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Abstract

Background: Gene expression signatures for the prediction of differential survival of
patients undergoing anti-cancer therapies are of great interest because they can be
used to prospectively stratify patients entering new clinical trials, or to determine
optimal treatment for patients in more routine clinical settings. Unlike prognostic
signatures however, predictive signatures require training set data from clinical
studies with at least two treatment arms. As two-arm studies with gene expression
profiling have been rarer than similar one-arm studies, the methodology for
constructing and optimizing predictive signatures has been less prominently
explored than for prognostic signatures.

Results: Focusing on two “use cases” of two-arm clinical trials, one for metastatic
colorectal cancer (CRC) patients treated with the anti-angiogenic molecule
aflibercept, and the other for triple negative breast cancer (TNBC) patients treated
with the small molecule iniparib, we present derivation steps and quantitative and
graphical tools for the construction and optimization of signatures for the prediction
of progression-free survival based on cross-validated multivariate Cox models. This
general methodology is organized around two more specific approaches which we
have called subtype correlation (subC) and mechanism-of-action (MOA) modeling,
each of which leverage a priori knowledge of molecular subtypes of tumors or drug
MOA for a given indication. The tools and concepts presented here include the so-
called differential log-hazard ratio, the survival scatter plot, the hazard ratio receiver
operating characteristic, the area between curves and the patient selection matrix. In
the CRC use case for instance, the resulting signature stratifies the patient population
into “sensitive” and “relatively-resistant” groups achieving a more than two-fold
difference in the aflibercept-to-control hazard ratios across signature-defined patient
groups. Through cross-validation and resampling the probability of generalization of
the signature to similar CRC data sets is predicted to be high.

Conclusions: The tools presented here should be of general use for building and
using predictive multivariate signatures in oncology and in other therapeutic areas.

Keywords: Predictive signature, Predictive biomarker, Gene expression profiling,
Multivariate cox models, Metastatic CRC, Metastatic TNBC, Two-arm clinical trials,
Aflibercept
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Background
In the past several years prediction of the response and survival of patients undergoing

anti-cancer therapies, using machine learning models based on gene expression profil-

ing of tumor tissues, has been of great interest. These modeling efforts have led to

many context-dependent statistical models, typically relying on a subset of the genes

profiled, and which are loosely referred to as signatures or biomarkers. From the outset,

an important distinction has been made between purely “prognostic” signatures, which

predict outcome under a single treatment regimen (such as, for instance, breast cancer

and a single type of hormone therapy), and “predictive” signatures, which are able to

predict differential outcomes, i.e. between treatments involving different drug regimens.

The latter type of signature might ultimately be considered more important, because it

provides a criterion for choosing one drug regimen over another, and hence for opti-

mizing the treatment of patients in actual clinical settings. However, signatures derived

so far have overwhelmingly been of the prognostic type, principally because much of

the underlying data has arisen from one-arm clinical trials. In these studies (e.g. [1–6]

for breast cancer) the therapeutic effects of the drug are confounded with the natural

spectrum of patient responses, and even bringing a priori knowledge to bear, it is usu-

ally very difficult to interpret the prognostic signature as a predictor of drug response.

On the other hand, gene expression profiling studies involving two-arm clinical trials

have been rarer (e.g. [7, 8]), and the methodology for deriving predictive signatures less

prominent.

In this context, we were recently brought to analyze gene expression and associated

clinical outcome data for some two-arm clinical trials, including one [9] targeting late-

stage metastatic colorectal cancer (CRC) and designed to test an anti-angiogenic mol-

ecule, aflibercept [10, 11], and another [12, 13] targeting triple negative breast cancer

(TNBC), using iniparib, a small molecule inducer of oxidative stress. On the basis of

these data, we have been able to generate gene expression signatures which enable

stratification of the CRC or TNBC patients into groups which experience quantifiably

different progression free survival (PFS) time under treatment with aflibercept or ini-

parib, respectively, relative to treatment without these agents. It should be emphasized

that the signatures so obtained are predictive, in that they can estimate how the same

patient might differentially (hypothetically) fare under the two different treatment

arms.

In deriving the predictive signatures to evaluate for instance the effectiveness of

afllibercept for the CRC patients, building on existing approaches [14–16] we

adopted a general mathematical framework and a number of computational and

graphical devices which should be portable across many indications and indication-

specific statistical models. The more specific feature of the statistical model used

for CRC is that it is based on the CRC intrinsic molecular subtypes [17, 18], which

are used to first transform the input gene expression profiles into a continuous

feature space of lower dimensionality, an approach we have termed subtype correl-

ation (subC). For TNBC we have adopted another starting approach which we have

termed MOA modeling, which is based on the simple expedient of restricting

genes to the presumed mechanism of action of iniparib, namely genes involved in

oxidative stress response. However we emphasize that the general mathematical

framework presented here is independent of the details of subC or MOA, and
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starts with the concept of the differential log hazard ratio (dLHR) as the main bio-

marker of interest [14]. The computational and graphical devices include survival

scatter plots, for graphically emphasizing the predictive power of the biomarker;

the hazard ratio receiver operating characteristic (hROC), which shows the tradeoff

between the stringency of patient selection and treatment benefit to the patients;

the area between curves (Abc), which enables model optimization; and the patient

selection matrix (PSM), which numerically summarizes the consequences of specific

assignments of patients to predicted response groups. In all, we believe that these

“use cases” provides good examples of systematic signature construction, and that

the methods presented here should be of general utility to those engaged in pre-

dictive signature discovery.

In what follows we first focus on signature derivation for the CRC patients, before

covering in a more abbreviated way a similar but not identical analysis carried out for

the TNBC clinical trial.

Results
Experimental design for the AFLAME two-arm clinical trial

The CRC data analyzed was generated by a phase 3 two-arm clinical trial called AFLA

ME [9], conducted to test the efficacy of the anti-angiogenic, biologic drug aflibercept

[10], in combination with standard-of-care chemotherapy (FOLFIRI panel [19]), for pa-

tients with metastatic colorectal cancer. In the trial, patients were randomly assigned in

1:2 ratio to the two treatment arms, the first using FOLFIRI alone (the “placebo” arm),

and the second with FOLFIRI augmented by aflibercept (the “aflibercept” arm). Out of

the total of n = 332 patients with clinical outcome data (109:223 placebo:aflibercept as-

signment ratio), for n = 238 patients, archival, formalin-fixed paraffin-embedded (FFPE)

samples of colorectal tissue derived from the original patient biopsies were profiled for

gene expression quantification through RNA-sequencing (RNA-seq) on the Illumina

HiSeq 2000 platform [20]. For the analyses described here a subset of the data consist-

ing of n = 209 gene expression profiles (68:141 placebo:aflibercept ratio), obtained after

quality-control of samples for tumor content and quality of RNA-seq profiling (see

below) was used.

Associated clinical information was available for almost all of the trial subjects.

Measured clinical variables for each subject included assigned treatment arm,

progression-free survival (PFS) time and censoring status, corresponding values for

overall survival (OS) time, and objective response (OR). Overall, significant increase

in PFS for aflibercept relative to placebo was observed, with computed hazard ratio

hR = 0.618 [0.48, 0.79]0.95 and P-value pR = 2.8 × 10− 4 (log-ranks test) obtained from

analysis for all n = 332 patients. The n = 209 subset of these patients with high-

quality gene expression profiles exhibited a smaller aflibercept to placebo hazard

ratio hR = 0.486 [0.35, 0.67]0.95 (pR = 2.8 × 10− 4) which however was not statistically

significantly different from that obtained for the entire cohort of n = 332 patients

(hR = 0.486 falls within the 95% confidence interval of the distribution inferred for

the larger population; P-value = 0.062), and thus reflected normal variance in sam-

pling from the parent population.

