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Full list of author information is identification in PET images is a critical and still challenging step in the process of
avallable at the end of the article radiomics, due to the low spatial resolution and high noise level of PET images.
Currently, the biological target volume (BTV) is manually contoured by nuclear
physicians, with a time expensive and operator-dependent procedure.

This study aims to obtain BTVs from cerebral metastases in patients who underwent L-
["'CJmethionine (11C-MET) PET, using a fully automatic procedure and to use these
BTVs to extract radiomics features to stratify between patients who respond to
treatment or not. For these purposes, 31 brain metastases, for predictive evaluation, and
25 ones, for follow-up evaluation after treatment, were delineated using the proposed
method. Successively, 11C-MET PET studies and related volumetric segmentations were
used to extract 108 features to investigate the potential application of radiomics
analysis in patients with brain metastases. A novel statistical system has been
implemented for feature reduction and selection, while discriminant analysis was used
as a method for feature classification.

Results: For predictive evaluation, 3 features (asphericity, low-intensity run emphasis,
and complexity) were able to discriminate between responder and non-responder
patients, after feature reduction and selection. Best performance in patient discrimination
was obtained using the combination of the three selected features (sensitivity 81.23%,
specificity 73.97%, and accuracy 78.27%) compared to the use of all features. Secondly, for
follow-up evaluation, 8 features (SUVimean, SULpea SUVimin, SULpeak prod-surface-area,
SUVimean prod-sphericity, surface mean SUV 3, SUL e, prod-sphericity, and second
angular moment) were selected with optimal performance in discriminant analysis
classification (sensitivity 86.28%, specificity 87.75%, and accuracy 86.57%) outperforming
the use of all features.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.



http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03647-7&domain=pdf
http://orcid.org/0000-0001-9778-9252
mailto:valentina.bravata@ibfm.cnr.it
mailto:valentina.bravata@ibfm.cnr.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Stefano et al. BMIC Bioinformatics 2020, 21(Suppl 8):325 Page 2 of 14

(Continued from previous page)

Conclusions: The proposed system is able i) to extract 108 features for each automatically
segmented lesion and ii) to select a sub-panel of 11C-MET PET features (3 and 8 in the
case of predictive and follow-up evaluation), with valuable association with patient
outcome. We believe that our model can be useful to improve treatment response and
prognosis evaluation, potentially allowing the personalization of cancer treatment plans.

Keywords: Cancer, Active contour, Positron emission tomography, Biological target
volume, Radiomics

Background
Radiomics has the potential to personalize patient management extracting relevant fea-
tures from medical images for use in statistical models [1, 2]. Radiomics features can
reflect the tumour pathophysiology and potentially, the evolution of the disease [3], for
example through the evaluation of lesion heterogeneity [4, 5] known to cause treatment
failure [6], improving the prediction of patient overall survival and/or outcome.
Radiomics aim is to construct a clinically relevant predictive or prognostic model,
through the extracted features [7]. Precisely, when extracted from positron emission
tomography (PET) images, these features, quantify biological characteristics with a po-
tentially key role in the prediction of treatment response [8]. Moreover, physiological
changes may occur before detectable anatomical changes, which makes the PET a valu-
able tool for an early treatment assessment. In addition, PET may be an excellent alter-
native to magnetic resonance imaging (MRI) or computed tomography (CT) in
detecting unknown primary tumour thanks to high sensitivity for the detection of le-
sions [9]. Nevertheless, studies have demonstrated that there are numerous challenges
in the extraction of quantitative parameters, such as the standardized uptake value
(SUV) or the SUV normalized to lean body mass (SUL), from PET images [10]. In turn,
the identification of the biological tumour volume (BTV), from which to extract appro-
priate and significant features, is of primary importance for the development of prog-
nostic models. Radiomics only makes sense if the data extraction process is
reproducible and repeatable. In addition, a precise tumour delineation, the process of
defining the extent of the lesion in the image separating high uptake regions from back-
ground avoiding false-positives, is needed to avoid distortions in data extraction. This is
a critical and still challenging issue due to the low spatial resolution and high noise
level of PET images where boundaries between tissues are not always clearly defined
[11]. Currently, the BTV is manually contoured by nuclear physicians. Although man-
ual contouring seems like the most intuitive and easily implemented way of obtaining
regions of interest (ROIs), it has many drawbacks. It is operator-dependent, time-
consuming and labour-intensive. The high intra- and inter-operator variability associ-
ated with manual delineations gives less precise and mainly irreproducible results. For
example, in the study proposed by Vorwerk et al. [12], the analysis of manual contour-
ing data obtained by 18 physicians from 4 different departments highlighted a large
inter-observer variability in tumour delineation, despite detailed instructions given to
all for delineation process. A partial explanation for this high variability may be related
to the partial volume effect [13]; lesion boundaries become blurred and unclear, making

