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Abstract

Background: Single Molecule Sequencing (SMS) technology can produce longer
reads with higher sequencing error rate. Mapping these reads to a reference
genome is often the most fundamental and computing-intensive step for
downstream analysis. Most existing mapping tools generally adopt the traditional
seed-and-extend strategy, and the candidate aligned regions for each query read are
selected either by counting the number of matched seeds or chaining a group of
seeds. However, for all the existing mapping tools, the coverage ratio of the
alignment region to the query read is lower, and the read alignment quality and
efficiency need to be improved. Here, we introduce smsMap, a novel mapping tool
that is specifically designed to map the long reads of SMS to a reference genome.

Results: smsMap was evaluated with other existing seven SMS mapping tools (e.g.,
BLASR, minimap2, and BWA-MEM) on both simulated and real-life SMS datasets. The
experimental results show that smsMap can efficiently achieve higher aligned read
coverage ratio and has higher sensitivity that can align more sequences and bases to
the reference genome. Additionally, smsMap is more robust to sequencing errors.

Conclusions: smsMap is computationally efficient to align SMS reads, especially for
the larger size of the reference genome (e.g., H. sapiens genome with over 3 billion
base pairs). The source code of smsMap can be freely downloaded from https://
github.com/NWPU-903PR/smsMap.

Background
Technological breakthroughs in high-throughput sequencing (HTS) platforms have

triggered a revolution in genomics [1–5], which enable scientists to obtain the full gen-

omic sequence of many species by read alignment and de novo assembly [6–8]. Map-

ping (or aligning) the HTS reads from a sample to a reference genome is the most

fundamental and computing-intensive step in genome resequencing studies [7, 8],

which detects genome variations such as single nucleotide polymorphisms, large-scale

structural variations (SVs) and count for different sequencing errors [9, 10]. All exist-

ing tools for mapping short reads, such as BLAST [11], BLAT [10], SOAP2 [12],
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Bowtie [13] and BWA [14], aim to find a “long” substring that would exactly match its

mapping locus on the reference genome by using either Burrows-Wheeler Transform

Full-text Minute-space (BWT-FM) index [15, 16], or substring hashing [17], or hybrid

methods of combining FM index with hashing [18]. However, due to a higher number

of errors which are primarily insertions and deletions rather than substitutions, the

mapping methods created for short reads are not readily extended to long reads gener-

ated from the single molecule sequencing (SMS) technology [19].

Recently, a number of available methods (or tools) for mapping SMS long reads to the ref-

erence genome, such as BLASR [20], BWA-MEM [21], rHAT [22], GraphMap [23], LAMSA

[24], minimap2 [25], NGMLR [26] and lordFAST [27], have been proposed. BLASR [20] is

the first tool that is specially designed for mapping SMS reads. It first builds a BWT-FM index

[15, 16] of the genome to search exact matches and then applies sparse dynamic program-

ming (SDP) to generate rough alignments. The final detailed alignments are generated by dy-

namic programming. BWA-MEM [21] initially finds the alignment seeds and greedily chains

these seeds, then extends the selected seeds to achieve the alignment. rHAT [22] utilizes the

regional hash table (RHT) to find the highest possible candidate regions and then adopts an

SDP-based approach to align the reads on the candidate regions. GraphMap [23] finds gapped

space seeds that are clustered to obtain a coarse alignment, then uses a graph-based vertex-

centric procedure to construct the alignment anchors, and chains these anchors, refining the

chain to generate the final alignment. LAMSA [24] finds all approximate matches on the ref-

erence genome by using the GEM mapper [28], it then builds a direct acyclic graph (DAG) to

generate alignment skeletons. Finally, LAMSA implements a specific split-alignment strategy

to fill the gaps within the skeletons. minimap2 [25] collects minimizers [29] of the reference

genome sequence for indexing them in a hash table and then finds matches to the reference

by identifying the sets of co-linear seeds. Afterward, minimap2 applies dynamic programming

in the unseeded regions to get the final alignment. NGMLR [26] first finds the linear mapping

seeds, then performs a pairwise sequence alignment based on the Smith-Waterman algorithm.

