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CEET&E&T:{;E’;‘fy“tdostﬁavrlji“'us Background: The efficient and robust statistical analysis of the shape of plant organs
nstitute for Numerical Simulation, of different cultivars is an important investigation issue in plant breeding and enables a
University of Bonn, Endenicher robust cultivar description within the breeding progress. Laserscanning is a highly
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vailable at the end of the article computation of a shape based principal component analysis (PCA) built on concepts

from continuum mechanics has proven to be an effective tool for a qualitative and
quantitative shape examination.

Results: The shape based PCA was used for a statistical analysis of 140 sugar beet
roots of different cultivars. The calculation of the mean sugar beet root shape and the
description of the main variations was possible. Furthermore, unknown and individual
tap roots could be attributed to their cultivar by means of a robust classification tool
based on the PCA results.

Conclusion: The method demonstrates that it is possible to identify principal modes
of root shape variations automatically and to quantify associated variances out of
laserscanned 3D sugar beet tap root models. The introduced approach is not limited to
the 3D shape description by laser scanning. A transfer to 3D MRI or radar data is also
conceivable.
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Background
In breeding and precision agriculture there is a need for a precise description of the 3D
architecture of a crop, a plant organ or a harvested product, in a fast and reproducible
way [1].

Potential applications involve automated selection procedures in plant breeding of phe-
notypes with the desirable features and traits (like grain or root shape), assessment of
crop development during the growth period, enabling an optimised crop management
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and sorting out special forms or non-crop contaminants (stones, weed seeds) of har-
vested products. An additional application is the adaption of harvester settings, based on
archetypal 3D-geometries of harvested cultivars to avoid mechanical damage and by this
quality reduction.

Yield formation is the combined result of genetic characteristics and environmental
effects. In sugar beets the annual increase in sugar yield accounts 1.5% [2]. This is mainly
due to an increase in the root yield, while the sugar content of varieties remained stable
[3]. One of the main targets of sugar beet breeding is the root development, including rel-
evant quality parameters such as sugar content, non-sugar compounds or mark-content.
It can be observed that the dynamic of storage root development in sugar beet has no spe-
cific growth stages. There is no phase of maturation, and therefore, yield development and
potential can be estimated depending on the duration of the growing period [3]. Unfortu-
nately, in sugar beet development of leaf biomass is not correlated to storage root biomass
or yield formation. However, the shape of the sugar beet tap root plays a significant role
for the entire processing chain.

Besides effects of varieties, it is well known that the shape of tap roots mainly depends
on the type and status of soil, management and environmental conditions [4, 5]. A strong
correlation exists between basic root shape parameters like area, length, or radial variation
and sugar yield and quality. Additionally, size and shape is characteristic for cultivars. Fac-
tors such as formation of branches or soil-adhesion are relevant breeding traits. On-field
devices are proposed to measure and monitor basic parameters of tap roots [6] with vary-
ing degrees of success. Shape models are used for the classification of crops and weeds
[7]. Image processing methodology already plays a significant role for the observation of
plant growth [8]. Computer vision is also used for the analysis of plant root shapes. How-
ever, currently these methods are mostly based on 2D imaging modalities [9], whereas
the most precise description would result from a robust statistical analysis of the true 3D
description of tap roots. First results in imaging the 3D shape of sugar beet have been
used to extract scalar parameters of the tap root [10] such as height, width, volume and
surface area. By imaging over time the development and growth can be observed. The
resulting crop growth model can be improved by a true 4D description of the crop plants
[11]. Analysis of 3D point clouds with recent mathematical models or machine learning
approaches further improve the efficiency and biological interpretability of plant sensor
data [12]. This helps to assess the genotype-phenotype-environment interactions and to
dissect important traits [13] [14].

