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Abstract

Background: Research on the molecular ecology of non-model organisms, while
previously constrained, has now been greatly facilitated by the advent of reduced-
representation sequencing protocols. However, tools that allow these large datasets
to be efficiently parsed are often lacking, or if indeed available, then limited by the
necessity of a comparable reference genome as an adjunct. This, of course, can be
difficult when working with non-model organisms. Fortunately, pipelines are
currently available that avoid this prerequisite, thus allowing data to be a priori
parsed. An oft-used molecular ecology program (i.e., STRUCTURE), for example, is
facilitated by such pipelines, yet they are surprisingly absent for a second program
that is similarly popular and computationally more efficient (i.e., ADMIXTURE). The two
programs differ in that ADMIXTURE employs a maximum-likelihood framework whereas
STRUCTURE uses a Bayesian approach, yet both produce similar results. Given these
issues, there is an overriding (and recognized) need among researchers in molecular
ecology for bioinformatic software that will not only condense output from
replicated ADMIXTURE runs, but also infer from these data the optimal number of
population clusters (K).

Results: Here we provide such a program (i.e., ADMIXPIPE) that (a) filters SNPs to allow
the delineation of population structure in ADMIXTURE, then (b) parses the output for
summarization and graphical representation via CLUMPAK. Our benchmarks effectively
demonstrate how efficient the pipeline is for processing large, non-model datasets
generated via double digest restriction-site associated DNA sequencing (ddRAD).
Outputs not only parallel those from STRUCTURE, but also visualize the variation among
individual ADMIXTURE runs, so as to facilitate selection of the most appropriate K-value.

Conclusions: ADMIXPIPE successfully integrates ADMIXTURE analysis with popular variant
call format (VCF) filtering software to yield file types readily analyzed by CLUMPAK.
Large population genomic datasets derived from non-model organisms are
efficiently analyzed via the parallel-processing capabilities of ADMIXTURE. ADMIXPIPE is
distributed under the GNU Public License and freely available for Mac OSX and Linux
platforms at: https://github.com/stevemussmann/admixturePipeline.

Keywords: RADseq, SNP analysis, Population genomics, Population structure,
ADMIXTURE analysis

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Mussmann et al. BMC Bioinformatics          (2020) 21:337 
https://doi.org/10.1186/s12859-020-03701-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03701-4&domain=pdf
http://orcid.org/0000-0002-5237-5088
mailto:smussmann@gmail.com
mailto:smussmann@gmail.com
https://github.com/stevemussmann/admixturePipeline
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Advances in genomics during the past decade have accelerated research in molecular

ecology by significantly increasing the capacity of researchers to generate vast quantities

of data at relatively low cost. These advances largely represent the development of re-

duced representation genomic libraries [1–3] that identify tens of thousands of SNPs

for non-model organisms, coupled with high-throughput sequencing methods that effi-

ciently genotype fewer SNPs for thousands of individuals [4]. However, data generation,

particularly through these novel and affordable marker-discovery methods [5], has

greatly outpaced analytical capabilities, and especially so with regard to evolutionary

and conservation genomics.

Technological advances have also precipitated a suite of new analytical issues. The

thousands of SNPs generated in a typical RADseq project may exhibit biases that im-

pact the inferences that can be drawn from these data [6], and which necessitate careful

data filtration to avoid [7]. Yet, the manner by which data are filtered represents a

double-edged sword. While it is certainly mandated (as above), the procedures involved

must be carefully evaluated in the context of each study, in that downstream analyses

can be seriously impacted [8, 9], to include the derivation of population structure [10].

For example, the analysis of multilocus codominant markers in evaluation of popula-

tion structure is frequently accomplished using methods that make no a priori assump-

tions about underlying population structure. One of the most popular methods in this

regard is the program STRUCTURE [11–13]. However, it necessitates that users test spe-

cific clustering values (K), and conduct post hoc evaluation of results so as to determine

an optimal K [14]. This typically involves searching a complicated parameter space

using heuristic algorithms for Maximum Likelihood (ML) and Bayesian (BA) methods

that, in turn, provide additional complications such as a tendency to sample local op-

tima [15].

