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Abstract
Background: Nanopore sequencing enables portable, real-time sequencing
applications, including point-of-care diagnostics and in-the-field genotyping.
Achieving these outcomes requires efficient bioinformatic algorithms for the analysis of
raw nanopore signal data. However, comparing raw nanopore signals to a biological
reference sequence is a computationally complex task. The dynamic programming
algorithm called Adaptive Banded Event Alignment (ABEA) is a crucial step in polishing
sequencing data and identifying non-standard nucleotides, such as measuring DNA
methylation. Here, we parallelise and optimise an implementation of the ABEA
algorithm (termed f5c) to efficiently run on heterogeneous CPU-GPU architectures.
Results: By optimising memory, computations and load balancing between CPU and
GPU, we demonstrate how f5c can perform ∼3-5× faster than an optimised version of
the original CPU-only implementation of ABEA in the Nanopolish software package. We
also show that f5c enables DNA methylation detection on-the-fly using an embedded
System on Chip (SoC) equipped with GPUs.
Conclusions: Our work not only demonstrates that complex genomics analyses can
be performed on lightweight computing systems, but also benefits High-Performance
Computing (HPC). The associated source code for f5c along with GPU optimised ABEA
is available at https://github.com/hasindu2008/f5c.

Keywords: Nanopore, Signal alignment, Event alignment, Methylation, GPU, GPU
acceleration, Optimisation, SoC, Nanopolish, f5c

Background
Advances in genomic technologies have improved the feasibility and accessibility of
rapid species identification, accurate clinical diagnostics, and specialised therapeutics,
amongst other applications. The latest generation (third generation) of sequencing tech-
nologies generate data in the order of terabytes. Oxford Nanopore Technologies’ (ONT)
pocket-sized MinION device generates ∼1 TB of raw signal data during a typical
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sequencing run, while their high-throughput PromethION device can generate >50TB of
data in <60h. Computational analysis of such massive data currently poses a challenge.
Nanopore sequencing measures characteristic disruptions in the electric current

(referred to hereafter as raw signal) when DNA passes through a nanopore (Fig. 1). The
instantaneous current measured in the R9.4.1 pore model depends on 5-6 contiguous
bases [1]. The measured signal also presents stochastic noise due to a number of factors
[2]. Additionally, the speed of the DNA strand moving through the pore can vary, caus-
ing the signal to warp in the time domain [2]. The raw signal is converted to nucleotide
strings (reads) through a process called base-calling (Fig. 1). Despite recent improve-
ments, nanopore base-calling often introduces errors (∼3-5% at the time of writing) given
the use of probabilistic methods to infer biological sequences from often noisy raw signal
[3]. To overcome base-calling errors, raw signal can be revisited to improve the reconstitu-
tion of the base-called sequence a posteriori (Fig. 1). This process, termed ‘polishing’, can
correct base-calling errors by aligning the raw signal to a biological reference sequence
[4, 5], thus identifying idiosyncrasies in the raw signal by comparing observed signal levels
to the expected levels at all aligned positions. Polishing can also reveal base substitu-
tions (i.e. mutations) or base modifications such as 5-methylcytosine (5mC), a dynamic
biochemical modification of DNA that is associated with genetic activity and regulation
[6]. Detecting 5mC bases is important for the study of DNA methylation in the field of
epigenetics [7].
A crucial algorithmic component of polishing is the alignment of raw signal—a time

series of electric current—to a biological reference sequence. One of the first and most
popular raw nanopore signal alignment algorithms is implemented in Nanopolish [6],
which employs a dynamic programming strategy referred to as Adaptive Banded Event
Alignment (ABEA). ABEA is one of the most time consuming steps during the process
of analysing raw nanopore data. For instance, in-house profiling revealed that when per-
forming methylation detection with Nanopolish, the ABEA step alone consumes ∼70%
of the total CPU time. Considering the increasing amount of data generated by high-
throughput nanopore sequencers, solutions are required to accelerate ABEA and reduce
the turnaround time of certain nanopore sequencing applications, such as real-time
polishing or methylation detection.
In this study, we describe and dissect the ABEA algorithm in detail to optimise and par-

allelise its execution to exploit heterogeneous CPU-GPU architectures, commonplace in
mainstream computing systems.We demonstrate the utility of our GPU-optimised ABEA
by incorporating a completely re-engineered version of the popular methylation detection