NGMLR lastly selects the set of linear alignments with the highest joint score as the final read

alignment results. lordFAST [27] first builds an index from the reference genome then maps

reads to the reference genome by extracting longest exact matches. It next selects candidate

alignment regions, and finally gets the base-to-base alignment with dynamic programming.

All of the above mapping methods designed for SMS reads follow the canonical seed-

and-extension paradigm [18, 30], that is, they find the maximal exact matches (seeds)

and then extend the alignment to the non-seed fragments within the selected candidate

regions in the query read and the reference genome. The major differences among

them are the ways by which seeds and the candidate aligned region are selected.

The candidate aligned regions for each query read are selected either by counting the num-

ber of matched seeds (e.g., rHAT and lordFAST) or chaining a group of seeds that are co-

linear or close to each other (e.g., BLASR, LAMSA, GraphMap, NGMLR, BWA-MEM, and

minimap2). However, the candidate aligned region of each query read is always a part of the

read and cannot completely cover the whole read length. Although the non-seed fragments

are subsequently aligned with dynamic programming, they are still within the candidate re-

gions. For the two ends of the query read, which are not covered by the candidate aligned re-

gion, all existing methods do not align them and directly output as the soft clipping. As a

result, these methods designed for SMS reads usually focus on producing local mapping re-

sults for the query read, other than obtaining the whole end-to-end alignment, leading to low
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aligned coverage (aligned fraction of the read). The aligned coverage is the percentage of one

query sequence aligned to a reference genome, which reflects the effectively aligned size of

the query sequence. Many researchers consider the alignments with higher aligned coverage

as the valid alignment results [31–34]. Additionally, alignments with higher aligned coverage

mean that more aligned bases can be obtained, which is a key requirement for mapping tools

and mapping-based analysis [23], as bases that cannot be mapped are unavailable for use in

many downstream applications [35–37]. Therefore, the shortcoming (i.e., low aligned cover-

age) of current mapping methods highlights the need for a sensitive, efficient computational

method with higher aligned coverage.

Herein, we proposed a new SMS sequence mapping method (called smsMap) that aims to

get the end-to-end accurate alignment against the reference genome for a query read. smsMap

mainly contains three steps. It first constructs the BWT-FM index for the reference genome,

then finds the starting positions in the query read and reference genome, and lastly a column re-

duction banded alignment method is developed to obtain the detailed dynamic alignment re-

sults from the located starting positions to the two ends of the query read and the genome,

which can cover the whole read length. The experiments on simulated and real-life PacBio data-

sets show that smsMap can achieve more aligned coverage than other mapping tools. Also,

smsMap is more sensitive that can map more reads and bases onto the reference genome.

Results
smsMap is implemented in C++ language with multithreading, and it can be run in both

Linux and Windows systems. To evaluate the performance and efficiency of smsMap, we

compared our smsMap with other seven state-of-art long read mapping tools, such as

BLASR [20], BWA-MEM [21], GraphMap [23], minimap2 [25], NGMLR [26], rHAT [22]

and lordFAST [27] on simulated datasets and real-life datasets. Because LAMSA [24] al-

ways appears a segmentation fault (core dumped) information, we did not compare with

it. The real-life raw sequencing datasets, derived from E. coli, A. thaliana, C. elegans and

H. sapiens (CHM1), were generated by PacBio sequencing platform. All methods were ex-

ecuted on an Ubuntu 16.04.5 server with 16 3.2-GHz Intel Xeon (E5-2667V4) processors

and 128 GB of RAM. The parameters used for each mapping tools are given in Table S1.