A common mitigation strategy is to sample multiple independent replicates at each

K, using different random number seeds for initialization. These results are subse-

quently collated and evaluated to assess confidence that global rather than local optima

have indeed been sampled. Clearly, this procedure must be automated so as to alleviate

the onerous task of testing multiple replicates across a range of K-values. Pipelines to

do so are available for STRUCTURE, and have been deployed on high-performance com-

puting systems via integrated parallelization (STRAUTO, PARALLELSTRUCTURE) [16, 17].

Multiple programs have likewise been developed for handling STRUCTURE output (i.e.,

CLUMPP, DISTRUCT) [18, 19]; and pipelines constructed to assess the most appropriate

K-values (i.e., STRUCTUREHARVESTER, CLUMPAK) [20, 21].

Despite the considerable focus on STRUCTURE, few such resources have been devel-

oped for a popular alternative program (i.e., ADMIXTURE [22]). The Web of Science

indexing service indicates that (as of January, 2020) ADMIXTURE has been cited 1812

times since initial publication (September, 2009). This includes 479 (26.4%) in 2019

alone. Despite its popularity, it has just a single option that promotes the program as

part of a pipeline (i.e., SNIPLAY3 [23]), which unfortunately requires a reference genome

as an adjunct for its application. Needless to say, its applicability is thus limited for

those laboratories that employ non-model organisms as study species.

Options for post-processing of ADMIXTURE results are similarly limited, but some

packages do exist. One positive is that CLUMPAK is flexible enough in its

Mussmann et al. BMC Bioinformatics          (2020) 21:337 Page 2 of 9



implementation to allow for the incorporation of ADMIXTURE output, as well as that of

STRUCTURE. Alternatively, PONG provides options for processing and visualizing ADMIX-

TURE outputs [24]. However, no available software currently exists to summarize vari-

ation in cross-validation (CV) values, the preferred method for selecting an optimal K-

value in ADMIXTURE [25].

Here we describe a novel software package that integrates ADMIXTURE as the primary

component of an analytical pipeline that also incorporates the filtering of data as part

of its procedure. This, in turn, provides a high-throughput capability that not only gen-

erates input for ADMIXTURE but also evaluates the impact of filtering on population

structure. ADMIXPIPE also automates the process of testing multiple K-values, conducts

replicates at each K, and automatically formats these results as input for the CLUMPAK

pipeline. Optional post-processing scripts are also provided as a part of the toolkit to

process CLUMPAK output, and to visualize the variability among CV values for inde-

pendent ADMIXTURE runs. Sections of the pipeline are specifically designed for use with

non-model organisms, as these are the dominant study species in evolutionary and con-

servation genomic investigations.

Implementation
The workflow for ADMIXPIPE is presented in Fig. 1. The pipeline requires two input

files: a population map and a standard VCF file. The population map is a tab-delimited

text file with each row representing a sample name/ population pair. The VCF file is fil-

tered according to user-specified command line options that include the following:

minor allele frequency (MAF) filter, biallelic filtering, data thinning measured in base-

pairs (bp), and missing data filtering (for both individuals and loci). Users may also re-

move specific samples from their analysis by designating a file of sample names to be

Fig. 1 The workflow for AdmixPipe involves two files as Input: 1) a VCF-formatted file of genotypes, and 2)
a tab-delimited population map. These proceed through admixturePipeline.py which handles filtering, file
conversion, and execution of Admixture according to user-specified parameters. After completion, the user
can submit their output to Clumpak for analysis. The resulting files can then be visualized using
distructRerun.py, and variability in cross validation (CV) values is assessed using cvSum.py
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ignored. All filtering and the initial conversion to PLINK (PED/MAP) format [26] is han-

dled by VCFTOOLS [27].

An important consideration in filtering is mitigation of linkage disequilibrium.

VCFTOOLS can calculate linkage disequilibrium statistics, however these do not consider

population information, thereby increasing the potential for type I error [28]. PLINK not

only suffers from these limitations, but also requires a “window size” input that speci-

fies the lengths of genomic regions within which statistical comparisons among loci are

conducted. This is typically inappropriate for non-model organisms due to a lack of

whole-genome resources. Non-overlapping contigs produced via reduced-

representation methods can be short (e.g., 100 bp), making it a reasonable assumption

that all SNPs within a contig are linked. Therefore, we suggest specifying a thinning

interval in excess of the longest contig length to ensure that ADMIXPIPE samples a single

SNP per contig. This method is homologous to solutions implemented in popular

RADseq assembly pipelines such as STACKS and IPYRAD to minimize linkage disequilib-

rium in datasets [29, 30].