Agricultural crops have to cope with adverse environments but still have to maintain
productivity at the highest possible level. Here, breeding has to identify and make use of
the best combinations of traits [15, 16]. These traits are mostly quantitative and inherited
in a complex manner [13]. Although morphological changes are downstream effects of
altered gene expression, metabolic adaptations and environmental changes, their precise,
unequivocal, and unbiased identification is of utmost importance in a breeding process to
assess Genotype x Environment x Phenotype (Gx ExP) interactions [17]. So far, breed-
ing involves classification of desirable traits (usually around 20) by using empirical scales,
which can be assessed mostly by visual assessment in traditional breeding schemes [15].
Considering that there are easily 10,000 individuals or more that have to be classified
within a very short time span, the common method is prone to human bias (tiredness,
adverse and rapidly changing light conditions). The same holds true for the harvested
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produce where shapes e. g. of tuber crops have to be assessed. Unequivocal identification
of shapes or outlines is of high importance as well for purposes of precision farming where
there is a need for an on-the-flight identification of shapes and their assessment, e. g. for
the differentiation between crop and weed plants, diseased and healthy plants or plant
organs or species identification (see e. g. [18]). Further refinement of phenotyping and the
increase of traits that can be simultaneously observed calls for objective and automated
ways of trait identification. There have been various attempts so far to describe leaf or tap
root shapes with elliptic Fourier analysis [17—19]. The challenge is now to analyze true
3D shape variations into main components, while most methods so far rely on 2D image
analysis [17, 20].

Knowledge of the statistical variation of root shapes has various applications. In plant
breeding such information can be used to select tendencies with favorable traits, such
as an even shape, large crop size, or an optimal form for the use of crop harvesters and
to minimize breaking root tips, soil tare and mechanical damages. In crop management
the statistical data may help to detect deviations from the expected plant development,
which can be used in a feedback mechanism to adjust growth control parameters, such as
fertilizer or pesticides.

In this study we apply a computer vision tool for statistical analysis that is purely shape
based. Statistical models of shape have been used widely in computer vision and graphics
[21]. In a 2D setting, PCA-based models such as Active Shape [22] or Appearance Mod-
els [23] provide a parametric representation of shape that can be used for segmentation,
tracking and recognition. In a 3D setting, they are typically used for fitting to noisy or
ambiguous data or for 3D reconstruction via analysis-by-synthesis. Essentially, the statis-
tical model provides a constraint that significantly reduces the parameter space for many
shape processing problems.

It is a wide spread assumption that the input data is collected from a shape space that
is considered as a Riemannian manifold. The classical treatment of shape space is due to
Kendall [24], in which sets of landmarks are considered points on a shape manifold in
which the effects of scale, rotation and translation are factored out. The tangent plane
to Kendall’s shape space enables linear principle component analysis (PCA) in which
Euclidean distance approximates Procrustes distance. Srivastava et al. [25] propose a rep-
resentation for analysing shapes of curves under an elastic metric. Killian et al. [26] model
the space of triangulated shapes. Statistical analysis can be performed on shape spaces in
a manner that respects the Riemannian geometry of the manifold. This requires Rieman-
nian notions of concepts such as distance, mean value and covariance [27]. Based on these
quantities Fletcher et al. [28] transferred the concept of PCA to manifolds by considering
a principal geodesic analysis (PGA). The idea of PGA was used by Tournier et al. [29] to
build a statistical skeleton model and by Heeren et al. [30] to perform a statistical analy-
sis in the space of triangle meshes. However, all these approaches assume the underlying
shape space to be a Riemannian manifold. In particular, the dissimilarity of two shapes is
quantified by the length of an optimal, connecting curve. In contrast, we here consider a
purely elastic model that measures shape dissimilarity by the amount of elastic deforma-
tion energy [31]—for details on the physical and geometrical differences we refer to [32].
Using the physical model of 3D elasticity Rumpf and Wirth compute shape averages [33]
and describe a covariance analysis [34, 35] of shapes represented as boundary contours
of elastic objects. Here the elastic average is defined as the shape that minimizes the sum
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of elastic deformation energies to all the given input shapes. With an average at hand a
classical PCA is then applied to the displacements with respect to the input shapes. This
elastic shape analysis was performed on the space of triangle meshes in [36] and will be
applied in the present work to the shape space formed by sugar beet tap roots.

In our experiment the acquisition of input shapes is realized based on 3D laser
scanning—a method to recover 3D point clouds from objects. This method is well estab-
lished in the agricultural context and has been used on plants for 3D modelling of the
canopy of tomato plants [37], for in-field scanning of pear-trees [38] and imaging physi-
ological responses of leaves [39]. More detailed scans for organ specific parameterization
were also possible when using close-up laserscanning. This enables e.g. identification of
single organs [10, 12, 40] or tracking of growth on organ level [41], and it has shown to be
very accurate [42]. Close-up scanning enables high resolution and high accuracy imag-
ing with point to point distances below a millimeter [43]. This enables highly accurate 3D
surface models of various plant types.