manual segmentation more challenging. This is an important limitation of several
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radiomics studies, i.e. [14], where ROIs were manually delineated. For this reason, many
PET-based automatic segmentation methods have been proposed [15-18] but no con-
sensus has been reached on the optimal delineation method recommending that no
one single method can be used for general BTV delineation [19]. The large variability
in the shape and texture of lesions makes difficult to generalize PET segmentation
methods. In addition, in follow-up examinations (i.e. after radiotherapy or neoadjuvant
chemotherapy), segmentation is challenging due to reduced metabolic uptake, lesion to
background ratio and reduced tumour volume.

This study aimed to obtain BTVs from cerebral metastases in patients who under-
went L-["'C]methionine (11C-MET) PET and to use these BTVs to extract radiomics
features to stratify between patients who respond to radio-treatment [20] or not.

Methionine is a natural amino acid that shows a greater uptake by brain cancer cells,
whereas it is low in normal cells. Precisely, 11C-MET uptake is mainly driven by the
activation of the L-mediated and A-mediated amino acid transport across the blood-
brain barrier. Although MRI remains the gold standard for diagnosis and follow-up
after radiation therapy [21], 11C-MET PET can discriminate between cancer and
healthy tissues, with great power of sensitivity and specificity. It has been reported that
the extension of tumour cell invasion can be detected more clearly by 11C-MET PET
rather than by CT or MRI approaches [22] providing complementary information to
morphological imaging. As reported in [23], PET can be combined with MRI to provide
specific information for defining the target volume for the radio-surgical treatment in
patients with recurrent brain tumours, such as glioma, metastasis, and pituitary aden-
oma, to optimize target identification for infiltrating or ill-defined brain lesions. Other
studies have shown that the 11C-MET PET specificity related to the extraction of the
tumour volume is higher compared with MRI; for example, in the study reported by
Grosu et al. [24], PET imaging was used for biological target delineation in 36 patients
that showed a significantly longer median survival compared with the group of patients
in which target volume was merely defined by MRI. Moreover, recent studies, conducted
on primary brain tumours, propose an emerging PET approach to differentiate recurrent
brain tumour from radiation necrosis using a radiomics-based model [25, 26].

For these reasons, in the management of brain disease, the integration of 11C-MET
PET imaging in radiotherapy planning or follow-up evaluations represents a desirable
step forward.

Starting from our previous study [27] where we proposed a semi-automatic method
to segment lesions in whole-body [**F]fluoro-2-deoxy-d-glucose (18F-FDG) PET stud-
ies, we have implemented a fully automatic and operator-independent system for brain
11C-MET PET studies [28, 29]. The proposed system performs all segmentation steps
automatically by individuating an optimal, operator-independent, initial ROI located
around the metastasis on an automatically selected PET slice. So, once the ROI has
been identified, it is fed to an enhanced local active contour (LAC) segmentation algo-
rithm [27]. In the previous study [27], the proposed method outperformed another
state of the art BTV segmentation method tested for comparison. In this study, the
great sensitivity and specificity of 11C-MET in differentiating between healthy and ma-
lignant tissues is used to automatically identify an initial seed to start the BTV segmen-
tation process, without any user intervention [28]. In other words, we show how this
approach may be integrated into a fully automatic protocol for the segmentation of
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brain metastases in 11C-MET PET images. Based on these BTVs, 108 radiomics fea-
tures were extracted using the open-source toolbox “Chang-Gung Image Texture Ana-
lysis” (CGITA) [30]. Since not all features carry important information, a novel
statistical system based on correlation matrix and point-biserial correlation coefficient,
was used to identify the most relevant features able to discriminate between responder
and non-responder patients. Afterwards, Discriminant Analysis (DA) was used for pa-
tient classification.