For simulated sequence datasets, if a read is aligned to the correct genome and strand, and the

aligned subsequence on the reference genome overlaps with the “true” mapping subsequence by

at least p bases (here p=0.9L(rτ)), we consider this read to be correctly mapped on the genome

[27]. If a matched base locates within T bp (here T=5) of the corresponding truth position on the

genome [24, 27], we consider this base as a correct matched base. Thus, we use three measures in-

cluding the fraction of correctly aligned reads (cFAR), the fraction of correctly aligned bases

(cFAB), and the average coverage ratio of correctly aligned reads (cACR) to estimate the perform-

ance of mappers on simulated datasets, which are defined as the following percentages:

cFAR ¼ Nc

N
� 100%

cFAB ¼
XNc

τ¼1

Mc
τ

M
� 100%

cACR ¼ 1
Nc

XNc

τ¼1

Mc
τ

Mτ
� 100%

8>>>>>>><
>>>>>>>:

ð1Þ

where Nc is the total number of correctly aligned reads, N is the total number of query
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reads, Mc
τ is the number of correct matched bases for read rτ, Mτ is the number of

matched bases for read rτ, M is the total number of matched bases for all correctly

aligned reads. An example of how to calculate cFAR, cFAB and cACR is presented in the

supplementary file. Additionally, for simulated sequence datasets, base sensitivity and preci-

sion [27] are used to compare the performance of different mappers. Sensitivity is defined as

the number of correct matched base divided by the total number of bases, precision is defined

as the number of correct matched bases divided by the number of mapped bases.

Due to the true base pairing on the reference genome unknown for real-life read datasets,

we use another three measures of the fraction of aligned reads (FAR), the fraction of aligned

bases (FAB), and the average coverage ratio of aligned reads (ACR) to estimate the perform-

ance of mappers on real-life datasets, which are defined as the following percentages:

FAR ¼ Na

N
� 100%

FAB ¼
XNa

τ¼1

Ma
τ

M
� 100%

ACR ¼ 1
Na

XNa

τ¼1

Ma
τ

Mτ
� 100%

8>>>>>>><
>>>>>>>:

ð2Þ

where Na is the total number of aligned reads, N is the total number of query reads,

Ma
τ is the number of matched bases for read rτ, Mτ is the base number of read rτ, M is

the total base number for all query reads.

Evaluation on simulated datasets

Simulation without structural variations

We first adopted the simulated datasets without structural variations (SVs) to

evaluate the performance of our smsMap and other mapping tools. The E. coli

MG1655 genome sequence (with the length of 4,614,652 bp) from NCBI (No. NC_

000913.3) was downloaded and inputted to the NPBSS simulator [19] for generat-

ing the PacBio simulated reads with different error rates. As a result, 6 simulated

datasets with 5, 10, 15, 20 25 and 30% error rates were generated. The sequencing

depth and average read length are 50 and 10,000 bp, respectively. The error param-

eter settings of NPBSS can be found in Table S2. The reads number and total

bases of each simulated dataset are listed in Table S3.

Figure 1 shows the cFAR, cFAB, cACR, sensitivity, and precision of smsMap, BLASR,

BWA-MEM, GraphMap, minimap2, NGMLR, rHAT and lordFAST on the simulated

datasets with different error rates (Table S4 gives the detail results of these methods).

From Fig. 1, we can see that smsMap and GraphMap correctly mapped almost all reads

and bases with different error rates (i.e., 5 to 30%) to the genome, while the cFAR,

cFAB of other six mappers gradually decrease as the read error rates increase. smsMap,

lordFAST, and GraphMap achieved higher cACR than the other five methods with dif-

ferent error rates, but our smsMap obtained little higher cACR than lordFAST and

GraphMap, especially when the error rate is more than 20%. For the base sensitivity

and precision in Fig. 1d and e, we can see that the sensitivity and precision of

smsMap, minimap2, lordFAST, BLASR, and GraphMap are significantly higher than

those of rHAT and NGMLR with error rate increases from 5 to 15%. For error

rates ranging from 15 to 30%, smsMap and GraphMap achieved higher sensitivity
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and precision than other methods, and smsMap obtained a little higher sensitivity

and precision than GraphMap. These results show that our smsMap are more ro-

bust to sequencing errors, and it can obtain better mapping quality for simulated

datasets without SVs. Tables S5 lists the alignment scores for different methods

with parameters: match = 2, mismatch = − 2, gap existence = − 2 and gap extension =

− 2. It can be seen that the average scores are various among different methods.