Our contribution. In this work, we demonstrate the extraction and mathematical
description of characteristic shape features in the tap roots of different cultivars of sugar
beets. To this end, a huge data set consisting of detailed 3D descriptions of beet root
samples is reduced to a small number of important parameters without loosing relevant
biological information. Our main contributions are twofold. First, we perform a shape
based analysis of laser scanned sugar beet tap roots. In particular, one can compute a
robust and reliable shape mean as well as principal modes of shape variation on large
ensembles of sugar beets with a substantial variability in the shape geometry. In particu-
lar, the statistical tool is not based on predefined quantitative properties (such as length
or volume), and it is invariant under rigid body motions. Second, we propose an auto-
matic classification tool based on results from the statistical analysis. The number of tap
roots that were classified correctly without having been in the training data set is signifi-
cantly higher than random classification. This indicates that a cultivar based assignment
of a tap root to the corresponding cultivar is possible by only using geometrical shape
parameters. The introduced approach is not limited to the 3D shape description by laser
scanning and can be generalized for any other 3D measuring device with high precision
as structure-from-motion approaches [44] or volume-carving methods [45].

Results

We introduce a method for the statistical analysis of large ensembles of 3D tap roots
as well as a classification tool based on information gained from the statistical analysis.
To prove the benefits of our approach, four cultivars with 35 sugar beet tap roots each
were measured with a laser scanner. After several pre-processing steps each beet is finally
represented as a characteristic function.! In order to validate our classification tool, we
randomly removed 5 beets of each cultivar from the training data set. Afterwards, we
computed a shape average as the minimizer of an elastic matching functional for each of
the four training data sets separately. In the same physical setup, a principal component
analysis has been applied to the displacements between average and input shapes. This

LA characteristic function assigns 1= true to every data point inside the sugar beet volume and 0= false to all other points.
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way, we obtained principal modes of main variation within all four training data sets.
Again, each of these modes is represented by a displacement of the shape average.

The results are shown in Figs. 1 to 4 for the four different cultivars. In each figure we
show the input shapes on the left and the five main shape variations on the right, where
the middle shape (dark gray) represents the average beet shape. To better illustrate the
directions of main variations, the displacements are displayed with different positive and
negative magnitudes. Note that all input beets were scaled to have uniform volume, hence
the previously most dominant mode of uniform scaling is no longer relevant. However,
the relative order within the variances has not been affected substantially by the rescal-
ing. In detail, if ():k>k>0 describe the variances (in decreasing order) before the uniform

rescaling, where i is the dominant eigenvalue that represents the impact of uniform
scaling, and (Ag)z>1 the variances after rescaling, we observe A¢_1/Ax =~ Ai_1/xx for
k> 1.

For the variation in cultivar Berenika (see Fig. 1) the first mode can be described as a
tendency to a multiple or at least double apex (2.01), the second variation as a tendency to
a long apex or a more dull one (1.00). For the cultivar Cesira (see Fig. 2) the first variation
(1.99) is according to the second mode of variation of Berenika, the tendency from a long
apex to a dull one. The second variation is similar to the first one of Berenika (1.63).
The main variation for the cultivar Mauricia (see Fig. 3) is similar to the long apex or
a dull one (0.94), the second variation is the affinity to a multiple or clear and pointy
apex (0.79). The first two main variations of Pauletta (see Fig. 4) can be described as the
affinity to a pointy or dull apex (0.93) and the tendency from a clear and pointy apex to a
second apex at the side (0.40). Note that our model is able to capture the tendency of some
cultivars to develop multiple apices, although this introduces a strong non-convexity in
the modes. This is for example visible in the first two modes of Berenika (see Fig. 1) and
the third mode of Mauricia (see Fig. 3), which represent an initial growth of a second apex
from the root body. Even more strikingly, a/l depicted modes of Cesira (see Fig. 2) can be
associated with the development of apices which is obviously a characteristic feature of
the corresponding training data.