In particular, 31 brain metastases for predictive evaluation, and 25 brain metastases
for follow-up evaluation, have been considered to assess the suitability of the proposed
system as a medical decision tool. PET studies and related structures containing BTV
segmentations were imported in the CGITA toolbox to extract imaging features to in-
vestigate the predictive role of 11C-MET PET in the discrimination between patients
who respond to treatment or not.

Summarizing, we aimed i) to propose a fully automatic segmentation system of BTVs
with the consequent extraction of radiomics features, and ii) to implement a novel
radiomics model to investigate the potential role of extracted features in the prediction
of patient outcome in patients underwent 11C-MET PET examinations.

Results

For basal evaluation, 15 men and 16 women with brain metastases (without other organ
or/and bone metastases) were considered (men 62 + 9y, women 53 + 10y). Primary tu-
mours were breast (22%), brain (32%) and lung cancer (46%). For follow-up evaluation,
a subset of 10 men and 15 women with PET scan after gamma-knife or radio treatment
was considered (men’s age 56 + 8, woman’s age 53 + 10). Gamma-knife was used to
safeguard the surrounding healthy brain tissue in the case of brain disorders inaccess-
ible for a conventional surgery allowing accurate external irradiation (with a single,
high dose and steep dose gradient) and minimizing doses given to adjacent critical
brain structures. In the other cases (i.e. for big tumours), stereotaxic radiotherapy using
a conventional linac-based system was performed.

The median time between PET scans was 6 months. A clinical evaluation was carried
out by our medical staff to differentiate between responder and non-responder patients
using MRI studies after the treatment for the 6 patients without follow-up PET study,
and MRI and PET studies after the treatment for the remaining 25 patients. In particu-
lar, patients with progression or stable disease were considered as non-responders, pa-
tients with partial or complete response were considered responders.

CGITA toolbox [30], using 11C-MET PET images and automatic extracted BTVs,
allowed the extraction of 108 radiomics features for each selected metastasis. BTV seg-
mentation examples are shown in Fig. 1. For predictive evaluation, 3 features (aspheri-
city, low-intensity run emphasis, and complexity) were able to discriminate between
responder and non-responder patients after feature reduction and selection. Precisely,
asphericity is a measure of the deviation from a spherical shape, while the low-intensity
run emphasis is a textural feature based on a grey level run (a set of consecutive, collin-
ear voxels having the same grey level value). The length of the run is the number of
voxels in one direction and reflects the size of texture elements [31]. The complexity
refers to the visual information content of a texture. So, a texture is considered com-
plex if the information content is high: this occurs when there are many patches in the
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Fig. 1 Two examples of three-dimensional volume reconstructions

texture with different average intensities [32]. Best performance in DA classification
was obtained using the combination of the 3 selected features with sensitivity 81.23%,
specificity 73.97%, precision (or positive predictive value) 82.94%, negative predictive
value 71.95%, error 21.73% and accuracy 78.27%, compared to the use of all features.
All results are shown in Table 1. Corresponding receiver operating characteristic
(ROC) curves are shown in Fig. 2.

For follow-up evaluation, 8 features (SUVmeans SULpeais SUVmin, SULpeak prod surface
area, SUV pean prod sphericity, surface mean SUV 3, SUL,c. prod sphericity, and sec-
ond angular moment) were selected with optimal performance in DA classification
(sensitivity 86.28%, specificity 87.75%, precision 92.10%, negative predictive value
80.22%, error 13.43%, and accuracy 86.57%) outperforming the use of all features in the
DA classification. The various SUV and SUL related features are intensity-based met-
rics coupled with the surface area or the asphericity. The second angular moment is a
measure of texture homogeneity or uniformity [33]. Corresponding results and ROC

curves are shown in Fig. 3 and Table 2, respectively.