Another simulated dataset of H. sapiens (CHM1) generated by NPBSS was also

applied to test the performance of different methods. Table S6 shows the cFAR,

cFAB, cACR, base sensitivity and precision of smsMap, BLASR, BWA-MEM,

GraphMap, minimap2, NGMLR, rHAT and lordFAST on the simulated dataset of

H. sapiens (CHM1). We can see that smsMap still achieved better mapping results

in terms of cFAR, cFAB, cACR, sensitivity, and precision.

Fig. 1 Mapping results of eight methods on the simulated datasets with different error rates
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Simulation with structural variations

In order to estimate the capability of smsMap for mapping reads that span structural

variations (SVs), we used another simulation dataset from chr1 of NA12878 with SVs.

The simulation dataset with SVs was generated by inserting 7 SVs (i.e., 3 insertions, 3

deletions and 1 inversion) from DGV [38] into the reference chr1 and using the NPBSS

simulator [19] at 20x coverage. Among the simulated reads, a total of 185 reads cover

the SVs breakpoints. The detailed SVs and its breakpoints are listed in Table S7.

If the start and end alignment coordinates of a read in the genome cover the actual sim-

ulated breakpoints, we consider this read spanning SVs [27]. Here, we provide the aligned

reads number of spanning SVs (#SVs) to evaluate the performance of different mapping

tools. The results of our smsMap and other seven tools are listed in Table 1, from which

we can see that our smsMap can map more reads with SVs on the genome than the other

six tools, suggesting that our smsMap can also handle the SV-spanning reads.

Evaluation of the real datasets

In addition to the simulated datasets, we also used four datasets (generating by PacBio

RS II) of E. coli, A. thaliana, C. elegans and H. sapiens (CHM1) to further test the per-

formance of our smsMap. The raw sequences, assembly genome, and statistics of these

datasets can be found in Tables S8, S9, S10, respectively. Considering that rHAT always

returns the segmentation fault (core dumped) information, we do not provide the re-

sults of rHAT in the real datasets.

Table 2 reports the mapping results of seven methods in four real datasets, and

Table 3 lists ACR standard deviation (std). From Table 2, we can see that FAR of our

smsMap is respectively 3.16–24.69%, 2.18–12.12%, 0.58–4.38%, and 3.75–9.86% higher

than those of other six methods for E. coli, A. thaliana, C. elegans and H. sapiens

Table 2 FAR(%), FAB(%), and ACR(%) of seven methods on four real datasets

Datasets smsMap lordFAST BLASR BWA-MEM GraphMapa minimap2 NGLMR

FAR E. coli 97.452 72.760 94.285 92.201 94.217 89.886 91.685

A. thaliana 99.912 92.611 97.728 97.255 93.731 95.334 87.787

C. elegans 99.018 94.630 98.430 98.333 96.975 97.540 95.011

H. sapiens 99.182 90.280 97.921 96.651 – 94.762 90.722

FAB E. coli 99.998 93.207 90.909 89.729 98.514 89.923 87.941

A. thaliana 99.980 95.700 91.328 90.282 94.115 90.666 83.262

C. elegans 99.623 93.564 93.602 91.688 97.783 93.206 88.904

H. sapiens 99.956 93.923 91.588 90.321 – 92.349 85.219

ACR E. coli 99.999 98.676 93.927 93.977 99.576 94.211 93.587

A. thaliana 99.925 97.164 92.815 92.443 99.763 93.153 93.747

C. elegans 99.994 94.841 95.342 93.925 99.779 95.168 93.665

H. sapiens 99.999 96.381 92.393 92.896 – 94.143 91.738
aGraphMap always appears core dumped information for H. sapiens dataset, it does not output the results

Table 1 The number of aligned reads that span SVs breakpoints for different methods

smsMap lordFAST BLASR BWA-MEM GraphMap minimap2 NGMLR rHAT

#SVs 126 113 30 100 105 81 73 79
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datasets, and FAB is respectively 1.48–12.05%, 4.28–16.71%, 1.84–10.71%and 1.29–

17.29% higher than those of other six methods for E. coli, A. thaliana C. elegans and H.