The focus of the regression models presented here was in prediction of PFS.
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Data set assembly and pre-processing

Raw RNA-seq data (FASTQ files) for each of the n = 238 patient samples with matched

outcome data in the AFLAME corpus were processed by computer by sequentially ap-

plying the Star aligner [21] and Cufflinks transcript-abundance estimation [22] algo-

rithms, generating signal estimation for 26,775 genes for each sample. Quality control

was then performed, by retaining only profiles with at least minimum tumor content in

the original sample, by eliminating profiles with low RNA-seq read statistics, and by re-

moving outliers as detected in a subsequent principal components analysis. The

remaining n = 209 gene expression profiles were then quantile-normalized together [23]

to create a single data matrix. Expression values were individually log2-transformed,

and batch effects removed by using the batch correction algorithm ComBat [24]. Fi-

nally, gene expression data was standardized by mean subtraction and division by

standard deviation for each gene independently: more specifically, if X refers to the

{p × n} gene expression data matrix after log2 transformation, with rows i = 1, …, p cor-

responding to genes, and columns j = 1, …, n to samples (p = 26,775, n = 209), then the

expression values xij for gene i were standardized into values yij according to the

equation

yi j ¼ Zðxi jÞ ≡ xi j − �xi
si

; j ¼ 1;… ; n; ð1Þ

where xi and si are the mean value and sample standard deviation of xij across the n

samples. The final result was an {n × p} = {209 × 26,775} data matrix Y, of normalized

and standardized gene expression values, which was the starting point of the analyses

presented below (see Additional files 1 and 2 for the non-standardized gene expression

data matrix and the corresponding clinical metadata, respectively).

Multivariate cox regression models for two-arm clinical studies

To build a predictive signature, we used multivariate Cox proportional hazard models

[25, 26] to express the statistical dependence of patient survival time on both gene ex-

pression and treatment arm. For a patient with gene expression vector x (which for the

CRC example has been standardized in accordance to Eq.(1)) the models were of the

form

log
λ tjz; xð Þ
λ0 tð Þ

� �
¼ β0z þ

XK
l¼1

βl � ~xl þ z
XK
l¼1

γ l � ~xl; ð2Þ

where λ(t| z, x) is the hazard function (or risk per unit time) at time t, for the individ-

ual with covariate vector (z, x), λ0(t) the baseline hazard function (the hazard which ap-

plies to an individual with all covariates exactly equal to 0), and where z is a binary

indicator of treatment arm, with z = 0 for the control treatment arm and z = 1 for the

aflibercept treatment arm. The symbol x indicates the entire gene expression vector

(here of dimension p = 26,775), while the variables ~xl; l ¼ 1;… ;K ; for some K « p,

refer to reduced-dimensionality covariates which are obtained from x using the CRC

intrinsic subtypes, as explained shortly below. t refers to PFS time, here expressed in

units of months.
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The left-hand side of Eq.(2) is equal to the log-hazard-ratio, which for brevity we de-

note by the symbol

ξðz; xÞ ¼ logðλðtjz; xÞ
λ0ðtÞ Þ: ð3Þ

On the right-hand side of Eq.(2) the set of variables β0, and {βl, γl}, l = 1, …, K are the

Cox model coefficients, with the symbols β and γ representing direct and interaction ef-

fects, respectively. As will be explained below, the interaction terms are central in the

prediction of optimal treatment for a given patient.

Projection onto the CRC subtype centroids generates a dimensional reduction

Because of the high dimensionality of the gene expression data, it was essential that the

models be appropriately regularized [27] through feature selection and/or transform-

ation of selected features, effectively operating a dimensional reduction on the input

feature space. This was done using a priori knowledge about colorectal cancer, in the

form of existing classifications of CRC profiles into so-called “intrinsic” subtypes. Sev-

eral CRC subtype classification schemes exist [18], each based on unsupervised (cluster-

ing) analyses of independent bodies of gene expression data. Most of the classification

schemes are embodied by a set of reference profiles (“centroids”), each centroid within

a given set defining an idealized instance of a different subtype. In a given classification

scheme the centroids are defined on a generally small subset (10s to 100 s of genes) of

the total collection of genes defined for a given gene expression corpus (~ 20,000

genes). While the different extant subtyping schemes are not strictly consistent in terms

of the subtype memberships predicted [18], one can regard each collection of centroids

as providing a small (mathematical) basis of vectors spanning the space in which gene

regulation biologically important for CRC is occurring, and hence as directly providing

the reduced-dimensionality feature space over which the regression models should

plausibly be built.

In the present work we have used two CRC subtype classification schemes as bases

for constructing the predictive signatures. These schemes are namely 1) the classifica-

tion defined by Laurent-Puig and collaborators and described in Marisa et al. [17] (here

labeled LP) and 2) the “consensus molecular subtypes” classification defined by Guin-

ney et al. [18] (here labeled CMS), deriving from a consensus between six independent

subtyping schemes, including the LP scheme. The corresponding signatures will be re-

ferred to as subC-LP and subC-CMS.

As a definite example of the methodology, consider the subC signature based on the

LP classification (subC-LP signature). Under the LP scheme [17], a given CRC sample

is classified into one of six distinct subtypes labeled {C1, …, C6}, in accordance to the

centroid with which its gene expression profile has the largest correlation, the centroids

being defined on a restricted set of 57 genes. The six centroids {c1,. .., c6} defining the

six LP subtypes {C1, …, C6} are given in Additional file 3 (and see Additional file 4 for

the corresponding centroids for the four CMS subtypes).

Note that in generating the signature, discrete classification into subtypes is not ne-

cessary or desirable; rather the centroids directly define a set of continuous variables.

Thus for a given input profile, the normalized and standardized gene expression vector
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x, with values for 26,775 genes, is transformed into a vector of 6 variables, by comput-

ing the correlation of x to each of the six LP centroids {c1,. .., c6}. Mathematically, x is

transformed into a 6-dimensional vector ζ by the formula

ζ j ¼ tanh − 1ðrðc j; xÞÞ; j ¼ 1;… ; 6 ; ð4Þ

where r (cj, x) denotes the Pearson correlation coefficient of the vector x with the

centroid cj (where only genes overlapping between the centroid and gene expres-

sion profile components, namely in the present case 54 genes, are used). In Eq.(4)

the function tanh− 1 implements the Fisher-transform of the correlation coefficient

(a standard symmetrizing transformation [28]). In geometrical terms, Eq.(4) can be

considered a (non-linear) projection of x onto a vector space of much lower

dimensionality.

A heat map of the ζ coefficients deriving from the n = 209 AFLAME data matrix is

displayed in Fig. 1, showing the continuous set of low-dimensionality features on which

the subC-LP regression model is built. Setting ~x ¼ ζ 0 , where the prime indicates mean-

centering, the general Cox regression model of Eq.(2) becomes

ξðz; xÞ ¼ logðλðtjz; xÞ
λ0ðtÞ Þ ¼ β0thtrueinz þ βT � ζ 0 þ zthtrueinγT � ζ 0; ð5Þ

Fig. 1 Projection onto CRC subtypes reduces the input gene expression data set to a 6-dimensional space.
The example shown here is for the LP subtyping scheme defined by Marisa et al. [17]. Starting from the full
gene expression matrix (a), transformation by Eq.(4) (reproduced at the top of figure b) generates the 6 ×
209 matrix of ζ coefficients shown as a red-blue heat map (b), with the corresponding discrete subtype
assignments indicated by the colored bar at the top. The subC regression model uses the ζ coefficients as
covariates (Eq.(5), reproduced at the bottom of figure b)
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where as before z ∈ {0, 1} is a binary covariate indicating the treatment arm

(z = 0 for placebo, z = 1 for aflibercept), β0 the corresponding treatment arm co-

efficient, and β and γ 6-dimensional vectors of coefficients for direct and inter-

action effects. The coefficients in Eq.(5) were estimated using standard iterative

methods based on partial likelihood maximization [26] (R programming environ-

ment [29]). The resulting values for the subC-LP Cox coefficients are given in

Table 1.