Fig. 1 Nanopore DNA sequencing and associated data analysis. A consumable flowcell containing an array of
hundreds or thousands of such nanopores is loaded into the sequencing device (e.g. MinION). Ionic current
(in pico amperes) is measured when DNA strands pass through nanopores to produce the raw signal, which
is eventually basecalled. The base-called reads are then aligned to a reference genome. The raw signal is then
revisited during the polishing step. Images of nanopore devices are reproduced with permission from ONT



Gamaarachchi et al. BMC Bioinformatics          (2020) 21:343 Page 3 of 13

tool Nanopolish. First, we modified the original Nanopolish methylation detection tool
to efficiently utilise existing CPU resources, which we refer to as f5c. Then, we incorpo-
rated a GPU-optimised ABEA algorithm into f5c. We demonstrate how f5c enables DNA
methylation detection using nanopore sequencers in real-time (i.e. on-the-fly processing
of the output) by using a lightweight embedded computer system equipped with a GPU
(e.g., NVIDIA Jetson TX2).We also demonstrate how f5c benefits a wide range of comput-
ing devices, from embedded systems and laptops to workstations and high performance
servers. f5c is available at https://github.com/hasindu2008/f5c.

The ABEA algorithm
ABEA was first introduced in the raw nanopore signal analysis package Nanopolish [6].
The origin of the ABEA algorithm can be tracked to the Smith-Waterman (SW) dynamic
programming sequence alignment algorithm that was first described in 1981. The origi-
nal SW algorithm has a computational complexity of O

(
n2

)
and is most practical when

the sequences are very short. Several optimisations to SW have since been introduced.
Heuristic approaches, such as banded SW, attempt to reduce the search space by lim-
iting computation along the diagonal of the dynamic programming table [8]. While the
banded approach is suitable for fast alignment of second-generation sequencing data—
which are composed of relatively short reads—it is less so for third generation long
reads, as significantly longer width is required to contain the alignment within the band.
The more recent Suzuki-Kasahara (SK) algorithm [9] uses a heuristic optimisation to
banded SW that allows the band to adapt and move during the alignment, thus contain-
ing the optimal alignment within the band while allowing large gaps in the alignment. The
SK algorithm is well-suited for aligning long and error-prone third generation reads in
base-space (nucleotide sequences). The SK alignment algorithm was later modified and
extended to ABEA in Nanopolish to enable signal-space alignment of time series signal
data instead of nucleotide sequences. A simplified example of the ABEA algorithm and a
representative dynamic programming table is shown in Fig. 2. Algorithm 1 summarises
the ABEA algorithm and the reader may refer to Supplementary Materials for a detailed
explanation.

Methods
CPU-GPU optimisations

f5c employs a fork-join multi-threading model (with work stealing) implemented using C
POSIX threads.
Implementing the ABEA algorithm for GPU execution is not a straightforward task

due to three main factors: (i) inefficient memory access patterns, which are not ideal for
GPUs with relatively less powerful and smaller caches (compared to CPUs), resulting in
frequent instruction stalls; (ii) read lengths of the input vary significantly (from ∼100
bases to >1M bases), requiring millions to billions of dynamic memory allocations—an
expensive operation in GPUs; and (iii) non uniform distribution of read lengths in the
input causes irregular utilisation of GPU cores. These challenges were overcome by: (i)
tailoring the algorithm and GPU user-managed cache to exploit cache friendly memory
access patterns; (ii) employing a custom heuristic-based memory allocation scheme; and
(iii) using a heuristic-based work partitioning and load balancing scheme between CPU
and GPU.

https://github.com/hasindu2008/f5c
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Algorithm 1 Adaptive Banded Event Alignment
Input:

ref[] : the base-called read (1D char array)
model : pore-model (refer to Supplementary Materials)
events[] : event table containing {μx̄, σx̄} of each event—1D {float,float} array

Output:
alignment[] : alignment denoted by a list of {event index,k-mer index}—1D {int,int} array