Discussion

To date, prognosis and treatment response evaluation in the oncological field is still
challenging. There is a crucial need to identify biomarkers predictive of patient out-
comes to improve personalized treatment. Radiomics has emerged as a potential solu-
tion to this issue, providing a multitude of features from biomedical images, i.e. PET
images. One advantage of radiomics is that it uses diagnostic images that are available
already without requiring additional exams. Despite some encouraging results, several
challenges still need to be addressed. Reproducibility and robustness of radiomics stud-
ies involving PET images are influenced, among other things, by the choice of the de-
lineation method used to identify the BTV [34]. The lesion segmentation process must
be reliable and repeatable. This can only be achieved by using computer-assisted
methods. For this reason, we propose a fully automatic segmentation system that elimi-
nates any user intervention, thus increasing result repeatability [29]. The proposed sys-
tem determines an initial ROI around the lesion, differently than in the original semi-

Table 1 Comparison of performance in DA classification for predictive evaluation

Sensitivity  Specificity ~ Precision  Negative Predictive Value  Error Accuracy
Selected features  81.23% 73.97% 82.94% 71.95% 21.73%  7827%
All features 69.90% 59.43% 69.67% 59.69% 3463% 6537%
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ROC Curves for Discriminat Analysis Classification
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Fig. 2 ROC curves for predictive evaluation. The black bold line represents the combined predicted
probability by using the 3 selected features (AUC=0.73; 95% C.l. 0.52-0.93)

automatic system [27]. Besides, we incorporate in the system the results of the DA clas-
sifications to discriminate between patients with brain metastases able to respond to
treatment or not. Our ultimate goal is to aid in creating personalized therapy.

After automatic BTV delineation and radiomics feature extraction, the applied DA
classification yields promising results. In particular, firstly we implemented a novel stat-
istical system based on correlation matrix and point-biserial correlation coefficient to
recursively eliminate features, to select the most relevant ones. Secondly, we used the
DA classification to stratify patients. Best performance in classification was obtained
using the combination of the selected features (3 and 8 features for predictive and
follow-up evaluation, respectively) compared to the use of all 108 features, improving
the specificity for more accurate risk stratification in the brain metastases.

Our results showed that 11C-MET PET radiomics has a great predictive value (sensitiv-
ity = 81.23%, specificity = 73.97%), comparable with other 11C-MET PET studies [35, 36].
In addition, 11C-MET PET showed great potential in follow-up evaluation after radiother-
apy (sensitivity and specificity were 86.28 and 87.75%, respectively), thus potentially help-
ing the clinicians to assess treatment outcomes. In the latter case, we would like to
underline that the 8 selected features include PET parameters (i.e. SUV and SUL) that are
usually taken into consideration in PET studies that do not perform radiomics analysis to
assess treatment follow-up, i.e. [37—39]. However, our radiomics analysis did not use the 8
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ROC Curves for Discriminat Analysis Classification
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Fig. 3 ROC curves for follow-up evaluation. The black bold line represents the combined predicted
probability by using the 8 selected features (AUC =0.79; 95% C.. 0.59-1.00)

selected features individually as in the above-mentioned studies, but they were combined
to classify patients (see Fig. 3).

A major limitation of the proposed study is the relatively small dataset used for the
training and validation step. So, a future study with more data is expected to yield even
better results improving the prediction of patient outcome. Finally, considering that the
proposed system and the CGITA toolbox have been implemented in the Matlab envir-
onment running on a standard PC, the whole system (from the BTV segmentation to
DA classification, see Fig. 4) could be easily integrated into the clinical setting as a
built-in tool in PET workstations. This allows clinicians to use the BTV information
both for radiotherapy treatment planning, prognosis and treatment response evaluation
to improve personalized medicine.

Table 2 Comparison of performance in DA classification for follow-up evaluation

Sensitivity ~ Specificity ~ Precision  Negative Predictive Value  Error Accuracy
Selected features  86.28% 87.75% 92.10% 80.22% 1343%  86.57%
All features 94.98% 67.55% 7549% 92.96% 19.16%  80.84%
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Automatic BTV segmentation using our tool Feature extraction using CGITA tool

Feature reduction and selection using the

Feature classification using DA approach proposed approach
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Fig. 4 The proposed workflow from the fully automatic BTV segmentation process to DA classification to
discriminate between patients who respond to treatment or not

Conclusions

In our study, the proposed system was able i) to extract 108 features for each automat-
ically segmented lesion and ii) to select a sub-panel of 11C-MET PET features (three in
the case of basal evaluation and eight in the case of follow-up evaluation) with valuable
association with patient outcome. We believe that our model can be useful to improve
treatment response and prognosis evaluation, potentially allowing the personalization

of cancer treatment plans.