Differential log-hazard-ratio as a predictive biomarker

Based on the fitted model of Eq.(5), for a given patient, we define the differential

log-hazard-ratio (dLHR) Δξ as the logarithm of the hazard-ratio of the aflibercept

arm to that of the control arm. For gene expression vector x, Δξ is given by the

expression

ΔξðxÞ ¼ logðλðtjz ¼ 1; xÞ
λðtjz ¼ 0; xÞÞ ¼ ξðz ¼ 1; xÞ − ξðz ¼ 0; xÞ; ð6Þ

where ξ(z, x) is given in Eq.(3). By definition of the hazard functions, patients with

Δξ(x) < 0 should have generally better survival in the aflibercept arm than in the control

arm, and conversely for patients with Δξ(x) > 0. Thus if the model underlying the calcu-

lation of Δξ is validated, Δξ(x) can then be used as a “biomarker” for selecting optimal

treatment for a given patient [14].

Using Eq.(5) in Eq.(6) we have

ΔξðxÞ ¼ β0 þ γT � ζ 0; ð7Þ

so that the dependence of Δξ(x) on gene expression arises entirely from the

Table 1 Cox coefficients for the subC-LP or subC-CMS models trained on the AFLAME data. Values
of the coefficients are indicated along with 95% confidence intervals and P-values

subC-LP

Component beta [CI 95%] Pbeta gamma [CI 95%] Pgamma

beta0 −0.79 [−1.12, − 0.45] 4.20E-06

C1 −1.77 [−6.79, 3.24] 4.90E-01 6.48 [0.73, 12.22] 2.70E-02

C2 −1.21 [−3.83, 1.41] 3.70E-01 2.56 [−0.43, 5.54] 9.30E-02

C3 3.49 [−0.44, 7.42] 8.20E-02 −5.94 [−10.35, − 1.53] 8.30E-03

C4 −0.19 [−4.75, 4.36] 9.30E-01 2.79 [−2.55, 8.13] 3.10E-01

C5 3.11 [−2.57, 8.78] 2.80E-01 −8.89 [−15.63, − 2.15] 9.70E-03

C6 0.75 [−2.52, 4.02] 6.50E-01 −3.41 [−7.25, 0.43] 8.20E-02

subC-CMS

Component beta [CI 95%] Pbeta gamma [CI 95%] Pgamma

beta0 −0.75 [−1.08, − 0.42] 7.90E-06

CMS1 5.81 [−12.96, 1.35] 1.10E-01 17.18 [6.91, 27.46] 1.00E-03

CMS2 6.29 [−14.94, 2.36] 1.50E-01 19.15 [6.52, 31.78] 3.00E-03

CMS3 −3.07 [−9.42, 3.27] 3.40E-01 12.02 [2.86, 21.18] 1.00E-02

CMS4 5.38 [−13.52, 2.76] 2.00E-01 16.79 [4.75, 28.83] 6.30E-03
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multivariate interaction terms γl, l = 1,. .., 6. Although the structure of Eq.(6) is simple,

qualitatively different predictive outcomes are possible depending on the signs and

values of the interaction terms. This is illustrated in Fig. 2, where we show in schematic

form a multivariate Cox model with treatment, gene expression and interaction effects

(Fig. 2a, Cox coefficients β0, β1 and γ respectively). For this model, three qualitatively

distinct scenarios are possible: i) if the interaction term is 0 (Fig. 2b, γ = 0 with say β0,

β1 < 0, ‘no interaction’ case), the lines depicting the log-hazard-ratios for the patients in

the two treatment arms are parallel, Δξ(x) = β0 = constant < 0, and the aflibercept arm

is always equally favored; ii) on the other hand, if the interaction term is non-zero (Fig.

2c, with say γ > 0, β0, β1 < 0 and |γ| < |β1 |, ‘moderate interaction’ case), for the range

depicted the aflibercept arm is still always favored, but some patients will benefit mark-

edly more than others, iii) finally, if the interaction term is non-zero and large (Fig. 2d,

with say γ < 0, β0, β1 > 0 and |γ| > |β1 |, ‘strong interaction’ case), the lines depicting the

log-hazard-ratios may cross, splitting the prospective patient population into two

groups, each favored by a different treatment arm.

Figure 2b-d also illustrates the difference between prognostic and predictive bio-

markers. In all cases gene expression is strongly prognostic of patient survival: thus

the prognostic biomarker ξ indicates that patients in a given treatment arm may

exhibit widely varying survival times. On the other hand, the predictive biomarker

Δξ focuses on comparison of the two treatment arms, and in some cases may vary

little (as in Fig. 2b), despite strong variation in the two treatment arms taken

separately.

Fig. 2 Role of the {treatment-arm × gene expression} interaction term in the Cox models. a Schematic
equation for the log-hazard-ratio ξ as a function of treatment arm and gene expression, showing both
direct and interaction terms. b ‘no interaction’ case: log-hazard-ratio profiles in the absence of interaction
effects (γ = 0), with β0, β1 < 0: the aflibercept treatment arm is always favored, and the signature is only
prognostic, with the same dependence on gene expression in both treatment arms. c ‘moderate
interaction case’: with γ > 0 and β0, β1 < 0, and the range of x indicated, all patients benefit from aflibercept
but some more than others. d ‘strong interaction case’: with γ < 0, β0 < 0 and | γ | > β1 > 0, the optimal
treatment may ‘flip’ depending on x
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Model cross-validation

To robustly estimate the predictive performance of Δξ, 5-fold cross-validation was ap-

plied throughout. In this procedure [15, 30, 31], the set of n = 209 samples was first

randomly divided into five equal “folds” of approximately 42 samples each, one fold

then being removed at a time to constitute an on-the-fly test set, and the remainder of

the data being used as a training set, for which the model variables were computed.

The differential log-hazard-ratios Δξ were then computed for each of the test instances

in the removed fold, and the overall procedure was repeated until exhaustion of all five

folds. With Δξk (x) denoting the differential log-hazard-ratio function for expression

vector x for the model trained with the k-th fold removed, the cross-validation thus

generates a collection of biomarker values for all n = 209 instances,

C ¼ Δξki xið Þ; i ¼ 1;…; n
� �

; ð8Þ

where ki refers to the fold in which the i-th sample resides and xi to its expression

vector. Biomarker performance was then estimated using all n values of Δξ pooled

together, as if they had been generated by a single model on a completely inde-

pendent test set with n samples, an approach corresponding to the concept of

“pre-validation” [32].

Biomarker performance: the hazard ratio receiver operating characteristic

A “survival scatter plot” (SSP) of observed survival time versus the cross-validated dif-

ferential log-hazard-ratio Δξ can be used to gauge how well the model predicts differ-

ences in survival of the patients between the two treatment arms. An example is shown

in Fig. 3, where the progression free survival time (PFS) is plotted against Δξ for the

subC-LP signature. In the graph, each dot corresponds to a patient, with red and blue

dots indicating individuals in the control and aflibercept arms, respectively (censored

data is indicated by open circles, uncensored data by filled circles). Because the values

of Δξ are derived from 5-fold cross-validation, test and training data used in prediction

for each individual are thus independent, and Fig. 3 should reasonably reflect how well

the model will generalize on similar types of data.