sapiens. These results indicate that smsMap can map much more reads and bases to

the genome for real datasets. FAR of our smsMap is respectively 0.42–6.41%, 0.16–

7.48%, 0.21–6.32%, and 3.75–9.00% higher than those of other six methods for E. coli,

A. thaliana, C. elegans, and H. sapiens, indicating that the aligned reads of smsMap can

overlap more segments of the query reads. From Table 3, we can find that the ACR

std. of smsMap is also significantly smaller than those of other six methods, indicating

that smsMap can generate better mapping quality for real datasets. Additionally, one

real dataset (i.e., E. coli UTI89) generated by MinION sequencer was used to evaluate

the performance of seven methods for Oxford Nanopore sequencing data [23]. Table

S11 reports the mapping results for E. coli UTI89 dataset, from which we can also ob-

serve that smsMap achieved higher FAR, FAB, and ACR than other methods, demon-

strating that smsMap generates better mapping quality for Oxford Nanopore

sequencing data.

Additionally, the agreement between different methods based on their alignment re-

sults were measured. For a given read, there are two alignment results x and y gener-

ated by two methods. We define x covers y if the aligned region on the reference

genome covered by x shares at least 90% overlaps with the aligned region covered by y

[27]. Figure 2 presents the illustration of covering and non-covering alignments. Table 4

reports how best alignments from different methods cover each other for E. coli data-

set. Specifically, each row contains the percentage of alignments generated by one

method that covers alignments obtained by other tools. For example, among all aligned

reads for smsMap and BLASR in Table 4, 95.23% of the alignments produced by

BLASR are covered by smsMap, while only 85.76% of the alignments generated by

smsMap are covered by BLASR. Tables S12, 13, 14 report the agreement between

Fig. 2 A toy example to illustrate the covering and non-covering alignments. x, y and z are different
alignments obtained by different methods for the same read. We can see that alignments x and y cover
each other as aligned regions on the reference genome share more than 90% overlap. On the other hand,
the alignment z does not cover either alignment x or y

Table 3 ACR standard deviation (std) of seven methods on four real datasets

Datasets smsMap lordFAST BLASR BWA-MEM GraphMapa minimap2 NGLMR

std E. coli 5.73E-5 0.09208 0.15266 0.15370 0.04106 0.14725 0.14089

A. thaliana 0.01653 0.13360 0.19902 0.20301 0.01688 0.19362 0.15433

C. elegans 0.00466 0.18524 0.14132 0.15507 0.01775 0.14245 0.14936

H. sapiens 0.00001 0.14932 0.17926 0.16256 – 0.14897 0.17192
aGraphMap always appears core dumped information for H. sapiens dataset, it does not output the results
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different methods on A. thaliana, C. elegans, and H. sapiens datasets. We can see that

the alignment results of smsMap give a high coverage of the alignments obtained by

other methods. With a lack of the true mappings for these four real datasets, the con-

sensus results in Tables 4 and S12, 13, 14 show some extra support for the fact that the

alignments of smsMap are reliable.

Given the massive sequences generated by SMS technology, we also need to consider

the computational complexity of the mapping tools. To demonstrate the computational

efficiency of our smsMap, we compared smsMap with other mapping tools on the four

real-world datasets. Table 5 shows the running time (wall-time) and memory usage by

using the seven tools. We can see that for the reference genome datasets with small size

and relatively short average read lengths, such as E. coli and A. thaliana datasets, the

speed of smsMap is a little lower than minimap2 and lordFAST. But for the H. sapiens

genome dataset with larger size and relatively short average read length, smsMap is fas-

ter than lordFAST, BWA-MEM, NGMLR, and BLASR. These results indicate that

smsMap is efficient to align SMS reads, especially for the larger size of the reference

genome.