In a second step, the principal modes were used to derive a classification tool. Based on
the classical Mahalanobis distance, we first define a distance measure for each cultivar.
Then a given beet is classified to the cultivar that induces the lowest distance. For exam-
ple, when computing the distance of that given beet to cultivar Pauletta, we effectively
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Fig. 1 Input beets of sort Berenika (left) and first five modes of main variation (right) with average beet in
dark grey and corresponding variances A1, .. ., As (multiplied by 100)
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Fig. 2 Input beets of sort Cesira (left) and first five modes of main variation (right) with average beet in dark
grey and corresponding variances A1, . . ., As (multiplied by 100)

compute the distance to the average shape of the training data set of Pauletta. In particu-
lar, the distance measure penalizes deviations in direction of dominant principal modes of
this data set less, as these directions are supposed to be characteristic for cultivar Pauletta.

Classification results are depicted in Figs. 5 and 6, respectively. In detail, we show for
every beet to be classified the (extended) Mahalanobis distance to each of the four cul-
tivars as vertical color bars whose height is proportional to the distance (cf. Fig. 5). For
example, the height of the blue bar always represents the distance to the Berenika training
set. The validation of the classification reveals a significantly better success (i.e. 55%) in
comparison to random classification (with a p-value of 0.0045). Note that we considered
only the first 13 principal modes for each cultivar to design the distance measures (details
will be explained in the “Methods” section). If we ignore the principal modes and sim-
ply compute the distance to the average we still obtain a correct overall classification rate
of 40%. However, we observe huge differences in classification success when distinguish-
ing between cultivars (cf. Fig. 6). In detail, a beet from cultivar Pauletta was classified
correctly in 80% of the trials, whereas Berenika classification success was more or less
random (i.e. 20%).

Simplified PCA approach. For comparison reasons we also computed a Euclidean prin-
cipal component analysis on five characteristic parameters extracted directly from the 3D
point cloud. In detail, these five different parameters are root length, width, surface and

Fig. 3 Input beets of sort Mauricia (left) and first five modes of main variation (right) with average beet in
dark grey and corresponding variances A1, . . ., As (multiplied by 100)
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Fig. 4 Input beets of sort Pauletta (left) and first five modes of main variation (right) with average beet in dark
grey and corresponding variances A1, . . ., As (multiplied by 100)

volume (cf. [10]) as well as root complexity which is defined as the quotient between root
surface and volume.

Figure 7 shows the distribution of the different cultivars using the first two principal
components of the PCA. Obviously, distinguishing different cultivars or even a reliable

classification is hard, if not impossible.

Discussion

The aim of our study was to perform a statistical shape analysis and to develop a method
which allows to distinguish between different cultivars in a non-parametric way. Figs. 1
to 4 show how our method identifies the main components of shape variation. These
are mostly in line with traits for sugar beet shapes like size, maximum length, maximum
width, average radius, radial variation, circularity, the ratio width to length, and further
shape factors like surface roughness or furrow formation. Moreover, properties that seem
to be characteristic for a particular training data set can actually be extracted in form of
dominant variations. For example, the training data set of Pauletta (cf. Fig. 4, left) suggests
that this cultivar tends to have a rather slim and longish body that varies predominantly
in length whereas branching of the main tap root is usually not preferred. On the other
hand, the clearly separated first principal mode (A; > 215) captures exactly this variation

PORTN / PN @WW WW

Fig.5 Five beets of sort Berenika (blue), Cesira (red), Mauricia (black) and Pauletta (green) to be classified.
Vertical color bars upon each shape are proportional to the distance to the four different cultivars. Overall
55% beets were classified correctly (whereas 25% is random)




Heeren et al. BVIC Bioinformatics (2020) 21:335 Page 8 of 17

Pauletta -

Mauricia -

Cesira-

Berenika -

Berenika Cesira Mauricia Pauletta

Fig. 6 Visualization of results shown in Fig. 5 by means of a confusion matrix to demonstrate differences in
classification success for the four different cultivars

with respect to length and none of the first five modes represents a clear branching (com-
pared to the other cultivars in Figs. 1 to 3). Besides the qualitative modes of variation,
our method allows a robust quantification of the associated variance of the main compo-
nents of 3D shape variation. A next step would be to compare the results also at different
environments or sets of stress conditions which enables quantitative statements about the
influence of these parameters on the plant’s development. The present outcomes suggest
that it will become possible to dissect environmental from genotypic effects on the pheno-
type and thus allow a true G xExP interaction analysis [13]. Furthermore, it is envisaged
that the proposed method is adopted to other plant organs and species and likewise will
be useful for approaches in precision farming.

