRC between iPNHOT and the

PrabHot. Because part of the data in the independent test set have been used to train

the PrabHot model, the AUROC and AUPRC were calculated based on 23 samples

which were not used to train the PrabHot model and whose predicted scores of

Fig. 7 The ROC and PRC curves based on the predictive results of iPNHOT and mCSM-NA on the independent
test set. a. ROC curves; b. PRC curves
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PrabHot are available. As shown in Fig. 8a and b, the AUROC of PrabHot is 0.525

which is lower than the AUROC of iPNHOT (0.658) and the AUPRC of PrabHot is

0.338 which is also lower than the AUPRC of iPNHOT (0.517).

Thus, we demonstrated that our model outperforms other state-of-art methods for

predicting hotspots on protein-nucleic acid interfaces.

Furthermore, we also compared our method with two protein-DNA binding sites pre-

diction methods and two protein-RNA binding sites prediction methods. As shown in

Fig. 8 The ROC and PRC curves based on the predictive results of iPNHOT and PrabHot on the subset of
the independent test set. a. ROC curves; b. PRC curves

Fig. 9 The ROC curves based on the predictive results of iPNHOT, DNA-Bind and DP-Bind on the protein-
DNA interface samples in the independent test set
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Fig. 9, the AUROC of iPNHOT is 0.685 on protein-DNA interface samples of the inde-

pendent test set, which is higher than the two protein-DNA binding sites prediction

methods (0.167 for DNA-Bind [51] and 0.667 for DP-Bind [52]). Similarly, Fig. 10

shows that the AUROC of iPNHOT is 0.783 on protein-RNA interface samples of the

independent test set, which is also higher than the two protein-RNA binding sites pre-

diction methods (0.338 for Pprint [53] and 0.278 for DRNApred [54]).

Post analysis of the selected features of the final model

To demonstrate the importance of the features used in the final model, we did a post

analysis by removing one of the selected features and checking the performance of the

models built based on the remaining features. As showed in Table 5, when we removed

the feature Nphb, PItu, ΔDIs, SAStau, ΔSASsa1/2, esp3, and Helix respectively, the

predictive accuracies decreased as expected. Especially, the predictive accuracies

decreased substantially when esp3 was removed, which emphasizes the importance of

this feature. The electrostatic complementarity on protein-DNA interfaces have been

extensively reviewed in Harris et al.’s article [55]. Although it is still a controversy for

the contribution of electrostatic potential to the binding affinity, our results indicate

that the electrostatic potential can be a useful feature for predicting hotspots on

protein-RNA/DNA interfaces.

Fig. 10 The ROC curves based on the predictive results of iPNHOT, Pprint and DRNApred on the protein-
RNA interface samples in the independent test set
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Statistical analysis of the selected 7 features

To further evaluate the ability of the 7 selected features to distinguish hot spot from

non-hot spots, we used the Wilcoxon rank sum analysis. Figure 11 shows that three of

the 7 selected features can significantly differentiate hot spots from non-hot spots with

p-values less than 0.05, which are ΔDIs, ΔSASsa1/2, and esp3. The first features, ΔDI,

reflect the shape complementarity between protein residues and nucleic acid upon

binding. As we proposed in the “Feature extraction” section, ΔSASsa1/2 may related to

the desolvation energy upon binding. As for esp3, it is the electrostatic potential of pro-

tein surface patch around the target residue. For hot spots, the average value of the fea-

ture is 11.6 compared to 1.77 for non-hot spots. Because of the negative electrostatic

potential of nucleic acid surface, this feature may partially reflect the electrostatic po-

tential complementarity between the protein surface patch and the nucleic acid surface

patch around the target residue. Thus, these 3 features combined the effects of shape

complementarity, electrostatic potential complementarity, and the desolvation energy.

In addition to the features that were statistically important on an individual basis, the

other 4 of the 7 selected features were also kept in the final model. This suggests the

Table 5 Predictive results of the models built by removing one of the selected features

Feature removed REC PRE SPE ACC F1 score MCC

Nphb 0.535 0.605 0.855 0.761 0.568 0.405

PItu 0.570 0.700 0.899 0.802 0.628 0.5

ΔDIs 0.442 0.655 0.903 0.768 0.528 0.395

SAStau 0.593 0.761 0.923 0.826 0.667 0.559

ΔSASsa1/2 0.570 0.690 0.894 0.799 0.624 0.493

esp3 0.430 0.597 0.879 0.747 0.500 0.345

Helix 0.523 0.634 0.874 0.771 0.573 0.423

Fig. 11 Box-plots and the P-values of the 9 selected features
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possibility of coordinated effects between different features. In particular, a feature that

is not individually significant can gain significance when combined with other

information gleaned from other features.

Moreover, the analysis (Figure S1-S6) of the 20 selected features by decision tree can

be found in the Additional file 1.

Case study

To visualize the hotspot residues on the protein-nucleic acid interfaces, we plotted two

cases by using PyMol. The first one is the complex of U1 small nuclear ribonucleopro-

tein A (U1A) and an RNA, for which the PDB ID is 1AUD. As shown in Fig. 12a, 4

hotspot residues and 2 non-hotspot residues at the interface had been recorded in the

training dataset. Our model identified all the 4 hot spot residues as hotspots and the 2

non-hotspot residues as non-hotspot residues when doing both leave one out cross val-

idation and leave one-protein out cross validation. On the contrary, mCSM-NA did not

assign any of the 4 residue as hot spot residue. The second case is the complex of

Pot1(protection of telomere) and a DNA, for which the PDB ID is 1QZG. As shown in

Fig. 12b, 2 hotspot residues and 3 non-hotspot residues at the interface had been re-

corded in the training data set. Our model identified all of the 2 hotspot residues as

hotspots and all the 3 non-hotspot residues as non-hotspot residues when doing both

leave one out cross validation and leave one-protein out cross validation. However,

mCSM-NA did not detect any of the 2 hot spot residues. Note that both 1AUD and

1QZG were collected from ProNIT, which had been used to train the mCSM-NA

model.

Conclusion
The interface hot spot residues provide clues to understand the principles driving the

interaction between protein and nucleic acids. In this study, we collected a non-

redundant training dataset with 293 alanine-mutated residues on protein-nucleic acid

interfaces from dbAMEPNI database. Based on this data set, we developed a single

Fig. 12 Interface hotspot residues of U1 small nuclear ribonucleoprotein A (U1A) and an RNA and Pot1(protection of
telomere) and a DNA. a. 1AUD; b. 1QZG
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knowledge-based method to predict hot spot residues on both protein-DNA and

protein-RNA interfaces. Using the two-step feature selection strategy, we selected 7 fea-

tures from the original 97 features, which include some unique feature such as

ΔSASsa1/2, and esp3. Our model shows better performances compared with mCSM-

NA on both the training data set and the independent test set.

The selected features were further analyzed to reveal the relationship between

features and hot spots. Among the selected 7 features, the differences of 3 features for

hot spot and non-hot spot residues are statistically significant and the 3 features are

ΔDIs, ΔSASsa1/2, and esp3. The features, ΔDIs, reflect the shape complementarity or

the buried condition of the target residues. The ΔSASsa1/2 may reflect the desolvation

energy of residues. The esp3 reflect the patch electrostatic potential complementarity

around the residue. The differences of the other 4 features are not significant and the 4

features are Nphb, SAStau, and Helix. Our results show both predictive ability of single

feature and the complementarity between features are important for building our

model.
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