Methods

Patients with brain metastases underwent 11C-MET PET/CT scan and radiotherapy
treatment, including the Leksell Gamma Knife (Elekta, Stockholm, Sweden), were con-
sidered in this retrospective analysis. Leksell Gamma Kanife is a stereotactic radio surgi-
cal device able to treat brain metastases that are inaccessible for a conventional surgery
allowing accurate irradiation to target through a metal helmet.

Functional and anatomical imaging modalities provide complementary data that can
be integrated to provide a better diagnosis and to improve the effectiveness evaluation
of oncological treatments. For this reason, the PET is always combined with CT or
MRI to provide co-registered functional and anatomical images. Anatomical imaging
also provides crucial data for attenuation correction of PET images. Metastasis segmen-
tation in PET images was performed off-line without actually influencing the treatment
protocol or patient management. No sensitive patient data were accessed. As such, after
all patients were properly informed and released their written consent, the institutional
hospital medical ethics review board approved the present study protocol.

Image acquisition

Although the 18F-FDG is the most commonly used radiotracer in PET studies, its spe-
cificity and sensitivity are notably reduced in the brain region. As a matter of fact, 18F-
EDG is a glucose metabolism tracer whose distribution involves cells according to the
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glucose transport mechanism and, consequently, it is not limited to malignant tissue,
i.e. 18F-FDG PET can be limited by unspecific uptake in inflammatory benign lesions
[40]. In [41], 18F-FDG shows limited clinical value when comparing brain tumour vol-
ume defined by metabolic imaging with the corresponding volume defined by PET/
MRI images due to low contrast between tumour and healthy tissue in 18F-FDG PET
images. Vice versa, 18F-FDG PET may be useful in distinguishing common enhancing
malignant brain tumours, particularly high grade and low-grade gliomas and lymphoma
[42—44]. Nevertheless, a high 18F-FDG uptake in surrounding healthy tissue limits its
use for the imaging of a large fraction of primary and recurrent tumours [45]. For ex-
ample, glioblastoma shows glucose uptake higher than in anaplastic astrocytoma that,
vice versa, shows hypo-metabolism. This difference could be explained by the presence
of necrosis [46]. In conclusion, 18F-FDG PET often poses a challenge in the identifica-
tion of treatment-induced necrosis, edema, inflammation, and pseudo-progression. For
this reason, other PET radiotracers have been developed, i.e. 11C-MET that shows ex-
cellent sensitivity and specificity in the detection of brain metastases [21, 22, 35].
Thanks to the injected 11C-MET radiotracer, metastasis appears as a hyperintense re-
gion. Unfortunately, 11C-MET PET is not widespread in clinical practice due to very
short half-life of 'C (around 20 min) requiring a short interval between synthesis, in-
jection, and acquisition. Consequently, only the medical centres which have an onsite
cyclotron can utilize 11C-MET radiotracer. Alternatively, [**F]fluoro-ethyl-I-tyrosine
(18F-FET) significantly correlates with brain tumour cell density and proliferation [40]
and it can be distributed to PET centres without a cyclotron unit on site (**F half-life =
110 min).

In our study, 11C-MET PET/CT imaging scans were performed at Cannizzaro Hos-
pital in Catania (Italy) in compliance with the standard brain oncological protocol in
use in this institution. Patients fasted for at least 4 h before the examination performed
on Discovery 690 scanner (General Electric Medical Systems, Milwaukee, WI, USA),
and successively were intravenously injected with MET. The PET/CT oncological
protocol started 10 min after the injection. The PET protocol included a SCOUT scan
at 40 mA, a CT scan at 140 keV and 150 mA (10s), and 3D PET scans (6 min per bed
position). ‘Ordered Subset Expectation Maximization’ with two-iterative process was
used as a 3D reconstruction algorithm. Images were reconstructed to a 256 x 256
matrix with a grid spacing of 1.17 mm?® and a thickness of 3.27 mm?®. The CT scan per-
formed contextually to the PET imaging was used for attenuation correction.