If the model illustrated in Fig. 3 is truly predictive of differential outcome, patients

with Δξ < 0 should generally have markedly better survival in the aflibercept treatment

arm than in the control arm, and conversely for those with Δξ > 0. These assertions are

qualitatively verified, at least for large |Δξ|: thus for patients with Δξ ≤ − 0.815 (a split

at approximately the median value of Δξ, defining the left-hand side of Fig. 3) a fraction

of the blue dots lies well above the red dots in the figure, indicating longer survival for

the aflibercept-treated patients, with observed aflibercept to placebo arm hazard ratio

hR = 0.28 for this group. For patients in the complementary range Δξ > − 0.815 (right-

hand side of Fig. 3) the two populations of dots are too intermingled for easy visual dis-

crimination, but the computed hazard ratio is hR = 0.738, still less than 1 and hence

consistent with predicted Δξ being negative for the most of the patients in this group.

The overall distribution of values of Δξ is thus consistent with the ‘moderate inter-

action’ scenario shown in Fig. 2c.

To go beyond the qualitative appraisal of Fig. 3, we quantify the correlation between

survival times and Δξ by choosing a hard threshold Δξ = Δξc, which splits the patient
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population into predicted aflibercept-sensitive (S) (Δξ ≤ Δξc) and aflibercept relatively-

resistant (R) (Δξ > Δξc) response groups (see arrows pointing to the selected groups in

Fig. 3). Within each group, the patients in the two treatment arms are then compared

using a univariate Cox model (aflibercept relative to control), resulting in hazard ratios

hR(S) and hR(R) and associated P-values pR(S) and pR(R), for S and R groups respect-

ively (note that with the given order of treatment arm comparison, hR < 1 always indi-

cates better survival in the aflibercept arm, whatever the response group).

The value of the threshold Δξc is so far arbitrary, and in fact we are free to compute

hR(R) and hR(S) for all values of Δξc, as the threshold is swept left to right across the x

axis of Fig. 3, this procedure generating n + 1 discrete values of hazard ratios for each

of the two patient groups, corresponding to n + 1 distinct binary partitions of the pa-

tient population. For each value of Δξc we can simultaneously record q, the fraction of

individuals in the aflibercept-sensitive group (0 ≤ q ≤ 1). We can then parametrically ex-

press hR(R) and hR(S) as functions of q, the result being the “hazard ratio receiver op-

erating characteristic” (hROC), which measures the tradeoff between stringency of

patient selection and aflibercept-to-control treatment benefit for each of the patients

groups. The hROC can be considered an extension of the so-called subpopulation

treatment effect pattern plot or STEPP [16], with added emphasis on the separation

Fig. 3 A survival scatter plot shows that Δξ is a predictor of differential patient sensitivity. For the subC-LP
signature, observed PFS times are plotted versus the cross-validated differential log-hazard-ratio Δξ for each
the n = 209 patients considered in the AFLAME panel. Points for control and aflibercept arm patients are
displayed in red and blue, respectively,with a mix of censored (full dots) and uncensored (open dots) data
in each category. The binary classification into “sensitive” (S) and “relatively-resistant” (R) groups that obtains
with threshold Δξc = − 0.815 (dashed vertical line) is indicated by the arrows at the top of the plot, with
resulting aflibercept-to-control hazard ratios hR shown alongside. For Δξ≤ − 0.815, it can be seen that
patients in the treatment arm (blue) tend to have longer survival than those in the control arm (red), with
many blue dots higher than red dots, and that this asymmetry is greater than for patients with Δξ > − 0.815
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between S and R groups as a function of decision threshold and concomitant tradeoffs.

The hROC curves corresponding to Fig. 3 are shown in Fig. 4a, with red and blue lines

denoting hR(R) and hR(S), respectively, both plotted against q. The concomitant pro-

files of p-values pR(R) and pR(S) are shown in Fig. 4b.

Note that a general property of the hROC is that if hR (all) denotes the hazard ratio

between treatment arms for all patients taken together (horizontal dashed line in Fig.

4a at height hR = hR (all) = 0.486), then as q→ 1 we have hR(S)→ hR (all) (since in this

limit the sensitive group consists of all the patients; see behavior of the blue line at the

right of Fig. 4a), while hR(R) displays a large variance (as it is derived from a vanish-

ingly small numbers of individuals; see the red line at the right of Fig. 4a). A similar be-

havior obtains for the opposite limit q→ 0, but now with the roles of hR(S) and hR(R)

reversed (left-hand side of Fig. 4a). In between these limits, the individual hazard ratio

curves can vary; however, in the specific example of Fig. 4a the curves are well-

separated, with hR(S) < hR(R) almost everywhere.

For a given threshold Δξc we can quantify the statistical significance of the cross-

validated predictions by the P-value pR(S) [14]. Thus for Δξc = − 0.815 we have

pR(S) = 9.2 10− 6 (vertical dashed line at q = 0.48, Fig. 4b) corresponding to the

small hazard ratio hR(S) = 0.28 (Fig. 4a).

Model optimization: the area between the curves

If a regression model is a good predictor of differential survival, then in general the cor-

responding hROC curves will be well-separated, ideally with hR(R) » hR(S) for a signifi-

cant range of q, a situation which offers the possibility of a large treatment benefit for

Fig. 4 The hazard ratio receiver operating characteristic (hROC) quantifies the predictive performance of the
biomarker. a For the subC-LP signature, the hazard ratios of aflibercept-treated patients versus baseline-
treated patients in the relatively-resistant and sensitive populations, hR(R) (red) and hR(S) (blue) respectively,
are plotted versus the fraction q of patients declared sensitive, all quantities being generated parametrically
by sweeping the decision threshold Δξc left-to-right across Fig. 3. The horizontal dashed line labeled hR (all)
denotes the aflibercept-to-control hazard ratio for all patients taken together (hR (all) = 0.486). The area Abc
between the red and blue curves is a global measure of the predictive performance of the signature. In this
case Abc = 0.3341. b Corresponding profile of P-values for hR(S) and hR(R). The vertical dashed line
corresponds to decision threshold Δξc = − 0.815, for which hR(S) = 0.28, pR(S) = 9.2 × 10− 6, hR(R) = 0.738
and pR(R) = 0.165
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the sensitive group relative to the relatively-resistant group, combined with flexibility in

setting a selection threshold. To give a more quantitative measure of the separation be-

tween the hROC curves, in a way which accounts for both height and width of the sep-

arating gap (Fig. 4a), we can compute the “area between the curves” Abc, defined by the

expression

Abc ¼ AhR −Ahs ; ð9Þ

where AhR and AhS are the areas under the individual curves for hR(R) and hR(S), re-

spectively, after a symmetrizing transformation of the hazard ratios resulting in − 1≤

AhR;SR ≤1 (Appendix A, Additional file 9). From Eq.(9) it can be seen that jAbcj≤ jAhR j þ j
Ahs j≤ maxjAhR j þ maxjAhs j ¼ 2 ; but because AhR and AhS are not independent, in

practice we have |Abc | ≤ 1.5 (Appendix A). Positive values of Abc indicate predictive

power of the biomarker which is consistent with the definition of the R and S patient

groups, and better predictors will have a larger Abc. For the hROC shown in Fig. 4a,

Abc = 0.3341.