Intermediate:
score[][] : scores of the cells in banded area—2D float array
trace[][] : back-track flags of the cells in banded area—2D char array
ll_idx[] : {event index,k-mer index} for each band’s lower left cell—1D {int,int} array

1: function align(ref,model,events)
2: initialise_first_two_bands(score,trace,ll_idx) � band b0 and b1 in Fig. 12, see line 19
3: for i ← 2 to n_bands do � Iterate from b2 to b17 in Fig. 2
4: dir ← suzuki_kasahara_rule(score[i-1]) � score[i-1] is of the previous band
5: if dir == right then
6: ll_idx[i] ← move_band_to_right(ll_idx[i - 1]) � see line 26
7: else
8: ll_idx[i] ← move_band_down(ll_idx[i - 1]) � see line 30
9: end if

10: min_j,max_j ← get_limits_in_band(ll_idx[i]) � get index bounds in current band*
11: for j ← min_j tomax_j do � Iterates through each cell in band i
12: s,d ← compute(score[i-1],score[i-2],ref,events,model) � Cell score computation

(Fig. 2)
13: score[i,j] ← s
14: trace[i,j] ← d
15: end for
16: end for
17: alignment ← backtrack(score, trace, ll) � the trace-back red arrows in Fig. 2.
18: end function
19: function initialise_first_two_bands(score,trace,ll_idx)
20: score[0,*], trace[0,*] ← −∞, 0 � Initialise first band b0
21: score[1,*], trace[1,*] ← −∞, 0 � Initialise second band b1
22: ll_idx[0] ← {ei0, ki0} � ei0 = 1 and ki0 = −1 in Fig. 2
23: ll_idx[1] ← {ei1, ki1} � ei1 = 1 and ki1 = 0 in Fig. 2
24: score[0,si0] ← 0 � si0 is 0 is Fig. 2#
25: end function
26: functionmove_band_to_right(ll_previous)
27: ll_current.event_idx ← ll_previous.event_idx + 1
28: ll_current.kmer_idx ← ll_previous.kmer_idx
29: end function
30: functionmove_band_down(ll_previous)
31: ll_current.event_idx ← ll_previous.event_idx
32: ll_current.kmer_idx ← ll_previous.kmer_idx+1
33: end function
*For instance, in Fig. 2min_j=1,max_j=1 for b0 and b17;min_j=0,max_j=1 for b1;min_j=1,max_j=2 for b16; and,
min_j=0,max_j=2 for the rest
#the score of cell that corresponds to k-mer index -1 in band b0 is initiliased to 0

The GPU implementation of ABEA algorithm was performed using CUDA C. A brief
summary of our optimisations is listed below.
Parallelisation and computational optimisations: To achieve fast performance on

GPUs, their thousands of tiny computing cores must be sufficiently occupied. For this,
thousands of parallel threads must be launched, which requires thousands of paral-
lel tasks. This is achieved by processing a batch of reads in parallel and concurrently
computing all the cells of a dynamic programming matrix band (Fig. 2b, lines 11-15 in
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Fig. 2 Nanopore raw signal, events and ABEA algorithm. In a events are the result of the event detection step
(time series segmentation of the raw signal based on abrupt changes — detailed in Supplementary
Materials) and true annotation is the expected output of ABEA. In b, c and d, vertical axis represents the
events and horizontal axis represents the ref k-mers (k-mers within the base-called read). The dynamic
programming table (DP table) is for 13 events, indexed from e0 − e12 vertically, and the ref k-mers, indexed
from k0 − k5 horizontally. For computational and memory efficiency, only the diagonal bands (marked using
blue rectangles) with a band width ofW (typicallyW=100 for nanopore signals) are computed. The bands are
computed along the diagonal from top-left (b0) to bottom-right (b17). Each cell score is computed in
function of five factors: scores from the three neighbouring cells (up, left and diagonal); the corresponding ref
k-mer; and, the event (shown for the cell e6, k3 via red arrows in c). Observe that all the cells in the nth band
can be computed in parallel as long as the n − 1th and n − 2th bands are computed beforehand. To contain
the optimal alignment, the band adapts by moving down or to the right as shown using blue arrows. The
adaptive band movement is determined by the Suzuki-Kasahara heuristic rule [9]