The fully automatic segmentation method

In the proposed method, PET images were pre-processed as previously described by
our group [47]. Precisely, the body-weight SUV, the most widely used PET parameter,
was used to convert PET images into SUV unit (g/ml) images. Successively, to obtain a
fully automatic BTV segmentation system starting from the one proposed [27], our al-
gorithm performs all segmentation steps automatically by individuating an optimal,
operator-independent, initial ROI located around the tumour on an automatically se-
lected PET slice. By taking advantage of the great sensitivity and specificity of 11C-
MET radio-tracers in discriminating between healthy and tumour tissues, the system
identifies the PET slice containing the maximum SUV (SUV,,) in the whole PET
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dataset avoiding any user intervention. Consequently, the SUV,,,,, voxel is used as a target
seed for a region growing segmentation [18] to automatically identify a ROI containing
the lesion. It is worth noting that the region growing algorithm is used only to obtain a
rough estimate of the lesion boundary. This initial operator-independent ROI is input to
the next component of the system, an enhanced LAC segmentation algorithm [48], as ex-
tensively explained [27]. Despite the LAC method is able of locally widening or tightening
around the lesion boundary, a stopping criterion has been implemented to prevent wrong
segmentations when a free disease slice is reached. This because the LAC algorithm is
driven by the image properties rather than by an inherent knowledge of whether the
tumour is present. In other words, the LAC is automatically stopped when a free disease
PET slice is reached [27]. In this way, the proposed system becomes fully automatic for
the segmentation of brain metastases in 11C-MET PET images [29]. In the case of mul-
tiple brain metastases, each lesion is independently processed. A different local maximum
(SUVmax-jp With j = 1:n) is identified for each lesion. By design, the first BTV contains glo-
bal SUV .. The delineation iterative procedure ends when the SUV,,,,, of the currently
processed lesion is less than 2 g/ml. However, the user will receive a warning message in
case of multiple lesions and will be able to stop the process to avoid false-positive occur-
rences (healthy tissues with SUV .y > 2 g/ml).

Radiomics features extraction

After automatic BTV delineations, 11C-MET PET studies and related structures contain-
ing volumetric segmentation were imported in the open-source CGITA toolbox [30] to
extract radiomics features from each lesion and to investigate the potential application of
radiomics analysis in patients with brain metastases. The extracted radiomics features
were grouped into first-order, second-order, and higher-order features. First-order fea-
tures derive from the histogram of PET voxel intensities such as SUV ,,x and SUV can,
SUV normalized to lean body mass (SUL), total lesion proliferation (TLP), median, skew-
ness, kurtosis, variance, entropy, etc. Second-order textural features provide information
about the regional spatial arrangement of the voxels such as their homogeneity, and con-
trast simulating the human perception of tumours in PET images. Higher-order features
provide information on local collinear voxels with the same grey level. Specifically, grey
levels inside each volume were re-sampled in 64 quantization levels and 9 texture matri-
ces in 3D with 26-voxel connectivity. Texture features were computed on grey level co-
occurrence matrix (7 indices), voxel alignment matrix (11 indices), neighbourhood grey
level difference matrix (5 indices), grey level size zone matrix (11 indices), normalized grey
level co-occurrence matrix (6 indices), texture spectrum matrix (2 index), texture feature
coding matrix (4 indices), texture feature coding co-occurrence matrix (8 indices), and
neighbourhood grey level dependence matrix (5 indices) [30, 49]. A total of 108 imaging
features were calculated for each metastasis, considering additional 49 SUV indices (see
Table 3). For follow-up evaluation, we considered the feature variations (A) in sequential

PET scans normalized to baseline examinations:

A(%) = 100 x (post-treatment feature value - baseline feature value)/baseline feature value (1)

Due to the redundancy, heterogeneity and uncertainty of the information represented
by radiomics features, the use of these data efficiently and reliably is challenging [50].
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Table 3 Radiomics features extracted from each brain metastasis

Parent matrix

Feature measure

Cooccurrence matrix (7 features)

Voxel-alignment matrix (11
features)

Neighborhood intensity
difference matrix (5 features)

Intensity size-zone matrix (11
features)

Normalized cooccurrence
matrix (6 features)

Texture spectrum (2 features)

Texture feature coding (4
features)

Texture feature coding
cooccurrence matrix (8 features)

Neighborhood gray-level
dependence (5 features)

SUV indices (49 features)