Model optimization: choice of a decision threshold for patient stratification

Once a globally optimal model has been chosen (say on the basis of maximizing Abc),

the decision threshold Δξc must be fixed so as to generate the actual patient assign-

ments to sensitive (S) and relatively-resistant (R) response groups. This selection might

be done in an ad hoc fashion by using visual inspection of the hROC curves to establish

a thresholding “sweet spot”, for which the aflibercept treatment benefit for the sensitive

group is thought adequate (e.g. by requiring hR(S) ≤ 1/3), but at a threshold Δξc that is

not so stringent that the sensitive group is too small according to some pre-set limit

(e.g. the sensitive group might be required to contain at least q = 1/4 of the total popu-

lation of patients). A more principled approach is to use an objective function that

quantitatively weighs in these considerations, by mathematically combining treatment

cost/benefits for both groups with the sizes of the affected groups: this is done for the

TNBC use case presented below (see Eq.(15)). In the Discussion section we also list

some of the major constraints on the choice of the decision threshold.

However, for simplicity and continuity in the present discussion we considered just

the fixed value of Δξc = − 0.815, indicated by the vertical dashed lines in Figs. 3 and 4a.

This empirical threshold corresponds to a predicted upper bound on the aflibercept-to-

control hazard ratio of exp.(− 0.815) = 0.4426 for the sensitive group, and can be seen

to generate a reasonable partition of the patients: the resulting sensitive and relatively-

resistant groups contain 100 and 109 patients, respectively (q = 100/209 = 0.48), and

the assignments result in hazard ratios and P-values hR(S) = 0.28, pR(S) = 9.2 × 10− 6,

and hR(R) = 0.738, pR(R) = 0.165. In other words, under the stratification induced by

the threshold Δξc = − 0.815, about 1/2 of the patients are declared sensitive, and

predicted to benefit from an almost four-fold reduction in hazard under aflibercept

treatment relative to control, while the remaining 1/2 of the patients are declared

relatively-resistant, and are predicted to experience considerably less (and here in fact

statistically nonsignificant) benefit from aflibercept treatment relative to control.
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Resampling establishes model robustness and provides confidence intervals for model

performance

The results described in connection with Figs. 3 and 4 were obtained from a single 5-

fold cross validation of the subC-LP signature conducted on the entire AFLAME data

set of n = 209 samples. To gauge the robustness of these results under generalization,

we used bootstrap resampling [33] to extend these point-wise observations, and estab-

lish distributions and confidence intervals for hR(S), hR(R) and the allied performance

metrics such as Abc. Note that the bootstrap resampling procedure simulates as much

as possible real-world variation in both training and test sets, and hence helps antici-

pate the variation in predictive performance to be expected when the signature is ap-

plied to a completely new data corpus.

To implement bootstrap resampling, the 5-fold cross-validation procedure was em-

bedded in an outer computational loop, in which 1000 random resamplings with re-

placement of the n = 209 samples were generated, with a full cross-validation done on

every resampled data set. For each resampled realization, the five folds required for

cross-validation were also (randomly) re-generated from scratch. Patient classification

into the two response groups was done for each resampling, with fixed decision thresh-

old Δξc = − 0.815, and the resulting bootstrapped hazard ratio values hR(S)∗ and hR(R)∗

and other quantities were recorded under each resampling. Following completion of

the outer resampling loop, statistical analyses were conducted on the collected data to

generate confidence intervals and distributional plots for the quantities of interest.

Results of bootstrap resampling for the subC-LP signature are shown in Fig. 5. Thus,

side-by-side box plots for the hazard ratios (Fig. 5a) show that over the distribution, the

hazard ratios for the sensitive group (blue) are almost always smaller than for the

relatively-resistant group (red). The median values and 95% confidence intervals for the

hazard ratios are given by hR(S) = 0.303 [018, 0.50]0.95, hR(R) = 0.722 [0.45, 1.04]0.95,

and the corresponding histograms (Fig. 5d) confirm in detail that the distributions for

hR(S) and hR(R) barely overlap. Distributions of the number of patients n(S) and n(R)

assigned to the respective response groups are shown in Fig. 5b: the median values are

seen to be nearly equal (median n(S) = 104, median n(R) = 105), indicating that the

fixed decision threshold Δξc = − 0.815 generally split the patient population in two. Fur-

thermore, the resampled values of hR(S) and n(S) are not correlated (data not shown),

so that there is no necessary ‘penalty’, in terms of a small value of n(S), for realizations

with otherwise desirably small hR(S).

A box plot for the area between curves Abc (Fig. 5c) shows that under the bootstrap

resampling Abc is almost always positive. While Abc > 0 indicates prediction consistent

with observed PFS outcome (that is, hR(R) > hR(S) for most of the range of the hROC,

as in Fig. 4a), conversely Abc < 0 indicates an inconsistent or ‘failed’ prediction by the

signature (that is, hR(R) < hR(S) for most of the range of the hROC). The ‘predictive

risk’

pRisk ¼ Pr Abc < 0ð Þ ð10Þ

is thus the estimated probability of failure of the signature under generalization to ar-

bitrary test sets. A small predictive risk corresponds to a signature for which we have

high confidence in predictive success, and thus pRisk << 1 can be considered to have
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the same validation status as a small P-value. For the subC-LP signature (Fig. 5c)

pRisk = 0.018 < < 1, indicating a high confidence predictor.

As a negative control, we also performed bootstrap resampling of the subC-LP signa-

ture on a single, randomized re-assignment of the gene expression profiles. To that ef-

fect, the n = 209 gene expression profiles were randomly permuted once, with respect

to all clinical outcome labels, thereby breaking any potential correlation between gene

expression and PFS. The resulting distributions of hR(S) and hR(R) (Fig. 5e and h) are

seen to be almost completely overlapping, and the predictive risk, derived from the dis-

tribution of Abc (Fig. 5g), is almost ½ (pRisk = 0.44). In summary, when trained on a

randomized data set the subC-LP signature simply generates random, undifferentiated

predictive outcomes (with nearly 50–50 ‘coin-flip’ probabilities), as expected.

Finally, we can use the distribution of Abc from the randomized model (Fig. 5g) to de-

fine a null hypothesis. A P-value for prediction can then be computed from the one-

sided test

P ¼ Pr Abc > Aobs
bc

� �
; ð11Þ

where the ‘observed’ value Aobs
bc ¼ 0:3441 is obtained from the non-randomized, non-

Fig. 5 Bootstrap resampling provides confidence intervals for anticipated performance on independent
CRC data sets. Bootstrap resampling of 5-fold cross-validation of the subC-LP signature was used to
generate distributions of hazard ratios for sensitive and relatively-resistant groups (a), number of patients in
each group (b), and area between curves Abc (c). Predictive risk for the signature is found to be pRisk = P
(Abc < 0) = 0.018. The histograms in (d) show in more detail that the distributions of hR(S) and hR(R) barely
overlap. Figures e-h display the corresponding statistics generated from a randomized data set, showing
that the distributions of hR(S) and hR(R) (e, h) are almost completely overlapping, as expected for this
negative control. The predictive risk for the randomized model is 0.44 (g)
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bootstrapped model (Fig. 4a). From Eq. (11) we find P = 0.019, consistent with the small

pRisk = 0.018 obtained above.

A comparison of resampling results indicates good predictive performance for both

subC-LP and subC-CMS signatures

For comparison purposes, the resampling analysis described above was extended to a

number of other signatures. Foremost was the subC-CMS signature, based on the cen-

troids for the CMS subtype classification [18] (with AFLAME-fitted Cox coefficients

given in Table 1). Additionally, a signature called subC-PAM50, based on the breast

cancer-relevant PAM50 subtype classification [34, 35], was considered. This signature

was expected to be a negative control, on the assumption that breast cancer subtypes

should not be relevant to prediction in colorectal cancer. Finally, a signature designated

subC-RANDOM was constructed as a true negative control, using five randomly

chosen centroids, defined on a set of 50 randomly selected genes, with random compo-

nents in all five centroid vectors.