The results of Fig. 5 have shown a classification accuracy of about 55% which is sig-
nificantly better than a random assignment. However, the robustness of the classification
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Fig. 7 A principal component analysis of measured root traits based on five measured traits for comparison.
By using these parameters a differentiation between the cultivars is hard to achieve
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can still be improved. In particular, the dependence on the number M; of considered
principal modes in the definition of the distance measure has to be further investigated.
Furthermore, the striking differences of classification success between different cultivars
(cf. Fig. 6) has to be explored and explained in detail. We believe that increasing the
number of samples in the training data sets might improve the robustness as well as the
classification success of individual cultivars.

Currently, the resolution of the shapes is limited by the spatial resolution of the charac-
teristic functions which are defined on a 1292 voxel grid. The choice of spatial resolution
is a trade-off between a desired level of details and limitation of computation time. How-
ever, the sensor provides a resolution of about 50 microns, hence it is desirable to be
able to use the full resolution in the numerical simulations as well. To this end, future
work will focus on the reduction of the algorithm’s complexity on the one hand, e.g. by
using linearized elasticity and to use more sophisticated algorithmic features on the other
hand, such as adaptive grids and advanced parallel computing techniques. An altenative
approach is applying the method proposed in [36] to the original triangle meshes con-
structed directly from the laser scans. This shell PCA performs the same statistical shape
analysis but with a different physical model (in detail, shapes are treated as hollow objects
and one studies elastic deformations of the surface only). Moreover, it might be interest-
ing to investigate the potential application of machine learning approaches to tackle the
classification problem. Finally, we aim at the replacement of a manually moved scanner by
a device that is able to perform a high number of scans automatically. This replacement is
in particular necessary since we aim at increasing the number of samples in the training
data sets.

Conclusions

We applied an established computer vision algorithm to perform a statistical shape anal-
ysis on 3D laser scanned tap roots. The method is applied to sugar beets, where the mean
root shape and the main variations within a group of sugar beets of the same growth
period have been computed. Our investigations can be considered as a case study for the
statistical analysis of storage roots without predefined classification criteria. The method
indeed demonstrates that it is possible to identify principal modes of shape variation auto-
matically and to quantify the associated variances. In particular, the resulting dominant
modes of variations can be used to cluster scanned tap roots into categories which forms
the basis for linking growth and environmental conditions. Furthermore, this statistical
shape analysis can be used in combination with other invasive or non-invasive sensors
that access the 3D shape and can be applied to other plant organs and species as well.
Since non-invasive sensors such as MRI or radar imaging are usually affected by signif-
icant noise the statistical analysis of large ensembles of laser scanned root shapes could
help to increase the accuracy of the classification of noisy input data.

Methods

Plant material. Sugar beets were grown during summer 2012 in a central experiment
of CROP.SENSe.net. The objectives of the central experiment were the provision of
ground truth data for the interpretation of sensor measurements. The soil was a silty
loam soil (WRB: Haplic Luvisol) at the Klein Altendorf experimental research station
(6°59'N, 50°37’E) near Bonn, Germany. The mean annual temperature is 9.6 °C with an
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Fig. 8 The laserscanner-measuring arm combination with its seven degrees of freedom enables the 3D
imaging of the complete sugar beet tap root. It provides a point accuracy of 45um and a point resolution of
17um a. An RGB image of a sugar beet b is shown together with its laserscanned point cloud with a shaded
visualization with 3 million points € and the down-sampled and smoothed wireframe representation d

average annual precipitation of 625 mm. The cultivars Pauletta, Berenika, Mauricia and
Cesira—obtained commercially from KWS Saat>—were chosen because of their differing
phenology. At the end of the growing season 35 randomly chosen beets of each variety
were sampled, i.e. 140 beets in total. Rows for sampling were 2 m x3 m within a plot of
50 m? each. Seed density was 90,000 per hectare at a row distance of 0.2 m (plant to plant
distance).

