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Abstract

Background: Introducing deep learning approach to medical images has rendered a
large amount of un-decoded information into usage in clinical research. But mostly,
it has been focusing on the performance of the prediction modeling for disease-
related entity, but not on the clinical implication of the feature itself. Here we
analyzed liver imaging features of abdominal CT images collected from 2019 patients
with stage I – III colorectal cancer (CRC) using convolutional neural network (CNN) to
elucidate its clinical implication in oncological perspectives.

Results: CNN generated imaging features from the liver parenchyma. Dimension
reduction was done for the features by principal component analysis. We designed
multiple prediction models for 5-year metachronous liver metastasis (5YLM) using
combinations of clinical variables (age, sex, T stage, N stage) and top principal
components (PCs), with logistic regression classification. The model using “1st PC (PC1)
+ clinical information” had the highest performance (mean AUC = 0.747) to predict
5YLM, compared to the model with clinical features alone (mean AUC = 0.709). The PC1
was independently associated with 5YLM in multivariate analysis (beta = − 3.831, P <
0.001). For the 5-year mortality rate, PC1 did not contribute to an improvement to the
model with clinical features alone. For the PC1, Kaplan-Meier plots showed a significant
difference between PC1 low vs. high group. The 5YLM-free survival of low PC1 was
89.6% and the high PC1 was 95.9%. In addition, PC1 had a significant correlation with
sex, body mass index, alcohol consumption, and fatty liver status.
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Conclusion: The imaging features combined with clinical information improved the
performance compared to the standardized prediction model using only clinical
information. The liver imaging features generated by CNN may have the potential to
predict liver metastasis. These results suggest that even though there were no liver
metastasis during the primary colectomy, the features of liver imaging can impose
characteristics that could be predictive for metachronous liver metastasis.

Keywords: Radiomics, Colorectal cancer, Convolutional neural network, Artificial
intelligence

Background
In colorectal cancer (CRC) patients, liver is the most common site of metastasis due to

its anatomical connection with portal circulation [1]. In advanced CRC, liver may be

the sole site of metastasis in 30–40% of patients [2, 3]. In these patients, median

survival is 5–20 months without intervention, and 5-year survival is extremely rare [4].

Thus, understanding the pathophysiology of the liver metastasis is one of the most

critical subjects for CRC management.

Radiomics is an innovative technique that uses the large volume of imaging features

to predict oncological features [5]. It consists of converting the medical images into

high-dimensional features which is then used to predict clinical outcomes [6].Convolu-

tional neural networks (CNNs) have recently manifested the ability to generate useful

features from imaging data in various medical research [7]. There are multiple studies

suggesting the CT imaging features extracted by CNNs have high predictive values in

oncological outcomes [8, 9]. Machine learning approach is one of the major subfields

of artificial intelligence which can be used for constructing prediction model in radio-

mics [6] and has shown promising performances for predicting various oncological

subjects [10–13].

Nonetheless, there are challenges that to evaluate the values of each imaging feature

in the prediction model for an oncological outcome is difficult [14]. In traditional

approach for radiological research, to review the medical images, radiologists use the

human visual interpretation based on the characteristics of the images systematized by

accumulated experiences and researches in association with clinical manifestations [15]

and the statistical models are used to find associations in these data that could enhance

clinical reasoning [16]. This canonical way to use medical images for clinical research

might be presenting challenges to radiomics, which uses the imaging features generated

by CNNs and designs prediction models by machine learning to enhance clinical per-

formances. If the approaches of radiomics study can encompass purposes focusing on

not only the performance of the prediction modeling for disease-related entity, but also

the clinical implication of the imaging features itself, its utility and contribution to the

healthcare research would be in great value.