Discussion
Most mapping methods for SMS reads adopt the classical seed-and-extension method-

ology to obtain the alignment results. That is, they first find the exactly matched seeds

in the reference genome, then select the candidate aligned region based on counting

the number of matched seeds (e.g., rHAT and lordFAST) or chaining a group of seeds

that are co-linear or close to each other (e.g., BLASR, LAMSA, GraphMap, NGMLR,

Table 5 Running time (min) and memory usage (GB) of each mapping method on three datasets

smsMap BWA-MEM BLASR lordFAST minimap2 GraphMap* NGMLR

E. coli Time 0.83 0.85 1.28 0.27 0.17 0.95 1.32

Memory 2.34 1.29 0.51 1.84 2.44 0.88 11.234

A. thaliana Time 3 32 24 3 2 6 12

Memory 2.56 1.25 3.58 2.03 4.94 3.19 11.45

C. elegans Time 10 87 61 10 2 24 25

Memory 2.52 2.11 3.58 2.04 8.53 3.18 11.60

H. sapiens Time 9 69 63 30 4 – 17

Memory 9.34 6.48 26.71 6.84 11.16 – 15.78

*Due to that GraphMap always appears core dumped information for H. sapiens dataset, it does not output the results

Table 4 Agreement of different alignment methods for E. coli dataset

smsMap lordFAST BLASR BWA-MEM GraphMap minimap2 NGMLR

smsMap N/A 75.44 85.76 85.46 96.75 84.26 82.31

lordFAST 87.33 N/A 78.61 83.20 97.27 83.70 80.53

BLASR 95.23 74.70 N/A 93.56 97.90 92.14 90.76

BWA-MEM 93.26 76.81 89.96 N/A 98.58 94.50 91.37

GraphMap 85.35 74.09 78.14 83.69 N/A 82.02 80.78

minimap2 93.86 78.04 91.79 97.01 98.71 N/A 92.99

NGLMR 92.52 75.13 91.82 95.19 97.63 94.25 N/A

Each row shows the percentage of best alignment from the corresponding method that covers alignments from other
methods. Note that this table is dissymmetric
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BWA-MEM, and minimap2), finally, extend the alignment to the non-seed fragments

within the selected candidate regions. However, the candidate aligned region of each

query read is always a part of the read and cannot completely cover the whole read

length. As a result, these methods usually focus on producing local mapping results for

the query read, other than obtaining the whole end-to-end alignment, leading to low

aligned coverage.

To solve the above issue, here we developed smsMap to obtain the whole read align-

ment by locating the alignment starting positions. smsMap is also a seeds-based

method using BWT-FM index technique, there are two differences between smsMap

and other methods: i) smsMap proposes a scoring strategy to select the candidate

aligned regions by defining a credibility function to measure the starting position cred-

ibility, which can locate the aligned positions for each query read; ii) smsMap intro-

duces a banded alignment on the low column memory matrix to get the alignment

results of the whole read. The credibility function ensures that smsMap can locate the

aligned positions for every query read, even in the situation that the matched seeds are

dispersedly distributed in the reference genome. Thus, smsMap can get higher FAR,

that is, align more reads. The banded alignment with the low column can obtain the

whole end-to-end alignment, not local alignment achieved by other methods. There-

fore, the FAB of smsMap is higher than other methods. Table S15 shows the example

alignments of different methods for one sequence with length of 296 bp, the detail

base-to-base alignments are also provided in the supplementary file. We can see that

smsMap aligned the whole read, while other tools failed to align the whole read. So, the

alignment of smsMap can truly reflect the error rate of the sequencing platform, while

other tools just output the local alignment results. Now, smsMap just outputs the best-

aligned position on the reference for query reads. But for a long chimeric read that a

part of the read comes from one position and another part of the read from a different

position. smsMap still reports one aligned position. This is a limitation of smsMap.

Thus, if users prefer to get the whole end-to-end alignments, smsMap is recommended,

if users prefer to obtain other aligned positions for a query read, other methods such as

lordFAST and minimap2 are recommended.

Conclusions
With the development of SMS technologies (e.g., PacBio and Oxford Nanopore Min-

ION) that produce long but noisy reads, mapping these reads to the reference genome

has become a central bioinformatics challenge. It is important to develop novel long

read alignment tools with better aligning accuracy as well as higher aligned coverage.

In this article, we developed smsMap to improve mapping quality of the long reads.