Figure 6 summarizes results for the four subC signatures (LP, CMS, PAM50 and

RANDOM), examined under resampling with fixed decision threshold Δξc = − 0.815.

Focus was on the ‘selectivity index’ defined by

ρ ¼ hR Sð Þ
hR Rð Þ ; ð12Þ

where ρ < < 1 is indicative of high selectivity, and ρ ~ 1 indicative of no selectivity at all.

Full bootstrap resampling for subC-LP (Fig. 6a) resulted in ρ = 0.426 [0.19, 0.96]0.95,

with predictive risk = 0.018 (Fig. 6b), as already noted. The LP signature thus generates

Fig. 6 Resampling analysis predicts robust performance for subC-LP and subC-CMS signatures. Systematic
bootstrap resampling or permutation tests were performed on four signatures (LP, CMS, PAM50, RANDOM).
a Bar plot of median and 95% confidence intervals for the specificity index ρ = hR(S)/hR(R). b Corresponding
values for the predictive risk. Bootstrap resampling for the LP or CMS signatures indicate good predicted
performance. Resampling for the negative controls PAM50 or RANDOM generate statistically
non-significant results
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a statistically significant prediction, and reasonable performance, with a median differ-

ence in hazard ratios hR(S) and hR(R) of more than 2-fold. In comparison, full boot-

strap on the subC-CMS signature (Fig. 6a and b) results in the estimate ρ = 0.547 [0.25,

1.23]0.95, with predictive risk = 0.035. Prediction by the subC-CMS signature is thus also

statistically significant, but with performance not quite as good as for the subC-LP

signature.

For the negative controls, full bootstrap on the PAM50 signature (Fig. 6a and b) gen-

erates ρ = 0.675 [0.28, 1.9]0.95, with predictive risk = 0.16, so that performance of the

PAM50 signature is not statistically significant (although a predictive trend might still

be indicated). Finally, full bootstrap on subC-RANDOM (Fig. 6a and b) generates ρ =

0.89 [0.39, 2.6]0.95, with predictive risk = 0.42, so that as, expected performance, of the

RANDOM signature is not statistically significant, with median selectivity index close

to 1.

The main performance results for the LP, CMS, PAM50 and RANDOM signatures

are shown in Table 2.

Analysis of the response groups: patient selection matrix and Kaplan-Meier (KM) plots

The consequences of patient classification into discrete, biomarker-dependent groups

by a given signature can be explored in more detail by using a “patient selection

matrix” (PSM) which is built around a 2 × 2 contingency table of patient outcomes ac-

cording to {treatment arm × response group} combinations. The PSM resulting from 5-

fold cross-validation (without resampling) of the subC-LP signature with decision

threshold Δξc = − 0.815 is shown in Fig. 7a. The corresponding hROC is shown in Fig.

4a. Median survival times for each combination of factors (including those resulting

from All ≡ R + S grouped together), are displayed in the six central cells of the table

(grey area), the surrounding column and row margins indicating in outward succession

the total number of patients, hazard ratios and P-values for two-group comparisons

along the corresponding axes. Reading the PSM horizontally (i.e. along each of the rows

in Fig. 7a labeled control or aflibercept), one is looking at outcomes within each treat-

ment arm separately, so that the prognostic power of the signature is in focus. Reading

the PSM vertically (i.e. along the each of the columns in Fig. 7a labelled R or S), one is

looking at effects between treatment arms in each response group separately, so that in

this case, the predictive power of the signature is examined.

Inspection along the columns of Fig. 7a for predictive effects thus shows that the

relatively-resistant group R (n = 109) exhibits a statistically non-significant

Table 2 Summary of bootstrap resampling results for the four subC signatures compared in the
study

subC signature:

Quantity: LP CMS PAM50 RANDOM

hR(S) 0.303 [0.18, 0.50] 0.95 0.35 [0.22, 0.56] 0.95 0.368 [0.20, 0.78] 0.95 0.443 [0.27, 0.82] 0.95

hR(R) 0.722 [0.45, 1.04] 0.95 0.65 [0.40, 0.94] 0.95 0.526 [0.35, 0.79] 0.95 0.519 [0.21, 0.78] 0.95

ρ = hR(S) / hR(R) 0.426 [0.19, 0.96] 0.95 0.547 [0.25, 1.23] 0.95 0.675 [0.28, 1.9] 0.95 0.89 [0.39, 2.6] 0.95

n(S) 104 [72, 139] 0.95 108 [59, 151] 0.95 74 [29, 119] 0.95 100 [48, 158] 0.95

pRisk 0.018 0.035 0.161 0.424
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aflibercept-to-control hazard ratio hR = 0.738 (pR = 0.165), while the sensitive group

S (n = 100), exhibits a statistically significant hazard ratio hR = 0.28 (pR = 9.2 ×

10− 6). The corresponding survival curves (Kaplan-Meier or “KM plots”) are shown

in Fig. 7c and d. The corresponding gains in median PFS time, aflibercept relative

to control arm, can be read from the table by direct subtraction and are found to

be ΔPFS = 1.2 and 2.9 months for R and S groups, respectively.

Inspection along the rows of Fig. 7a for prognostic effects, comparing sensitive

versus relatively-resistant groups within each treatment arm, shows that the control

arm (label 0) exhibits a statistically non-significant hazard ratio (hR = 1.53, pR =

0.125, but with perhaps a trend toward hR > 1). On the other hand, the aflibercept

arm (label 1) exhibits a significant hazard ratio hR = 0.558 (pR = 3.2 × 10− 3), indicat-

ing that the signature is indeed prognostic in that treatment arm.

Fig. 7 The Patient Selection Matrix is a summary of prognostic and predictive powers of the signature. a
The Patient Selection Matrix (PSM) (shown for the 5-fold cross-validated subC-LP signature) is built around
the 2 × 2 contingency table of outcomes according to {treatment arm × response group} classification of
the patients (here for decision threshold Δξc = − 0.815). The cells in the core of the table (grey) contain
median survival times (months) for each category of the classification. Margins labeled n, hR and pR
indicate the total number of subjects, hazard ratio, and attendant P-value, respectively, arising from
differential survival analysis along the corresponding rows or columns. b Number of patients in each
{treatment arm × response group} category. c KM plot for the n = 109 patients in the relatively-resistant
group and d, KM plot for the n = 100 patients in the sensitive group
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Taken together, these results show that the predictive power of the subC-LP signa-

ture comes from combination of a strong positive prognostic effect in the aflibercept

arm, with either a non-existent, or a weaker and negative prognostic effect in the pla-

cebo arm.

Finally the PSM for the more stringent selection threshold Δξc = − 1.5 (corresponding

to a hazard ratio threshold = 0.223) is shown in Supplementary Figure 1. This threshold

selects for a much smaller sensitive group (37 patients, 18% of total), but one with

hR(S) = 0.168, while that of the relatively-resistant group (172 patients, 82% of total) is

hR(R) = 0.564. The corresponding gains in median PFS time are found to be ΔPFS = 1.8

and 4.8 months for R and S groups, respectively, to be compared with ΔPFS = 1.2 and

2.9 months, respectively, obtained above with the less stringent Δξc = − 0.815.