Here we propose a framework to extract the liver imaging features from CT scan

using CNNs in CRC patients and analyze the imaging features using machine learning

approaches to predict the metachronous liver metastasis. Additionally, we tried to

elucidate its clinical implication in oncological perspectives using statistical analysis. As

a proof of concept study, abdominal CT images were collected from 2019 patients who

had colectomy for stage I–III CRC, preoperatively.
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Methods
Patients and data acquisition

We performed a retrospective, cross-sectional study in patients who underwent colectomy

for CRC from January 2008 to September 2013 at Seoul National University Hospital. Stage

I-III CRC patients who had curative resection were included in the analyses. The exclusion

criteria consisted of patients who had surgery less than 5 years; recurrence in or distant me-

tastasis to other than liver after in less than 5 years after surgery; preoperative neoadjuvant

chemotherapy; a history of liver resection; have liver lesion; and had a poor quality of pre-

operative CT scan. A total of 2019 patients were eligible, and their electronic medical re-

cords (EMR) and CT images were collected. The CRC staging description was based on the

AJCC staging system, seventh edition, which is a classification system provided by the

American Joint Committee on Cancer for describing the extent of cancer progression [17].

We used the clinical information turned into a dichotomized form such as T stages into T1,

T2 vs. T3, T4, N stages into N0 vs. N1, N2 and patient ages into < 65 years vs. > = 65 years.

5-year metachronous liver metastasis (5YLM) rate was the primary endpoint. If the patient

died or had recurrence other than in liver, they would not be counted as metachronous liver

metastasis incidences. We used the abdominal CTs taken before the colectomy for clinical

staging. For image acquisition, the non-contrast abdominal CT scan image of each patient

was used. A physician (author EKC) acquired the images under the guidance of radiologist

(author HSK). Cross-sectional images at the level where the caudate lob of the liver is most

prominent were selected with abdominal view setting. The regions of interest (ROIs) were

placed at the segment 7 of the Couinaud system [18], which is the right – posterior – super-

ior segment of liver, with a size of 50 × 50 pixels.

Feature generation

Figure 1 shows the overview of the analysis framework. First, feature extraction on the

images was done by utilizing a pre-trained convolutional neural network, VGG16 [19], which

do not require further training. For the feature extraction, we used the fully connected layers,

which is a top-layer of the pre-trained model of VGGnet with 16 layers (VGG-16). The 4096

features were extracted as an output. Then, we preprocessed the extracted imaging features

rather than using whole 4096 features based on the significance of association with 5YLM

rate by performing univariate logistic regression analysis. The subsets of imaging features that

passed the suggestive significance level (P < 0.01) were used for further analyses. Lastly, prin-

cipal component analysis (PCA) was performed for reducing the feature dimensionality, and

this generated new sets of features, such as 1st principal component (PC1) to 10th principal

component (PC10), sequentially. At the input stage to the machine learning methods, we fur-

ther standardized either the clinical features or the PC-transformed image features, by z

normalization for each feature to have a mean of zero and unit variance.

Prediction models

We trained two machine learning algorithms, including logistic regression classification

(LR) and random forest classification (RFC) to predict 5YLM and compared the perfor-

mances of each model. The models were designed by respective combination of fea-

tures consisting of clinical features, which includes age, gender, T stage and N stage,

and imaging features, which are the sequential summation of PC1 to PC10. The whole
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data set was divided into a training set (70%) and a test set (30%), and a five-fold cross

validation scheme was used on the training set for the parameter tuning of the classifi-

cation models. Given our highly imbalanced data set, we adopted five-fold, considering

that five can be reasonable to allow enough number of positive data samples in each

fold. Due to the highly imbalanced data set, we dealt with the imbalance problem of

the training set first by oversampling on the negative minority class to meet negative/

positive ratio 0.2, followed by down-sampling on the positive majority class to meet

negative/positive ratio 0.4 finally. For up-sampling, we used SMOTE (Synthetic Minor-

ity Over-Sampling Technique) [20], and for down-sampling, we used the random

down-sampling technique. After performing five-fold cross-validation on the training

set, the trained model is validated on the test set. We note that cross-validation proced-

ure is used to prevent overfitting to the training set when fitting the prediction model