Algorithm 1). As the bandwidth is 100 cells, a read batch of a few hundred can sufficiently
occupy thousands of GPU cores. GPU core utilisation is further enhanced by improv-
ing memory access latency by using the GPU’s fast cache memory (shared memory) and
a technique called memory coalescing. The current, previous and 2nd previous bands,
which are frequently accessed by hundreds of threads in parallel, are kept in the shared
memory. Data arrays such as the score array, trace array, reference k-mers and events that
are in slow DRAM (global memory) are placed (laid out) such that contiguous threads
access contiguous memory locations. This facilitates memory coalescing (one memory
access can fetch data required by a large number of threads), consequently reducing the
number of accesses to DRAM.
Memory optimisation: Dynamic memory allocations in the GPU memory are expen-

sive andmust be minimised for fast performance.We significantly reduced the number of
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dynamic memory allocations by employing a lightweight heuristic-based custom mem-
ory allocation scheme. In brief, large chunks of contiguous memory are pre-allocated
when initiating the program to accommodate a batch of reads, which are then reused
throughout the execution of the program. The sizes of these large chunks are determined
by the available GPU memory and a heuristically determined value for the average num-
ber of events per base (i.e. average value of the number of events divided by the read
length).
Heterogeneous processing: If all queried reads were of similar length, GPU threads

that process the reads would complete approximately at the same time, and thus GPU
cores will be equally busy throughout the execution. However, nanopore read length dis-
tributions can include reads which are significantly longer than the average read length.
When the GPU threads process reads in parallel, longer reads cause all other GPU threads
to wait until processing of the longest read is completed. These waiting threads lead to
underutilisation of GPU cores. This issue is remedied by employing heterogeneous pro-
cessing, where the CPU processes these very long reads while the GPU is processing the
rest of the reads in parallel. CPU cores have a higher clock frequency than the GPU cores,
therefore such very long reads can be independently and quickly processed by the CPU
while the remaining reads are processed by GPU cores in parallel.
A detailed breakdown of these optimisations, experimental evidence that justify design

and optimisation decisions—including a section describing the fundamentals of GPU
architecture and programming—can be found in Supplementary Materials.

Biological data analysis

Comparative performance benchmarking was performed using the publicly available
NA12878 (human genome) “Nanopore WGS Consortium” sequencing data [4]. The
datasets used for the experiments, their statistics (number of reads, total bases, mean read
length and maximum read length) and their source are listed in Table 1. Dsmall, a small
subset, was used for testing a wide range of systems (all systems in Table 2, i.e. embedded
system, low-end and high-end laptops, workstation and a high-performance server). Two
complete nanopore MinION data sets (Dligation and Drapid) are only tested on three sys-
tems due to the larger run-time and incidental access to the other two systems. Dligation
andDrapid represent the two existing nanopore sample preparation methods (ligation and
rapid [10]) that affects the read length distribution.
For “Speedup of ABEA algorithm”, time measurements were obtained by inserting

gettimeofday timestamp function invocations directly into the C source code. Total
execution time and the peak RAM usage in “Comparative performance of f5c with
Nanopolish” sections were measured by running the GNU time utility with the verbose
option.

Table 1 Information of the datasets

Dataset Number
of reads

Number of
bases (Gbases)

Mean read
length
(Kbases)

Max
read
length
(Kbases)

Source / SRA
accession

Dsmall 19275 0.15 7.7 196 [11]

Dligation 451020 3.62 8.0 1500 ERR2184733

Drapid 270189 2.73 10.0 386 ERR2184734
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Table 2 Different systems used for experiments

System
Name

Info CPU CPU cores/
threads

RAM
(GB)

GPU GPU
mem
(GB)