Data acquisition. To acquire the 3D shape of the sugar beet tap roots a close-up laser
scanner coupled to an articulated measuring arm device [10, 40] was used (see Fig. 8).
This is a well evaluated combination for 3D plant imaging [41, 42]. Hardware details such
as resolution and accuracy are given in Table 1. With its seven degrees of freedom it is
possible to image the plant from various viewpoints to get an occlusion-free 3D model.
The output of the laser scanner is a point cloud with XYZ coordinates with more than 3
million points that is later parsed to an automatic triangulation algorithm.

Preprocessing (cf. Fig. 9, left column). Before being fed to our statistical method we
made use of the commercial 3D-CAD-Software Geomagic Studio 12 to apply basic pre-
processing routines. First, as the sensor is moved manually (see Fig. 8), visible parts from
the mounting device and the measuring table had to be removed. Second, the integrated
outlier removal function was used as well as a grid-based reduction of the point density (to

2www.kws.de
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Table 1 Hardware details for the measuring setup

3D scanning hardware

Manufacturer supporter Hexagon Metrology Ltd. UK
Model supporter Romer Infinite 2.0

Manufacturer scanner Perceptron Inc. Plymouth, MI, USA
Model scanner Perceptron Scan Works V5
Resolution 17um

Accuracy 45um

Measureable Volume spherical (1.4m radius)

used Wavelength 660nm

main application field quality management

an average distance of 0.5 mm) to enable a smooth surface generation. Subsequently, the
automatic point cloud triangulation was performed to approximate the surface boundary
S of the solid root shape O, i.e. S = 9. We then applied a uniform rescaling such that
all shapes have the same (inscribed) volume.?

The proposed statistical method requires the representation of each root shape via
a characteristic function xo on the computational domain 2 =[0, 1]3, i.e. we have
xo®) = 1lifx € O and xpo(x) = 0 else. Then, the sugar beet surface S is implicitly
represented as the interface between these two regions. To obtain such a characteristic
function, we first compute the signed distance function d : & — R of S, see [46]. In
detail, |d(x)| represents the shortest distance from x € Q to S, where d(x) > 0 if x is in
the interior of @ and d(x) < 0if x ¢ O. To this end, 2 =[0,1]? is discretized by a reg-
ular grid €2, with 1293 nodes (129 equally spaced vertices in each spatial direction of the
unit cube). Mathematically, we aim at solving the nonlinar partial differential equation
|Vd(x)| = 1 for all x € Q2 with the boundary condition d(x) = 0 if x € S, the so-called
Eikonal equation. To this end, we first evaluate the signed distance d(x) on the grid nodes
x € Qy closest to the triangles of S. Afterwards, we compute its values far from the tri-
angular surface via information propagation by a fast marching algorithm [47] to obtain
the solution d: Qj, — R of the PDE. Since the triangulated surface might have been non-
closed due to local scan deficiencies or self-occlusion, the signed distance function d may
have an incorrect sign at a number of nodes. As a remedy, we regularize d by seeking a

minimizer dpew of the energy
A(W'e - |01new|e)2 dx +o /Q |Vdnew|2dx'

Here, |d|. = +/|d|?> + €2 with ¢ = 10~* denotes a differentiable approximation of the
absolute value function and the regularization parameter was set to o = 0.01 in our appli-
cation. The nonlinear optimization is performed using a finite element approach with
multilinear basis functions on the regular grid 2 and a standard trust region method
[48]. Once dpeyw is computed we are finally able to define the characteristic function. To

3The rescaling proved to improve the later classification substantially while it does not qualitatively change the shape
analysis. See discussion above.



Heeren et al. BVIC Bioinformatics (2020) 21:335 Page 12 0of 17

Input: shapes Si,...,8m
as boundary of objects O1,..., O
given as characteristic functions

Input: point cloud from laser scanner

outlier and background removal Simultaneous computation of Input: PCA results
shape average S = 9O and (i.e. average and principal components)
matching deformations ¢; : O; — O for N different cultivars

C . via nonlinear optimization
automatic triangulation

compute individual distance measure d;

compute elastic stress o; induced by ¢; as an adaption of Mahalanobis’ distance
. . . (fori=1,...,m) for all cultivars i = 1,..., N
uniform scaling to unit volume U
compute displacement u; from @ and o; for a shape S to b_e classified
computation of signed distance function by solving a linear system (for i = 1,...,m) compute d;(S) fori=1,...,N
(via fast marching algorithm)
assemble Gram’s matrix C' € R™™ S is classified to the cultivar n
regularization of signed distance function with Cij = L g(us, i) that induces the lowest distance,
(to close holes) based on an integral scalar product g(.,.) ie. dn(S) < di(S) fori#n
compute principal compontents wi, ..., w;

evaluation of characteristic function . L
based on singular value decomposition of C'