(LR and RFC). To validate the trained model, we performed the procedure aforemen-

tioned (splitting the data set into a training set and a test set; SMOTE followed by

down-sampling; a five-fold cross validation to find the optimal parameters; and

performance evaluation on the test set) for 100 iterations. Using the trained model, we

Fig. 1 Study design. Overview of the analysis framework. Feature extraction on the abdominal CT, 50 × 50
pixel ROIs, was done by utilizing a pre-trained convolutional neural network. We preprocessed them based
on the significance of association with 5-year liver metastasis (5YLM) rate by performing univariate logistic
regression analysis. Principal component analysis (PCA) was done for feature reduction in dimensionality
and this generated new sets of feature. We used two machine learning algorithms, such as logistic
regression classification (LR) and random forest classification (RFC) to train prediction models for 5YLM and
compared the performances of each model. Among the models to predict 5YLM, we used the highest AUC
model to perform multivariate logistic regression to association between the image features and 5YLM
statistically. Then Kaplan Meier analysis was done by the principal components (PCs) for metachronous liver
metastasis free survival and overall survival. We done a correlation analysis between the significant PCs and
the clinical variable in Table 1. We also applied the highest AUC model for 5YLM to predict 5-year mortality
and observed whether the liver image feature could do a predictive role for 5-year mortality
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evaluated the performance of the test set. The performances were measured by the area

under the curve (AUC) of the receiver operating characteristics (ROC) curve and

presented as means and standard deviations.

We also applied the model with the highest AUC for 5YLM to predict 5-year mortal-

ity and observed whether the liver imaging feature contribute to a prediction of 5-year

mortality. The AUC performance was compared with the model using clinical feature

only for the prediction of 5-year mortality.

Association study

Among the models to predict 5YLM, we used the model with the highest AUC to

perform multivariate logistic regression to identify associations between the imaging

features and 5YLM. Then, Kaplan-Meier analysis was conducted based on the principal

components (PCs) that were significantly associated with metachronous liver metastasis-

free survival and overall survival (P < 0.05). For survival analysis, the patients excluded by

the previous exclusion criteria, such as recurrence in or distant metastasis to other than

liver after in less than 5 years after surgery, were included. The optimal cut-off points for

those PCs to divide patients into two groups were determined by MaxStat packages in R

(Maximally selected Rank Statistics). MaxStat uses the maximally selected rank statistics

to recommend the optimal cut-off point for the survival plot [21]. Univariate cox propor-

tional hazard regression analysis was performed to compare the differences between PC-

based groups using the time to event and the censoring data of it.

Correlation study

To investigate the clinical relevance of the imaging features, we ran a correlation

analysis between the significant PCs and the additional clinical variables in Table 1,

such as age, sex, body mass index, tumor location, alcohol consumption, liver function

test, fatty liver status, T stage, N stage, Angiolymphatic invasion venous invasion, and

postoperative follow-up duration. We measured Pearson’s correlation between numeric

variables, and Spearman’s correlation between categorical variables, respectively. P
value of the correlation coefficient between variables less than 0.05 was considered

statistically significant. The results were visualized with “corrplot” R package.

All the statistical and computational analyses were done by R statistical software

(version 3.5.3 R) and Python software (version 3.6.2). Associations between clinical

information and 5YLM rate were assessed by Chi-square test, Student’s t-test, and

analysis of variance (ANOVA) for independent groups in Table 1.

Ethics statement

The Institutional Review Board of Seoul National University Hospital approved the

study protocol (IRB number 1902–088-1010), and the study was conducted in accord-

ance with the Declaration of Helsinki. Informed consent was waived by the board.