GPU arch

SoC NVIDIA
Jetson TX2
embedded
module

ARMv8
Cortex-A57 +
NVIDIA
Denver2

6 / 6 8 Tegra shared
with
RAM

Pascal / 6.2

lapL Acer
F5-573G
laptop

i7-7500U 2/4 8 Geforce 940M 4 Maxwell / 5.0

lapH Dell XPS 15
laptop

i7-8750H 6/12 16 Geforce 1050 Ti 4 Pascal / 6.1

ws HP Z640
workstation

Xeon
E5-1630

4/8 32 Tesla K40 12 Kepler / 3.5

HPC Dell
PowerEdge

Xeon Silver
4114

20/40 376 Tesla V100 16 Volta / 7.0

C4140

Results
Speedup of ABEA algorithm

We initially compared the optimised GPU version with the optimised CPU version of the
ABEA algorithm (not the unoptimised CPU version in the originalNanopolish, see below)
by executing them on publicly available raw nanopore genome sequencing data. The CPU
version was run with maximum supported threads on the tested systems. The optimised
CPU version will be henceforth referred to as C-opti and the optimised GPU version will
be referred to as G-opti.
First we benchmarked on five different systems (Table 2) over Dsmall dataset. Speedups

(including all the overheads) observed for G-opti compared to C-opti are: ∼ 4.5× on the
low-end-laptop and the workstation; ∼ 4× on Jetson TX2 SoC; and ∼ 3× on high-end-
laptop andHPC (Fig. 3). Note that only a∼ 3× speedup was observed on high-end-laptop
and HPC (versus >=4× on other systems) due to the CPU on those particular systems
having a comparatively higher amount of CPU cores (12 and 40 respectively).
We next benchmarked on two larger datasets (Drapid and Dligation). A speedup up of

∼ 3× was observed for all three systems for the two big datasets—Dligation and Drapid
(Fig. 4). Due to more ultra long reads (>100kb) in Dligation and Drapid than in Dsmall, the
overall speedup for SoC is limited to around ∼ 3× compared to ∼ 4× for Dsmall.
It is noteworthy to mention that comparing performance to the unoptimised CPU ver-

sion in Nanopolish is not straightforward, as the time for individual components (e.g.
ABEA) cannot be accurately measured because each read executes on its own code path
(detailed in Supplementary Materials). We nonetheless estimated the runtime of unopti-
mised ABEA by injecting timestamp (gettimeofday) functions into the originalNanopolish
code, directly before and after the ABEA component to measure runtimes for individual
reads.Nanopolishwas launched with multiple threads and the runtimes were averaged by
the number of threads to get a reasonable estimate for ABEA. When evaluated using the
Dsmall dataset, the optimised ABEA CPU version in f5c was ∼1.3-1.7× times faster than
the unoptimised ABEA in the original Nanopolish program (∼ 1.4× speedup on Jetson
TX2, workstation and HPC, ∼ 1.7× on low-end-laptop and∼ 1.3× on high-end-laptop).

Comparative performance of f5cwith Nanopolish
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Fig. 3 Performance comparison of ABEA on CPU vs GPU over a wide range of systems. Runtime for C-opti
(left bars) and the G-opti (right bars). Runtime for the GPU has been broken down into: compute kernel time;
different overheads (memory copying to/from the GPU, data serialisation time), and the extra CPU time due
to CPU processing of the reads. The compute kernel time includes the sum of time for all GPU kernels. The
extra CPU time is the additional time spent by the CPU to process very long reads and ultra long reads (see
Supplementary materials) assigned to the CPU (excluding the processing time that overlaps with the GPU
execution, i.e. only the extra time which the GPU has to wait after the execution is included)

The overall performance of the GPU-accelerated ABEA algorithm was evaluated through
a DNAmethylation (5-methylcytosine) detection work-flow. We compared the total run-
time for methylation calling using the originalNanopolish against f5c (both CPU-only and
GPU-accelerated versions) by running on two publicly available nanopore datasets (see
“Methods” section).
We refer to the original Nanopolish (version 0.9) as nanopolish-unopti, f5c run only on

the CPU as f5c-C-opti and GPU accelerated f5c as f5c-G-opti. We executed nanopolish-
unopti, f5c-C-opti and f5c-G-opti on the full datasets Drapid and Dligation. Note that all