A signature for triple-negative breast cancer predicts the existence of sensitive and

resistant subgroups of patients

As an additional application of the general methodology presented above, we considered

treatment of triple-negative breast cancer (TNBC) with the small molecule iniparib [12,

13]. The gene expression data analyzed here was generated by microarray profiling (Affy-

metrix HuGene1.0ST microarray) of FFPE samples from phase 2 and phase 3 two-arm

studies conducted to test the efficacy of iniparib in combination with standard-of-care

chemotherapy in patients with metastatic recurrence of TNBC [12, 13]. In each of the tri-

als, patients were randomly assigned to one of two treatment arms, one using standard-

of-care cytotoxic gemcitabine/carboplatin combination therapy alone (the “control” arm),

and the other with the same cytotoxic treatment augmented by iniparib (the “iniparib”

arm). For the analyses which follow, we focused on a subset of the data consisting of n =

210 gene expression profiles obtained after quality-control of samples for tumor content,

confirmation of negative hormone receptor status, and quality of microarray

hybridization. Data was batch-corrected, quantile normalized, log2-transformed and stan-

dardized in accordance with Eq.(1). For all patients taken together, a significant treatment

benefit in progression free survival (PFS) time from iniparib relative to control was ob-

served (P-value P = 1.4 × 10− 2, hazard ratio hR = 0.673 [0.49, 0.92]95%). We wished to es-

tablish whether the patients could be further stratified into “sensitive” and “resistant”

groups.

Two alternative regularized multivariate cox models can be used to generate predictive

signatures

As in the case of CRC, because of the high dimensionality of the gene expression data,

it was essential that the models be appropriately regularized [27] through feature selec-

tion and/or transformation of selected features. Because subtypes of TNBC alone have

not been well characterized, we could not apply the subC method described above for

CRC. Among many possible alternatives [36–39], we focused instead on two specific

methods to generate the reduced-dimensionality covariates x˜l, l = 1, . . . , K of Eq.(2):

1. Mechanism of action (MOA) model: in this approach the gene expression data

matrix was from the start restricted to a collection of genes representative of the

mechanism of action of iniparib, which is presumed to induce oxidative stress in
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target cells through inhibition of the enzymes thioredoxin reductase 1 and 2

(Zachayus JL et al: Iniparib is a Cytotoxic Anti-Tumor Prodrug Bioactivated by

TrxR1/2. Submitted for publication). The collection of 101 genes (82 of which were

represented on the microarrays used in the profiling) consisted primarily of genes

involved in the oxidative stress response pathway (Additional file 8). The initial se-

lection, based on a priori knowledge, thus reduced the dimensionality of the data

matrix from p = 20,756 to p’ = 82. Feature selection using ranking of genes by their

interaction p-value derived from univariate gene-by-gene Cox models of PFS was

then applied to further reduce the number of selected genes to a value mtop, where

mtop (1 ≤mtop ≤ p’) is a tuning parameter of the model. The selected genes were

then directly used as covariates in a K = 1 principal components model.

2. Supervised principal components (SPC) model: here, supervised principal

components [36] analysis was used to generate the Cox model. Starting with the

full normalized and standardized n × p data matrix X, univariate feature selection

was first directly applied to reduce the number of genes to mtop, where as in the

MOA model, mtop (1 ≤mtop ≤ p) is a tuning parameter. This step resulted in an

n ×mtop data matrix Y. Dimensionality was then further reduced by defining the

variables x˜l, l = 1,. .., K, to be the projections of the individual gene expression

vectors x in Y onto the first K principal components of Y. Formally,

~xl ¼ uT
l � x; l ¼ 1;…;K ð13Þ

where ul is the l-th principal component vector of Y. In what follows, K = 1 was used

throughout, as cross-validation indicated that at given mtop this value was generally op-

timal for prediction.

It can be noted that the MOA and SPC models embody two complementary ap-

proaches for predictive signature discovery. The MOA model is a biased approach

which exploits a priori knowledge of potentially relevant genes to maximize the prob-

ability of signature discovery in a dimensionally shallow data set (p ∼O(100’s)), where

the signal is presumably not masked by noise from many genes with false positive asso-

ciations with outcome. However the MOA approach can fail if the set of genes consid-

ered a priori is simply inappropriate (we made the wrong guess) and does not contain

the signature in the first place. On the other hand, the SPC approach starts with a

much larger, unbiased data set (p ∼O(104)), in which the signature, if it exists, has cer-

tainly a better a priori chance of occurring than in any randomly chosen subset. How-

ever the SPC approach can also fail, if the number of samples (n ∼O(100’s) typically) is

insufficient to power the model enough, to overcome the much larger number of false

positive associations inherent in such an unbiased approach.

The area between curves is used to optimize feature selection

As for a given model the area between the curves provides an overall figure of merit for

all possible splits into sensitive and resistant groups on the basis of Δξc, it can be used

for model optimization. In Fig. 8 Abc is plotted against the number mtop of genes se-

lected in the MOA model, in the entire range 1 ≤mtop ≤ 82. Models with very few

genes (e.g. mtop = 1) or all the genes (mtop = 82) are clearly suboptimal, with Abc ≈ 0.3
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and ≈ 0.4, respectively. The largest value of Abc occurs for mtop = 35 (Abc = 0.78),

which defines the optimal value of that parameter. The thumbnail plots of the individ-

ual hROCs at the bottom of Fig. 8 have been added to show how their appearance

changes as a function of mtop. It can be visually appreciated that the hROC with

mtop = 35 has the largest separation between hR(R) and hR(S) curves.

The area between curves also enables selection between competing models

The values of Abc which result from individual model optimization can be used to com-

pare the maximum predictive power of different models on the same data. Figure 9a and

b show the hROCs which obtain from cross-validation of the optimized MOA and SPC

models, respectively. The SPC model uses parameters mtop = 50 and K = 1, optimized

using the same maximum Abc criterion as for the MOA model. While the cross-validated

predictions of the SPC model are statistically significant (pR(S) = 6.4 × 10−3 for Δξc = −1),

they result in an hROC with markedly smaller Abc than for the MOA model, with Abc =

0.3781 for SPC versus Abc = 0.7817 for MOA model. In what follows, we pursued analysis

using the superior MOA model.

An objective function can be used to optimize the decision threshold

As in the case of the subC model applied to CRC, we first explored using an ad hoc de-

cision threshold on the MOA model, choosing Δξc = −1, with split indicated by the

Fig. 8 The area between hROC curves (Abc) is used for model optimization in prediction for TNBC. The
area between the hazard-ratio ROC curves (Abc) is plotted as a function of mtop, the number of genes
used by feature selection in the multivariate Cox MOA model for TNBC. Representative hROC curves for
specific values of mtop are shown below. The hROC curves for mtop = 35 are the most separated,
corresponding to the maximum value of Abc
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vertical line in Fig. 9a. The resulting “sensitive” and “resistant” response groups contain

69 and 141 TNBC patients, respectively, and the assignments result in hazard ratios

and P-values hR(S) = 0.325, pR(S) = 4 × 10−4, and hR(R) = 1.04, pR(R) = 0.82, respect-

ively (Fig. 10). Thus, under the stratification induced by the threshold Δξc = −1, 1/3 of

the patients are declared sensitive, and predicted to benefit from an almost three-fold

reduction in hazard under inparib treatment relative to control, while the remaining 2/

3 of the patients are declared resistant, and are predicted to experience little (statisti-

cally nonsignificant) benefit from inparib treatment relative to control.