Fig. 9 Workflow of our method for data pre-processing (left), statistical analysis (middle) and classification
(right)

this end, we set xo(x) = 1 if dpew(®) < 0 and xo(x) = 0 else, which is done for all grid
nodes x € Q. After data compression, the required memory to store the function xo is
comparable to the one needed to store an explicit triangular representation of the shape

S.

Statistical analysis model (cf. Fig. 9, middle column). In the following we will gen-
eralize the standard statistical analysis of point sets in a (linear) vector space, e.g. R”,
to the space of shapes S, where S € S represents the surface of a volumetric object
O = O(S) ¢ R”. To underpin this generalization let us briefly recall the basic concepts
of the mean and the principal component analysis (PCA) on vector spaces [49].

The arithmetic mean x of m points x1, X3, ..., &, in R”isgivenasx = % (1 +x0+. ..+
%m). It can also be characterized as the minimizer of the energy E[x] = > 1" W[x; — ],
where W[ y] = u|y|? is the elastic energy stored in a spring stretched along a vector y and
w is the associated stiffness coefficient of the spring. Indeed, the arithmetic mean is the
equilibrium position of the central hub of a network with m springs, where one end of
each spring is attached to one of the input points and the other end is connected to all
other springs at a hub so that all springs pull at this hub. If X = [x; — x| ... |x,, — ] is
the n x m (centered) data matrix, the covariance matrix is given by iXX T, A PCA now
involves a spectral decomposition of this # X n matrix, where n might be very large. Hence
we use the fact that the 7 x m matrix C = %X TX has the same (non-trivial) eigenvalues as
the covariance matrix, where m < n. Note that C;; = % g (x,- — X% — a'c) where g denotes
a suitable scalar product on R” (typically the standard Euclidean inner product (x; — x) -
(x—x)).If C = QAQT is the singular value decomposition of C with an orthogonal
matrix Q and a diagonal matrix A with diagonal entries A1 > Xy > ... > A, then
the eigenvectors of the covariance matrix are obtained via w; = > 7", \/Eq}‘ (x; — X%).
These are exactly the principal directions of variations, and the eigenvalues A; describe
the variance in that direction. Here, qj denotes the i entry in the / column Q. As g is
supposed to be positive (semi-)definite, we have A; > 0 for i = 1,..., m. Furthermore, if
we assume X1, . .., %, to be linearly independent we have Ay > ... > A1 > X, =0 as
we consider centered data, i.e. x; — ¥, ..., %, — x spans a (m — 1)-dimensional subspace.
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Now this general concept is transferred to shape statistics. In the context of tap root
shapes S; fori = 1,. .., m, the corresponding volumetric objects O; = O (S§;) play the role
of the points x;, and the vector x; —x is replaced by the optimal deformation ¢; : O; — R”
of the object O; into an object O. Here, optimal means that the deformation ¢; costs the
least elastic energy W [¢;, O;, O] = fOi W (Dyr;) dx of all deformations with ;(O;) = O,
where W (-) denotes a hyperelastic energy density acting on the local deformation gradi-
ent Dy; € R™”. This energy and thus the thereby defined shape mean is invariant under
rigid body motions, i. e. it does not change if the position or the orientation of the root
shapes is varied. The arithmetic mean of m input objects O1, Oy, ..., O is defined as

the object O which minimizes the energy

m
E[0]=) WI$,0;0].
i=1
For details we refer to [33]. Different from the vectors x; — x above, the deformations ¢;
are strongly nonlinear and cannot be used in a (linear) PCA. Instead, one can replace the
deformation ¢; by its linear representative, the associated elastic stress (cf. Fig. 10)

o= ((o(ar) ) (@ o) (0 67))

evaluated on the average shape S (the surface of the average object O) with surface nor-
mal vector v [31]. Even more intuitive, one can also replace the nonlinear deformation ¢;
by the displacement %; : S — IR” of each point on the surface S of O which is observed if
the elastic stress o; is applied at the surface of the average object. The Hessian of the cor-
responding elastic energy implies a natural scalar product g(-, -) on these displacements
u; [31, 35]. Thus, we define the matrix