Fig. 4 Performance comparison of ABEA on CPU vs GPU across over large datasets Runtime for C-opti (left
bars) and the G-opti (right bars). Runtime for the GPU has been broken down into: compute kernel time;
different overheads (memory copying to/from the GPU, data serialisation time), extra CPU time due to very
long reads and ultra long reads (see Supplementary materials)
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execution instances were performed with the maximum number of CPU threads available
on each system.
f5c-C-opti on the Drapid dataset was: ∼ 2× faster than nanopolish-unopti on SoC and

lapH and∼ 4× faster onHPC. OnDligation, nanopolish-unopti crashed on SoC (limited by
8GB RAM) and lapH (16GB RAM) due to the Linux Out Of Memory (OOM) killer [12]
(Fig. 5). On Dligation, f5c-C-opti on HPC was not only 6× faster than nanopolish-unopti,
but also consumed only∼15GB RAM, as opposed to>100GB used by nanopolish-unopti
(both with 40 compute threads). Hence, it is evident that CPU optimisations alone can do
significant improvements.
When comparing the total execution time (including disk I/O) of the entire methylation

calling process with different hardware acceleration options in f5c, f5c-G-opti was 1.7×
faster than f5c-C-opti on SoC, 1.5-1.6× on lapH and < 1.4× on HPC (Fig. 5). On HPC,
the speedup was limited to < 1.4× due to file I/O being the bottleneck. N.B. only the
ABEA algorithm step utilises the GPU acceleration.
For the Drapid dataset, the execution time of f5c-G-opti versus nanopolish-unopti was

∼ 4×, ∼ 3× and ∼ 6× faster on SoC, lapH andHPC, respectively (Fig. 5). On theDligation
dataset on HPC, f5c-G-opti was a remarkable ∼ 9× faster.
Although parameters that may affect biological accuracy were untouched, we did

observe subtle variations in the output as a consequence of hardware-based fluctuations
in the treatment of floating point units. We assessed the impact of these subtle varia-
tions on the measurement of relative methylation frequencies by comparing results for
Nanopolish, f5c-C-opti and f5c-G-opti on theDsmall dataset, which encompasses 5M bases
of human chromosome 20 with an average read coverage of 30×. Of the ∼32,000 sur-
veyed CpG sites, f5c-C-opti and f5c-G-opti produced different methylation frequencies
for only 6 (∼0.02%) and 65 (∼0.2%) positions, with an average position-specific differ-
ence in methylation frequency values of ∼1.5% and ∼0.4%, respectively. Both variants
of f5c yielded overall Pearson correlation values of 0.99999 with Nanopolish. Moreover,
the overall correlation between Nanopolish and bisulfite sequencing data from NA12878
is 0.88723, while the correlation for f5c-C-opti and f5c-G-opti is 0.88723 and 0.88724,

Fig. 5 Comparison of f5c to Nanopolish. The reported run-times are for the complete methylation calling and
also include disk I/O time
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respectively. The impact of hardware-based differences in the calculation of methylation
frequencies is therefore negligible.

Discussion and future work
High-throughput nanopore data analysis is a relatively new field that emerged with the
release of the first ONT sequencing device (MinION) in 2014. Numerous nanopore
data analysis algorithms have since been developed by biologists and bioinformaticians.
However, work that explores computational bottlenecks, acceleration and parallisation
techniques for such algorithms are limited, especially for those that exploit raw nanopore
signal data, such as the ABEA algorithm.
There are a handful of methods that have been developed to accelerate the anal-

ysis of nanopore data. The proprietary base-calling software Guppy developed by
ONT exploits NVIDIA GPUs for fast and accurate processing of raw nanopore data
via deep neural networks [3]. Although the design details of Guppy are not pub-
licly disclosed, they are likely to have benefited by a plethora of work focusing on
GPU optimisations for neural networks. Another example of highly optimised software
for third generation sequencing data is minimap2, a popular open source sequence
aligner for long reads (including nanopore reads) that has recently been acceler-
ated with the simultaneous use of GPUs and Intel Xeon Phi co-processors [13].
However, alignment in base-space is considerably different from signal-space, which
is explored in this work. Recently, the NVIDIA corporation has shown an inter-
est in developing open source libraries such as Clara Genomics[14] for accelerating
long read data analysis on their GPUs. The Clara Genomics library contributes to
nanopore data analysis domain through the acceleration of core algorithmic com-
ponents such as all-vs-all read mapping and partial order alignments for genome
assembly. Nonetheless, none of these algorithms focus on accelerating signal-space
alignment.
A number of GPU accelerated versions of SW alignment have previously been reported