Mainly, there are two key features of smsMap. i) smsMap utilizes a strategy to identify

the starting positions in the query read and reference genome by designing a position

credibility function, this strategy makes more query reads aligning on the genome, and

also enables more segments of the query read mapping to the genome. ii) Compared

with the traditional banded alignment algorithm, smsMap implements the banded

aligning on a low column matrix, which can reduce the memory usage. The experimen-

tal results on both simulated and real-life SMS datasets show that smsMap achieves

higher aligned read coverage ratio and better mapping quality, and it can be more ro-

bust to the high sequencing errors. In addition, smsMap adopts the strategy of locating
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the start position that provides the split alignments of the reads. It makes smsMap ap-

propriate for aligning reads deriving from regions with long structural variations.

Methods
An overview of the smsMap mapper is shown in Fig. 3. smsMap mapper mainly includes

three main phases: i) build the BWT-FM index of the reference genome (Fig. 3a), ii) locate

the best starting positions in genome and query read by designing a position location ap-

proach (Fig. 3b), and iii) obtain the detailed dynamic alignment results by presenting a

strategy of banded alignment on the low column memory matrix (Fig. 3c).

Indexing the reference genome

The BWT-FM index is a compressed full-text substring index based on the BWT trans-

formation, which can efficiently find the number of occurrences of a substring within

the compressed text, as well as locate the position of each occurrence [39]. It has been

widely applied in bioinformatics, such as whole-genome alignment [40], short DNA se-

quence mapping [13], etc. Inspired by the BWT-FM index that allows long reference

genome to be searched efficiently with low memory usage [41], here, we use the BWT-

FM technique implemented in combined-index [27] to construct the index for the ref-

erence genome, which can quickly locate and find the match positions in the reference

genome for a given short word (default word length k = 14).

Locating the starting positions for alignment

Suppose that the query read r is the input sequence, where we do not know which pos-

ition in the reference genome that r comes from or which region in the genome that

has high similarity to r. It is impossible to align r with each subsequence of the genome

due to high time complexity. Therefore, it is crucial to design a searching strategy to

quickly locate the positions in query read r and genome for mapping.

Because the genome sequence is greatly longer than the query read, there is a high

possibility that one short word in the query read can be found in multi-positions in the

genome, but only one of the multi-positions for each word is the right location. In

addition, due to the query reads generated by SMS technology containing different

Fig. 3 Overview of the smsMap mapper. a Index the reference genome by BWT-FM strategy. b Locate the
starting positions in the genome and the query read, exact word matches are shown with different colors.
c A detailed dynamic alignment result is obtained by using the proposed column reduction banded
alignment as a guide. The backtracking route is denoted by the yellow arrows
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errors, there is a high possibility that some words cannot be mapped to the genome

(e.g., word w1 and w6 in Fig. 4), and the widths between the corresponding mapped po-

sitions of adjacent word pairs are usually unequal (e.g., p24 − p13 ≠ p18 − p27 in Fig. 4).

Considering these issues, we proposed the following position location strategy to find

the starting positions for aligning quickly.

First, we search all exact short word matches from the query read r in the genome

index built in the previous step. An exact match of word wi in the read r onto the gen-

ome can be described by a position set Wi:

Wi ¼ p1i ; p
2
i ;…pli;…pLii ; o

1
i ; o

2
i ;…oli;…oLii

� � ð3Þ

where i is the position of the i-th word (wi) in the read r, pliðl ¼ 1; 2;⋯; LiÞ is the l-th matched

position of wi on the genome, oli ¼ ðpli − iÞ is the modified position of the l-th matched position.

After building the position sets for all the matched words in read r, we can define the fol-

lowing credibility function SðoliÞ to measure the starting position credibility for aligning.

S oli
� � ¼ XΘ

j¼1

XL j

k¼1

δ okj − oli

��� ���� �
ð4Þ

δ okj − oli

��� ���� �
¼ 1; if okj − oli

��� ���≤L rð Þ
0; otherwise

(
ð5Þ

where Θ is the total matched word number in the query read r, Lj is the total matched

word number of word wj on the genome, and L(r) is an error-tolerant length function

for the query read r (here we set L(r) = 0.2r).