Results
Patient demographics

Our study sample comprised 2019 patients (1269 males and 750 females) who had col-

ectomy for stage I-III colorectal cancer. The mean patient age was 62.32 +/− 9.21 years.
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Table 1 Demographic features of the study population

Liver metastasis, no
(N = 1919, 95.04%)

Liver Metastasis, yes
(N = 100, 4.96%)

P value

Age (years) 62.3 ± 9.2 63.1 ± 9.5 0.390

Age > =65 years 0.640

No 1092 (56.9%) 54 (54.0%)

Yes 827 (43.1%) 46 (46.0%)

Sex 0.727

Male 1204 (62.7%) 65 (65.0%)

Female 715 (37.3%) 35 (35.0%)

BMI (kg/m2) 23.9 ± 3.0 23.8 ± 3.1 0.805

BMI (> = 25 kg/m2) 0.648

No 1280 (66.7%) 64 (64.0%)

Yes 638 (33.3%) 36 (36.0%)

Tumor location 0.127

Right 501 (26.4%) 19 (19.0%)

Left 1397 (73.6%) 81 (81.0%)

Heavy alcohol consumption 1

No 1261 (65.7%) 66 (66.0%)

Yes 658 (34.3%) 34 (34.0%)

GOT 22.3 ± 9.0 21.8 ± 9.6 0.559

GPT 20.3 ± 12.8 19.8 ± 16.0 0.737

Fatty liver 0.283

No 1743 (95.0%) 96 (98.0%)

Yes 91 (5.0%) 2 (2.0%)

T stage < 0.001

T1 stage 359 (18.7%) 4 (4.0%)

T2 stage 352 (18.3%) 6 (6.0%)

T3 stage 1106 (57.6%) 74 (74.0%)

T4 stage 102 (5.3%) 16 (16.0%)

N stage < 0.001

N0 1293 (67.4%) 28 (28.0%)

N1 463 (24.1%) 39 (39.0%)

N2 163 (8.5%) 33 (33.0%)

Lymph node metastasis < 0.001

Absent 1293 (67.4%) 28 (28.0%)

Present 626 (32.6%) 72 (72.0%)

Overall stage < 0.001

Stage 1 581 (30.3%) 6 (6.0%)

Stage 2 658 (34.3%) 18 (18.0%)

Stage 3 680 (35.4%) 76 (76.0%)

Angiolymphatic invasion < 0.001

Absent 1434 (77.0%) 57 (57.6%)

Present 429 (23.0%) 42 (42.4%)

Venous invasion < 0.001

Absent 1729 (92.8%) 75 (75.8%)
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There were 100 cases (4.96%) of metachronous liver metastasis during the follow.

Patient characteristics are shown in Table 1.

5-year metachronous liver metastasis prediction based on principal components and

clinical information

We preprocessed the extracted imaging features from CNN based on the significance

of association with 5YLM rate by performing univariate logistic regression analysis.

Twelve features passed the suggestive significance level (P < 0.01). From the 12 features,

using the PCA, we generated new sets of features notated as PC1 to PC10.

For 5YLM prediction models, we used PCs and clinical features as inputs to our

models, in which we not only incremented the number of PCs one by one (for example,

PC1, PC1-PC2, PC1-PC3 and so on), but also adopted various combinations (for ex-

ample, clinical feature only model, PCs only model, clinical feature plus PC model) in

order to validate which combination of features more contribute to the prediction per-

formance. Two supervised machine learning methods, LR and RFC, were used for the

performance evaluations.

The performances of each model are shown in Table 2. Model with 1st PC (PC1)

showed the highest performance among other PCs combinations both in LR (mean

AUC = 0.606) and RFC (AUC = 0.557). In the combination of clinical and imaging fea-

tures, LR model trained with PC1 and clinical features showed the best performances

(mean AUC = 0.747), which imply that the model using the imaging features in com-

bination with the clinical features improved the prediction performance rather than the

model using clinical feature only (mean AUC = 0.709).