[15–17]. However, differences between SW and ABEA significantly affect the efficient
mapping of the algorithm and data structures to GPU architectures. For instance, band
movement in ABEA during execution and randommemory accesses to the pore-model in
ABEA affect data dependencies (thus, the parallelism) and the memory layout (thus, the
memory access patterns). Therefore, the GPU acceleration solutions proposed in these
reports are ill-suited for ABEA. In addition, the above-mentioned works were devel-
oped for short, static read-lengths. Third generation sequencers produce variable long
read lengths that vary significantly over a given dataset. Consequently, the strategies we
disclose herein for efficient GPU memory allocation and load balancing are novel and
significant improvements for ABEA.
Moreover, we demonstrate that a complete DNA methylation analysis of a human

genome using raw Oxford Nanopolish sequencing data can be executed on an embed-
ded system (e.g., a SoC equipped with ARM processor and an NVIDIA GPU) as shown
in Fig. 6. The data processing speed is sufficient to keep up with data generated in real-
time by four Oxford Nanopore MinION devices in parallel, or a GridION sequencer.
GPU-enabled f5c can process such data using a single NVIDIA TX2 SoC, at a speed of
>600 Kbases per second to keep up with the sequencing output (∼600 Kbases per sec-
ond [18]), as shown in Fig. 6. Conversely, if the original Nanopolish was executed on the
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Fig. 6 Human genome processing on-the-fly

NVIDIA TX2 SoC, the processing speed is limited to ∼256 Kbases per second. The base-
space alignment speed of ∼715 Kbases/s in Fig. 6 was obtained by running Minimap2
[19] on the Jetson TX2 with only 8GB using the partitioned-index approach we previously
presented in [20].
It is also noteworthy tomention that we usedNanopolish v0.9 for the performance com-

parisons as subsequent releases of the software incorporated some of our optimisations,
excluding those that did not require major code refactoring, such as GPU implementa-
tion, threading models and I/O processing interleaving. Furthermore, the optimisations
we performed were focused on restructuring and fine-tuning the implementation of the
algorithm to conform with computer hardware. Parameters that might affect the bio-
logical accuracy were untouched. Still, we extensively compared results of f5c with that
of Nanopolish and verified that they are almost identical, greatly surpassing variation
observed using alternative experimental approaches (i.e, bisulfite sequencing for 5mC
detection).
Our work can not only reduce the hardware and bandwidth requirements for analysing

raw Nanopore data, but can also improve the turnaround time for performing reference-
guided raw nanopore signal processing, an analytic process that is used for base-calling
and detecting non-standard nucleotides. In addition to embedded systems, our work ben-
efits all computational systems, with or without GPU. For instance, our work enables
methylation calling on laptops with<16GB of RAM. Furthermore, we have demonstrated
that a posteriori methylation calling execution with f5c on high performance computers
also benefits from a significant speedup.

Conclusions
ABEA is a prominent bioinformatics algorithm for raw nanopore signal analysis.
Although this algorithm is not massively parallel, we present a highly efficient implemen-
tation of ABEA that includes the (optional) use of GPUs. Through a number of memory
optimisations and a heterogeneous processing strategy that uses both CPU and GPU,
we were able to overcome several inherent challenges, such as prominent variations in
sequencing read lengths. Our optimisations yield around 3-5× performance improve-
ment on a CPU-GPU system when compared to CPU only. We demonstrate that these
optimisations are sufficient for the execution and completion of a DNA methylation
detection workflow on an embedded SoC equipped with a hexa-core ARM processor and
NVIDIA GPU (256 cores) in real-time. This work not only benefits embedded SoCs, but
also a wide range of systems equipped with GPUs, from laptops to servers, as highlighted
by a 9× speedup and 6-fold memory reduction when performing methylation detection
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on a high-performance computing server. The source code of f5c is made available at
https://github.com/hasindu2008/f5c.
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