1
C= m (g (wi uj))i,j:l,“qm

as a representation of the covariance operator, which is defined by
1 m
Covu = - X;g(ui, u)u;
i

and can be regarded as the analogon of the covariance matrix in the vector space case.
Again, the whole construction is rigid body motion invariant. Via the same spectral
decomposition C = QA QT of the 7 x m matrix C as above, we finally obtain the principal
modes of shape variation,

wie) = 3 o gt
i=1

Fig. 10 Sketch of the stresses o; induced by the deformations ¢; on the averaged shape & = 9O, here for
i=1,23
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and associated variances ;. A comprehensive introduction to this concept can be found
in [32, 34]. Let us emphasize that this statistical approach does not make any assumptions
on how the different shapes and their variations are configured. It is also not assumed
that the original shapes are actually elastic—this is just a mathematical tool to define the
dissimilarity between shapes.

Classification (cf. Fig. 9, right column). Sample beets were available for N = 4 differ-
ent cultivars. The training data set of cultivar j is represented as a set of displacements
(M]/;>k<1<- from the group average S;, where K; denotes the sample size. The aim of clas-
sificati70111 is to assign an arbitrary shape S or a corresponding shape displacement ,
respectively, to one of these N cultivars. In detail, we need a distance measure d; for each
cultivar that quantifies the distance of u to the set (zt;()
cultivar [ if dj(u) < dj(u) forj=1,...,N.

Our distance measure dj is an extension of the classical Mahalanobis distance. First,

. We say that u is classified to
k=<K;

we assume that we have already performed a PCA (as described above) for each cultivar
independently. Let (A’,() and (”/k) denote the eigenvalues and eigenvectors com-
k<K; k<K;

puted in the PCA of cultivar j, respectively. We define UJ; to be the linear span of <L/k>k «

<K

=N

and L[]AJ- the orthogonal complement with respect to the metric g;(., .) associated by the jth

cultivar. For some truncation value M; < K; the classical (squared) Mahalanobis distance
is given by

mlz(u) = % W .

]
=1 M

-1
Note that m]2 (M/k) = ()‘]k) , that means the Mahalanobis distance penalizes deviations

in direction of dominant eigenvectors less. On the other hand, we have m; (uJ-) = 0 for

each ut

€ L[]-J-, which requires some kind of regularization. If Pju is a projection of u
onto Uj we decompose u = Pju + (u—Pju) € U; ® LI]‘L and finally define an extended

Mahalanobis distance by
1
2 2
d; (u) = m; (Pju) + 59 (u—Pju, u—Pju) .

Here 8 > 0 is a regularization parameter. In the experiments shown in Fig. 5 we have
chosen g = 107 and M; = 13 for all four cultivars.

Numerical implementation. The matching deformations ¢; between an input object O;
and the object O, both represented by characteristic functions x; and y, respectively, are
computed using a penalty approach, where one minimizes

/ W (D)dx + y / (i — x 0 $) dx
O; [0,1]3

(for some penalty parameter y = 50) with respect to the deformation ¢. The first term
ensures that the deformation with minimum energy is found, and the second term ensures
that ¢ indeed deforms O; into O. In detail, we made use of the polyconvex energy density
W (D¢) = W(||D¢||, det D¢p) with
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- [ N A 3u A
Wia,d) = — —-d° — =1 -,
(a,d) 26l —}—4 (M—|—2>og 5 2

where the elastic parameters are ¢ = A = 1. Consequently, the average shape S,
represented by y, and the deformations ¢y, . . ., ¢, are obtained by minimizing

i

> W(D¢i)dx+1// (i — x © ¢)* dx
i= O; [0 ]3

over all ¢; and x. For details we again refer to [33]. The functions x; and deformations
¢; are discretized by 1293 nodes (i. e. a function value is assigned to each node of a grid
with 129 vertices in each space direction) so that the number of degrees of freedom scales
with 1293 - 3 - m, yielding a high-dimensional problem. The principal component analysis
basically involves a singular value decomposition of a symmetric 7 x m correlation matrix
and the solution of m linear systems of equations of size 1293 in order to translate the
boundary stresses into displacements or shape variations.
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