Second angular moment, contrast, entropy, homogeneity, dissimilarity,
Inverse difference moment, correlation

Short-run emphasis, long-run emphasis, intensity variability, run-length
variability, run percentage, low-intensity run emphasis, high-intensity
run emphasis,

low-intensity short-run emphasis, high-intensity short-run emphasis,
low-intensity long-run emphasis, high-intensity long-run emphasis

Coarseness, contrast, busyness, complexity, strength

Short-zone emphasis, large-zone emphasis, intensity variability, size-zone
variability, zone percentage, low-intensity zone emphasis, high-intensity
zone emphasis, low-intensity short-zone emphasis, high-intensity
short-zone emphasis, low-intensity large-zone emphasis, high-intensity
large-zone

emphasis

Second angular moment, contrast, entropy, homogeneity, inverse
difference moment, dissimilarity

Max spectrum, Black-white symmetry

Coarseness, homogeneity, mean convergence, variance

Second angular moment, contrast, entropy, homogeneity, intensity,
inverse difference moment, correlation, variance, code similarity

Small-number emphasis, large-number emphasis, number nonuniformity,
second moment, entropy

Minimum SUV, SUVmax, mean SUV, SUV variance, SUV SD, SUV skewness,

Page 11 of 14

SUV kurtosis, SUV skewness (and with bias corrected), SUV kurtosis (and
with bias corrected), TLG, tumor volume, entropy, SULpeak, Surface area,
Asphericity 1and 2 and 3, Surface mean SUV 1 and 2 and 3 and 4, Surface
total SUV 1 and 2 and 3 and 4, Surface SUV entropy 1 and 2 and 3 and 4,
Surface SUV variance 1 and 2 and 3 and 4, Surface SUV SD 1 and 2 and 3
and 4, Surface SUV NSR 1 and 2 and 3 and 4, SUVmean prod asphericity,
SUVmax prod asphericity, Entropy prod asphericity, SULpeak prod
asphericity, SUVmean prod surface area, SUVmax prod surface area,
Entropy prod surface area, SULpeak prod surface area

For this reason, we used the correlation matrix and point-biserial correlation coefficient
for feature reduction and selection, while DA [51] was used as a machine learning
method for feature classification.

Briefly, the correlation matrix was used to identify the most relevant features able to
discriminate between responder and non-responder patients. Matrix columns corres-
pond to extracted features, rows correspond to observations. The first step was to iden-
tify, for each feature, the highly correlated features (correlation coefficient greater than
0.9). For each highly correlated feature, the point-biserial correlation coefficient was
calculated between the feature and gold standard (responder vs non-responder patient).
The point-biserial correlation coefficient is used in the case of dichotomous variables
(in our case, the gold standard). Then, we selected the feature with a higher point-
biserial correlation coefficient among the highly correlated features. The remaining fea-
tures were deleted. This step was repeated for each feature of our dataset. The second
step was to recalculate the point-biserial correlation coefficient for each feature identi-
fied in the first step and the gold standard. The features with a higher coefficient were
selected (point-biserial correlation coefficient > 0.25) and area under the curve (AUC)
and confidence interval of selected features were calculated. The above-mentioned
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correlation coefficient thresholds (0.9 and 0.25, respectively) were empirically deter-
mined to provide the best performance on the present dataset with the classifier
results.

After the feature selection process, DA was used to identify the linear combination of
selected features that characterize or separate two or more classes of objects. We
trained DA using a random partition method to split data into training and validating
sets. The grouping was made so that both the training and validation sets maintained
the same responder and non-responder patient status percentage of the original dataset.
In particular, k-fold cross-validation was used to partition the whole dataset in k parts
of equal numerosity to validate the classification method. For each fold, k-1 of the data
was used as a training set and the remaining of the data as a validation set. In other
words, the whole dataset is splitting into k equal subsets, and the holdout method is re-
peated k times. Each time, one of the k subsets was used as the validation set, and the
other k-1 subsets were used as a training set. Training vectors were labelled as re-
sponder or non-responder patients. Then the average error across all experiments was
computed. In this way, overfitting and asymmetric sampling were avoided increasing
the precision of final results. In this study, k=5 has been empirically determined
through the trial-and-error method (k range: 5-15, step size of 5).
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