Association study with the oncological and clinical variables using the designed model

For the model with PC1 and clinical features (age, sex, T stage, and N stage), which is

the best performed model, an association study was done to investigate the association

between the features and 5YLM. By multivariate logistic regression analysis, PC1

showed independent association with 5YLM, significantly (beta = − 3.831, P < 0.001)

(Table 3).

For the PC1, Kaplan-Meier plots were generated for metachronous liver metastasis

free survival (Fig. 2a). The patients were divided by the optimal cut offs for each PC1

based on MaxStat. (− 0.135 for the PC1 score). The results are shown in Fig. 2 with the

result of univariate cox proportional hazard regression. The 5YLM-free survival of low

group (PC1 score below − 0.135) was 88.7% and the high group (PC 1score above −

0.135) was 95.6%. We also evaluated with the Kaplan-Meier plot for overall survival

Table 1 Demographic features of the study population (Continued)
Liver metastasis, no
(N = 1919, 95.04%)

Liver Metastasis, yes
(N = 100, 4.96%)

P value

Present 134 (7.2%) 24 (24.2%)

Postoperative follow up duration 1893.5 ± 767.7 1554.5 ± 784.9 < 0.001

5-year Mortality

Alive 1919 (100.0%) 61 (61.0%) < 0.001

Dead 0 (0.0%) 39 (39.0%)
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and the results were similar that low group had poor overall survival compared to high

group, significantly (P < 0.001) (Fig. 2b).

In the correlation analysis between the significant PC1 and the clinical variable in

Table 1, sex, body mass index, alcohol consumption and fatty liver status had signifi-

cant correlation with PC1 (Fig. 3).

Performance of the prediction model in 5-year mortality prediction

We applied the 5YLM prediction model with the highest AUC model, which combined

clinical features with PC1, with respect to the prediction of 5-year mortality. In the 5-

year mortality prediction model, the liver imaging features did not have an additional

predictive power (mean AUC =0.690), when compared with clinical only models (mean

AUC = 0.700), in both models, trained with LR and RFC.

Discussion
Currently, clinical features, such as age, sex, T stage, and N stage are most commonly

used to predict the prognosis of colorectal cancer survival [22]. Comparing the

Table 2 Performances of the prediction models in the test set for 5-year mortality and 5-year
metachronous liver metastasis

Predictors Logistic regression classification
AUC (mean +/− standard deviation)

Random forest classification
AUC (mean, standard deviation)

Prediction model for 5-year
metachronous liver metastasis

Clinical* 0.709 +/− 0.038 0.692 +/− 0.038

PC1 0.606 +/− 0.044 0.557 +/− 0.043

PC1-PC2 0.600 +/− 0.042 0.536 +/− 0.042

PC1-PC3 0.588 +/− 0.040 0.503 +/− 0.046

PC1-PC4 0.580 +/− 0.040 0.520 +/− 0.042

Clinical + PC1 0.747 +/− 0.036 0.697 +/− 0.038

Clinical + PC1-PC2 0.744 +/− 0.036 0.676 +/− 0.043

Clinical + PC1-PC3 0.740 +/− 0.038 0.668 +/− 0.042

Clinical + PC1-PC4 0.736 +/− 0.038 0.691 +/− 0.042

Prediction model for 5-year
mortality

Clinical* 0.704 +/− 0.028 0.679 +/− 0.030

PC1 0.482 +/− 0.031 0.511 +/− 0.030

Clinical + PC1 0.695 +/− 0.031 0.647 +/− 0.033

*Clinical: Age, Sex, T stage, N stage

Table 3 Multivariate logistic regression analysis for 5-year metachronous liver metastasis

Beta (standard error) P value

Using PCs from 12 features

Age (> = 65 years) 0.119 (0.213) 0.213

Gender (Female) −0.232 (0.223) 0.297

T3, T4 stage 1.276 (0.345) < 0.001

N1, N2 stage 1.467 (0.234) < 0.001

PC1 −3.831 (1.012) 0.0001
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prediction performance of these clinical features, the integrative model that integrates

clinical information and imaging features by convolutional neural network significantly

improved performance of prediction for 5YLM rate.