Additional conversions following the filtering and initial conversion via VCFTOOLS

are required before the PLINK-formatted files will be accepted by ADMIXTURE. Popular

software packages for de novo assembly of RADseq data, such as pyRAD [29, 31] pro-

duce VCF files with each locus as an individual “chromosome.” As a consequence, these

pipelines produce outputs in which the number of “chromosomes” exceeds the number

present in the model organisms for which PLINK was originally designed. The initial

MAP file is therefore modified to append a letter at the start of each “chromosome”

number. PLINK is then executed using the “–allow-extra-chr 0” option that treats loci as

unplaced contigs in the final PED/ MAP files submitted to ADMIXTURE.

The main element of the pipeline executes ADMIXTURE on the filtered data. The as-

sessment of multiple K values and multiple replicates is automated, based upon user-

specified command line input. The user defines minimum and maximum K values to

be tested, in addition to the number of replicates for each K. Users may also specify the

number of processor cores to be utilized by ADMIXTURE, and the cross-validation num-

ber that is utilized in determining optimal K. The final outputs of the pipeline include a

compressed results file and a population file that are ready for direct submission to

CLUMPAK for processing and visualization.

The pipeline also offers two accessory scripts for processing of CLUMPAK output. The

first (i.e., distructRerun.py) compiles the major clusters identified by CLUMPAK, gener-

ates DISTRUCT input files, executes DISTRUCT, and extracts CV-values for all major clus-

ter runs. The second script (i.e., cvSum.py) plots the boxplots of CV-values against

each K so as to summarize the distribution of CV-values for multiple ADMIXTURE runs.

This permits the user to make an informed decision on the optimal K by graphing how

these values vary according to independent ADMIXTURE runs.

ADMIXTURE is the only component of the pipeline that is natively parallelized. There-

fore, we performed benchmarking to confirm that processing steps did not significantly

increase runtime relative to that expected for ADMIXTURE. Data for benchmarking were

selected from a recently published paper that utilized ADMIXPIPE for data processing

[32]. The test data contained 343 individuals and 61,910 SNPs. Four data thinning in-

tervals (i.e.,1, 25, 50, and 100) yielded SNP datasets of variable size for performance

testing. All filtering intervals were repeated with variable numbers of processor cores
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(i.e.,1, 2, 4, 8, and 16). Sixteen replicates of ADMIXTURE were first conducted for each

K = 1–8 at each combination of thinning interval and number of processor cores, for a

total of 20 executions of the pipeline. The process was then repeated for each K = 9–

16, for an additional 20 runs of the pipeline. Memory profiling was conducted through

the python3 ‘mprof’ package at K = 16, with a thinning interval of 1 as a final test of

performance. All tests were completed on a computer equipped with dual Intel Xeon

E5–4627 3.30GHz processors, 256GB RAM, and with a 64-bit Linux environment.

Results
The filtering intervals resulted in datasets containing 61,910 (interval = 1 bp), 25,851

(interval = 25 bp), 19,140 (interval = 50 bp), and 12,527 SNPs (interval = 100 bp). Run-

time increased linearly with the number of SNPs analyzed, regardless of the number of

processors utilized (Fig. 2a: R2 = 0.975, df = 58). For example, increasing the number of

SNPs from 12,527 to 61,910 (494% increase) produced an average increase of 519% in

ADMIXPIPE runtime (SD = 41.6%).

Little change was observed in response to increasing the numbers of processor cores

from K = 1–8 (Fig. 2b). A slight decrease in performance was observed in some cases,

particularly for the largest dataset. This trend changed at higher K-values, as substantial

gains were observed at K = 9–16 (Fig. 2c) when processors were increased from 1 to 4.

The most dramatic performance increase was observed for the 61,910 SNP dataset,

where a 24.3-h (34.5%) reduction in computation time occurred when processors in-

creased from 1 to 4. However, only marginal improvements occurred when processors

were increased from 1 to 8 (24.5 h; 34.7%) or 16 (26.2 h; 37.7%).