While the ad hoc threshold Δξc = −1 gives a reasonable partition of the patient popu-

lation, a more principled approach for setting Δξc is to rely on an objective function,

which mathematically weighs costs and benefits for a given value of the threshold. The

cost/benefit terms to enter the objective function depend on the ultimate use of the

predictive signature, and will not be the same for a new clinical trial, where the aim is

to maximize demonstrable treatment effects in a possibly small set of patients, as for

routine clinical treatment, where the aim is to be as inclusive as possible.

Here we consider an objective function φ that might apply to routine clinical treat-

ment, and which accounts for 1) the benefit to patients classified into the sensitive

group, and treated with iniparib in addition to standard-of-care, and 2) the cost,

through loss of treatment benefit, if any, to patients classified into the resistant group,

and who were given standard-of-care treatment only. To capture these two terms, we

chose a simple analytic form

φ qð Þ ¼ − q � h0 − hS qð Þð Þ þ 1 − qð Þ � max 1 − hR qð Þ; 0ð Þ ð14Þ

where q is the fraction of patients in the sensitive group, (1 - q) the fraction of pa-

tients in the resistant group, with 0 ≤ q ≤ 1; where hS (q) and hR(q) are the hazard

ratios for the sensitive and resistant patient groups, respectively, and h0 is the haz-

ard ratio for all patients (Fig. 11). Note that the overall sign of φ(q) is chosen such

that it corresponds to a function to be minimized (i.e. it is indeed a cost function).

In Eq.(14) the factor (h0 − hS (q)) measures treatment benefit for the sensitive

Fig. 9 The area between curves is used to compare competing models in prediction for TNBC. hROCs are
shown for the MOA (a) and SPC models for TNBC (b). The MOA model has superior predictive performance,
with Abc = 0.782 for the MOA versus Abc = 0.378 for the SPC model
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patients group (dark bar B in Fig. 11a). The factor max(1 − hR(q), 0) on the other

hand measures the (denial of) treatment cost to the patients in the resistant group

(dark bar C in Fig. 11). Note that this second factor is gated-out for values of q

for which hR(q) > 1. The two factors are weighted by the relative frequencies of

sensitive and resistant patients, respectively.

The optimum patient split q∗ is found by minimization of the cost function,

q� ¼ argminðφðqÞÞ; 0≤q≤1 ð15Þ

from which the optimal threshold Δξc
∗ is also uniquely determined.

Optimization of Eq.(14) according to Eq.(15) (Fig. 11b) results in a partition of the

patients with q∗ = 0.4, corresponding to Δξc
∗ = −0.73, and hazard ratios hR(S) = 0.28

and hR(R) = 1.22. Note that these values are close to those obtained with the ad hoc

threshold Δξc = −1, for which q = 0.33, hR(S) = 0.33 and hR(R) = 1.05 (Fig. 9a), but re-

flect a more principled choice. Evidently, Eq.(15) can be modified to embody additional

or different cost/benefit terms if required.

Fig. 10 Survival plots for predicted sensitive-resistant groups in TNBC according to the MOA model and the
ad hoc threshold Δξc = − 1. Survival curves for the two treatment arms are compared for each patient
group separately (in all cases red = control arm, blue = treatment arm). a Survival curves for the patients in
the sensitive group, showing the large difference in survival between treatment arms. b Survival curves for
the patients in the resistant group, showing nearly identical survival probabilities. c Survival plots for all
patients (S + R groups), shown as reference
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Discussion
Generality of the methodology

The approach for deriving predictive biomarkers was illustrated with two examples of

two-arm clinical trials, concerning either CRC or TNBC patients. Specific models

(subC, MOA, SPC) were initially used to reduce the dimensionality of the input data

set. In each case however, the methodology presented here could then be applied to ef-

fect the construction of a predictive signature. The overall approach we have presented

is thus quite general.

Constraints on the choice of the decision threshold

The choice of the decision threshold Δξc, which splits patients into the two groups

termed resistant (R), and sensitive (S) is of great practical consequence. If we assume a

scenario in which patients classified into the S group are treated with a given agent

(e.g. aflibercept, iniparib), while those in the R group are not (i.e. they remain under

the previous standard-of-care), optimization of the choice of Δξc is guided by a number

of considerations:

1. we wish to see the treatment-to-control hazard ratio for the S group as small as

possible, thereby maximizing their treatment benefit,

2. we wish to see a large difference in hazard ratio between R and S groups, thereby

justifying the stratification in two groups,

3. we wish the S group to be not vanishingly small, so that at least some patients

benefit from treatment, and so that in a clinical trial (as opposed to routine clinical

setting) patient accrual times do not become prohibitively long,

4. in a routine clinical setting (as opposed to a clinical trial), we do not wish to

deprive patients who might actually benefit from treatment, so that the hazard

ratio for the R group should ideally be greater than or equal to 1.

Fig. 11 An objective function enables principled optimization of the signature threshold. a hROC for the
MOA signature with mtop = 35, showing origin of factors discussed in connection with Eq.(16) in A. The
short black bar labeled “C” refers to the treatment cost, and the bar labeled “B” to the treatment benefit
terms entering into Eq.(14). b Optimization of the objective function φ(q) occurs for q∗ = 0.4 (vertical
dashed line). The corresponding threshold is Δξc = − 0.73, with hazard ratios hR(S) = 0.28 and hR(R) = 1.22
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The considerations listed above are constraining and strongly guide the choice of

the decision threshold. In the TNBC use case presented above, we strove to in-

corporate them into a single mathematical objective function (Eq.(14)), and this re-

sulted in a principled decision process for a routine clinical setting. However, an

objective function is not strictly required in every case. For instance, in designing a

new clinical trial for CRC (as opposed to planning for routine treatment), the main

constraint is that the fraction of incoming patients declared sensitive cannot be too

small, because otherwise patient accrual times will become prohibitively long. In

practice, more than quadrupling accrual time might be considered inacceptable.

This sets a lower bound of q = 0.25, which is achieved with Δξc = −1.32, for which

the predicted hazard ratio of the selected patients is 0.2 (Fig. 4a). The total num-

ber of patients required to sufficiently power the resulting study can then be read-

ily computed.

Conclusions
A general approach for deriving a predictive, as opposed to prognostic, gene ex-

pression signature from two-arm clinical trials with concomitant gene expression

profiling was presented. This general methodology was combined with more spe-

cific modeling steps. As initial steps in the modeling process, we considered for

instance the subtype correlation (subC) model based on intrinsic molecular sub-

types in CRC, or the mechanism of action (MOA) models, based on the known

mechanistic pathways of the drug iniparib in TNBC. For CRC, the approach was

applied to AFLAME, a two-arm clinical study for colorectal cancer involving the

anti-angiogenic molecule aflibercept. Two related signatures, of similar predictive

performance, were thus found, and under extensive cross-validation and resam-

pling were shown to be robust, and hence are expected to be generalizable to

independent CRC panels of similar design. Similar results were obtained for

TNBC.

The analytic tools used here in deriving the signatures, which we have variously

named survival scatter plot, hROC, area between curves, or patient selection

matrix, alongside the resampling methodology presented, are of general applicabil-

ity and should be useful in deriving predictive signatures in arbitrary indications,

provided corresponding two-arm studies are available.

Methods
Much of the computational work reported here was performed in R. The pack-

age ‘survival’ was used throughout for basic estimation functions such as coxph

or Surv. These functions were embedded in custom-built programs written in R

and integrated into the Gecko gene expression analysis platform [40]. These pro-

grams and all underlying functions are available under project name ‘predSS’

from GitHub (https://github.com/joachimt1/predSS). A detailed description of

methods used has been incorporated step by step in the Results section above,

as it was felt that this would result in a more organic presentation of the

methodology.
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