This is quite interesting result because adding the 50 × 50 pixel liver imaging features

would contain extremely limited information, but still, we demonstrated the additional

imaging features when combined with clinical features improved prediction performance

Fig. 2 Kaplan Meier plots for metachronous liver metastasis free survival and overall survival using 1st PC of
image features. a. Metachronous liver metastasis free survival The populations were divided by the optimal
cut offs for PC1 score based on MaxStat (− 0.135). The difference between two group was compared by
univariate cox proportional hazard regression. The 5-year metachronous liver metastasis free survival of low
group (PC1 score below − 0.135) was 89.6% and the high group (PC 1score above − 0.135) was 95.9%. b.
Overall survival Using the same PC1 group, K-M plot was visualized for overall survival
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of liver metastasis. The underlying mechanism would be that, though at the time of

surgery the liver does not seem to impose liver metastasis on gross finding of CT images,

there could be underlying molecular changes in liver that could be predictive of liver

metastasis. For 5-year mortality, the liver feature did not have additive predictive power in

prediction, but there was a significant association with overall survival in K-M plot. In our

study, we applied both statistical association analysis and computational predictive

analysis for the outcome. Association studies would focus on understanding a relationship

between the variables and outcomes, while prediction studies train the model with the

training data to obtain the variables to investigate their predictive power for the corre-

sponding outcome. Association studies might provide explanation for the relationship but

might not have predictive power. On the contrary, prediction studies might have high

performance but hard to interpret it. This might imply that the liver image features alone

are not enough to precisely predict the outcome of 5-year mortality, however they are

associated with the 5-year mortality based on the results of Kaplan-Meier survival analysis

with significant p-values.
Metachronous liver metastasis significantly influence the prognosis of CRC patients

who had curative colectomy [16, 23], and it is reported that in 20–30% of patients, it

Fig. 3 Correlation plots for 1st PC and clinical variables. Correlations with p-value > 0.05 are considered as
insignificant. In this case the correlation coefficient values are leaved blank or crosses are added. 1st PCA
had significant correlation with sex, body mass index, alcohol consumption and fatty liver status
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will be detected following primary colectomy [24–26]. Well-known risk factors for liver

metastasis are N stage, vascular invasion and preoperative carcinoembryonic antigen

(CEA) level [23, 27, 28]. Additionally, there are also suggested factors predisposing to

the development of metachronous liver metastasis in CRC, such as tissue micro-

environmental changes and chronic inflammation [29]. In the present study, we focused

on investigating the clinical relevance of this imaging features performing association

and correlation studies with patient’s demographical and oncological information. The

representative imaging feature, the 1st principal component (PC1), had a significant

association with 5YLM-free survival, and the results were shown in Kaplan-Meier plot.

In the correlation study, PC1 had significant correlations with sex, body mass index,

alcohol consumption and fatty liver status. Sex [30], body mass index [29], alcohol con-

sumption [31] and fatty liver status [32] are reported to be correlated with liver metas-

tasis in CRC. Obesity determined by body mass index change or sex difference and

hepatosteatosis derivative of fatty liver or alcoholism are suggestive predisposing factors

in the function of tissue microenvironment change and chronic inflammation [29]. It

can be postulated that the imaging features of liver ROIs impose various heterogeneity

of predisposing factors for metachronous liver metastasis comprehensively.

In the study design, we additionally preprocessed the 4096 imaging features extracted

by training the convolutional neural network, VGG16, based on the significance of

association with 5YLM rate. VGG16 is a convolutional neural network model which

achieved 92,7% accuracy in ImageNet, a dataset of over 14 million images belonging to

1000 classes, and it used RGB images for training [19]. This model can capture com-

plex features like human faces, natural scenes and showed human level performance

[33]. The preprocessing step was introduced because designing the prediction model

with the whole 4096 imaging features from CNN did not provide good results for

5YLM (data not shown). This might come from the fact that pretrained CNN basically

trained RGB images which has chromatic color, shape and size variance but in CT scan

image, it is achromatic color, fixed square shape and fixed 50 × 50 pixel sized. Thus,

preprocessing with statistical association threshold will remove the noises and include

only the effective features to be introduced.