From all the credibility scores of oliði ¼ 1; 2;⋯;Θ; l ¼ 1; 2;⋯; LiÞ, we select the oli with

largest score value to identify the alignment starting positions on the read and genome, that

is, the position of word wi on the read is considered as the alignment starting position, and its

l-th matched position on the genome is considered as the alignment starting position.

Banded alignment on the low column memory matrix

After identifying the alignment starting positions on the read and genome, the starting

positions generally divide the query read into downstream segment rd and upstream

segment ru, the genome into downstream segment gd and upstream segment gu (Fig. 5).

For aligning each pair of segments (i.e., pair of rd and gd, or ru and gu), the traditional

banded alignment dynamic programming [42] can be applied to get the alignment re-

sult (Fig. 6a). Evidently, it needs a l(rd) × l(gd) matrix to store the alignment scores,

Fig. 4 The mapping positions for a query read of SMS. Some words (e.g., w1 and w6) cannot be mapped to
the genome because it contains sequencing errors, the right mapping positions for alignment are dotted
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where l(rd) and l(gd) are the length of rd and gd, respectively. Generally, the length of

l(rd) and l(gd) are over 1000 bps, and it requires bigger memory usage. In order to re-

duce the matrix memory usage, here we present the following strategy to reduce the

matrix column size for relieving the large memory usage (Fig. 6b and c).

We first extract the score region and index for every column in Fig. 6a. The number

(i.e., starting column index) in green boxes in Fig. 6b can be used to obtain the bases in

the genome for scoring. Based on the observation from Fig. 6b that the maximum

aligning base number for each row is 2b (b is the bandwidth), we can use a matrix with

l(rd) × 2b (Fig. 6c) to store the aligning scores in Fig. 6b. Because 2b is much smaller

than l(gd), the matrix l(rd) × 2b can significantly reduce memory usage. The scores in

the low column matrix in Fig. 6c are calculated by the following eqs. 6–10.

F u; vð Þ ¼ max
F u − 1; v0 − 1ð Þ þ Score rd uð Þ; gd v00ð Þ� �
F u − 1; v0ð Þ − d
F u; v0 − 1ð Þ − d

8<
:
u∈ 0; l rdð Þ½ � ; v∈ 0; 2b½ �

ð6Þ

v0 ¼ vþ sci uð Þ − sci u − 1ð Þ ð7Þ

Fig. 5 Starting alignment positions on the read and genome and the four split segments of gd, gu, rd and
ru. Generally, the length of gu and gd are 1.2 times of ru and rd length

Fig. 6 Banded alignment flowchart from the traditional full matrix to the low column matrix. a Traditional
banded alignment on the full matrix. The upper line and bottom line are the alignment boundary. b Extract
the alignment region. Numbers in green boxes are the started column index of the full memory matrix. c
Banded alignment on the low column matrix in which the yellow line is the backtracking path
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v00 ¼ vþ sci vð Þ ð8Þ
sci uð Þ ¼ max floor ldown uð Þð Þ; 0½ � ð9Þ
ldown uð Þ ¼ 1:2� u − b ð10Þ

where F(u, v) is the score value of the u-th row and v-th column in the matrix in Fig. 6c,

Score[rd(u), gd(v ' ')] is the match score or mismatch penalty for the u-th base in seg-

ment rd and the v ' '-th base in gd, sci(u) is the starting column index and floor() is the

floor function. Here we define the bandwidth b = αlr, where lr is the read length, α is a

width coefficient. The default value of α is 0.1, which can cover almost all aligned paths

(see supplementary file for more discussion about the banded width).

After obtaining the two low column matrices of l(rd) × 2b and l(ru) × 2b, we applied

the banded alignment algorithm on these two matrices to align rd with gd, and ru with

gu, respectively. In the end, we combine the aligning results of downstream segments

(i.e., rd with gd) and upstream segments (i.e., ru with gu) to get the mapping result of

the query read and the reference genome.
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