With the preprocess features, principal component analysis was performed for redu-

cing the feature dimensionality, and new sets of features, such as 1st principal compo-

nent (PC1) to 10th principal component (PC10) as an imaging features for the

prediction model and showed that PC1 had improved the performance of prediction

model by clinical information to predict 5YLM. We used the PC transformed as im-

aging features rather than the ones after preprocessing, which is primarily generated by

CNN, because these did not have promising results in the prediction model (data not

shown). This might reflect the fact that the respective imaging feature by itself do not

have meaningful contribution for prediction but the selected features should be aggre-

gated to have a predictive role in the model.

In our study, we used logistic regression and random forest classification, which are

very common and widely studied machine learning models [34]. For the prediction of

5YLM, the model trained by logistic regression showed the improvement by adding im-

aging features to the clinical features compared with the ones only consisting of clinical

features. However, the improvement of performances was modest by the models

trained by random forest classification. Logistic regression is a classical machine
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learning classifier and it has advantage of having fast speed to train the inputs and mak-

ing it more interpretable [6, 35]. In a recent study, comparing logistic regression and

random forest classification for binary outcomes, when increasing the variance in the

explanatory and noise variables, logistic regression consistently better performed as

compared to random forest classification [34]. However, true positive rate was higher

in random forest classification compared to logistic regression. When machine learning

is applied to the clinical fields, the characteristics of the data set and the purpose of

using machine learning should be considered carefully before choosing which algo-

rithms to be applied.

This study has several advantages. First, we comprehensively analyzed the imaging

feature by respective combination of image features and clinical information. By this

way, we were able to find that the best-performing combination of imaging features,

preprocessed features by association analysis and PCs from PCA analysis, which

showed improved prediction performance combined with clinical information. Second,

we performed both the prediction model based on computational analysis and associ-

ation and correlation study based on statistical analysis. This will help to interpret the

complex nature of the liver CT scan image features more intuitively, provide the clin-

ical relevance of it and support an evidence for the results of prediction model. Third,

all the patients enrolled in the analyses had at least 5 years of follow-up after primary

colectomy. This will make the results of analyses more reliable since the information

involves the long-term observations.

Despite demonstrating the validity of our proposed approach, there might be a couple

of remaining potential limitations. First, as we used the retrospectively collected CT

scan, we could not collect the parameters and the product information of the CT

scanner, which could influence the imaging features as a batch effect. But since, the CT

images were taken on the purpose of preoperative clinical staging in colorectal cancer,

the quality of the CT images was well controlled. Second, we simply concatenated the

clinical factors and imaging features level for integration. Transformational integration

could be applied in a larger set of samples [36]. Third, since there are no open source

databases that includes both abdominal CT images and clinical information, we could

not replicate the results in another data set.

Conclusion
By analyzing the liver image features by convolutional neural network in stage I-III

colorectal cancer patients based on preoperative abdominal CT scan, we were able

identify the contribution of imaging features to predict the metachronous liver metasta-

sis. The 1st PC from imaging feature combined with clinical information improved the

performance of standardized prediction model using only clinical information such as

age and TNM stage. The preoperative liver imaging features generated by CNN might

have the potential to predict liver metastasis after 5 years. This result suggests that even

though there were no metastasis or liver lesion during the primary colectomy for stage

I-III CRC, the features of liver in preoperative CT scan can impose characteristics that

could be predictive for liver metastasis during the postoperative follow-up. The findings

might conceptualize the importance of the imaging features in liver which could be

applied for clinical practice.
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