Profiling also revealed efficient and consistent memory usage of ADMIXPIPE. The

greatest memory spike occurred during the initial filtering steps, when peak memory

usage reached approximately 120MB. All subsequent usage held constant at ~ 60MB

as ADMIXTURE runs progressed.

Discussion
The performance of ADMIXPIPE improved with the number of processor cores utilized

at higher K-values. However, it did not scale at the rate suggested in the original AD-

MIXTURE publication. We have been unable to attribute the difference in performance

to any inherent property of our pipeline. Filtering and file conversion steps at the initi-

ation of ADMIXPIPE are non-parallel sections. Reported times for completion of these

steps were approximately constant across runs, with the maximum being 8 seconds.

This indicates that ADMIXTURE itself is the main driver of performance, as it comprises

the vast majority of system calls made by ADMIXPIPE.

The original performance increase documented for ADMIXTURE was 392% at K = 3,

utilizing four processor cores [25]. Unfortunately, we could not replicate this result

with our benchmarking data [32], or the original test data (i.e., 324 samples; 13,928

SNPs) [25] which parallels our own. When we attempted to replicate the original

benchmark scores, we found that it also failed to scale as the number of processor

cores increased (1-core x = 40.63 s, σ = 0.90; 4-core x = 47.46 s, σ = 4.71). Furthermore,

we verified that performance did increase with up to four processor cores at higher K

values (K ≥ 9). We therefore view this as ‘expected behavior’ for ADMIXTURE, and find
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no reason to believe that ADMIXPIPE has negatively impacted the performance of any in-

dividual program.

Results of ADMIXPIPE were similar to those estimated by STRUCTURE for the test data-

set, as evaluated in an earlier publication [32], and gauged for the optimum K = 8. This

is not surprising, given that ADMIXTURE implements the same likelihood model as does

STRUCTURE [22]. However, minor differences have previously been noted for both pro-

grams in the assignment probabilities [32, 33].

Memory usage was efficient and constant, with the greatest increase occurring when

PLINK was executed. Thus, users will be able to execute ADMIXPIPE on their desktop

machines for datasets sized similarly to those evaluated herein. Performance gains were

minimal with > 4 processors, and this (again) reduces the necessity for supercomputer

access, since desktop computers with ≥4 processor cores are now commonplace. How-

ever, given the built-in parallelization capabilities of ADMIXTURE, its application on

Fig. 2 Benchmarking results for ADMIXPIPE. a The percent increase in runtime for ADMIXPIPE exhibits a nearly
1:1 ratio with respect to percent increase in the number of SNPs. Data are based upon pairwise
comparisons (% increase) of runtime and input size for four datasets of varying size (61,910 SNPs, 25,851
SNPs, 19,140 SNPs, and 12,527 SNPs; R2 = 0.975, degrees of freedom= 58). b shows benchmarking results
for a range of K values (K = 1–8; 16 replicates at each K), while c) shows the equivalent results for K = 9–16
(16 replicates at each K). Time for b) and c) is presented in hours on the Y-axis. The number of processor
cores (CPU = 1, 2, 4, 8, and 16) was varied across runs. Four data thinning intervals (1, 25, 50, and 100)
produced variable numbers of SNPs (61,910, 25,851, 19,140, and 12,527 respectively)
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dedicated high-performance computing clusters will be beneficial when runtime con-

siderations are necessary, such as when evaluating K > 8, or SNPs≥20,000.

Finally, our integration of common SNP filtering options provides the flexibility to

quickly filter data and assess the manner by which various filtering decisions impact re-

sults. A byproduct of the filtering process is the production of a STRUCTURE-formatted

file that will facilitate comparisons with other popular algorithms that assess population

structure. These options are important tools, particularly given recent documentation

regarding the impacts of filtering on downstream analyses. We thus suggest that users

implement existing recommendations on filtering RAD data, and use these to investi-

gate subsequent impacts on their own data [7–10].

Conclusions
Benchmarking has demonstrated that the benefits of ADMIXPIPE (e.g., low memory

usage and performance scaling with low numbers of processor cores at high K-values)

will prove useful for researchers with limited access to advanced computing resources.

ADMIXPIPE also allows the effects of common filtering options to be assessed on popula-

tion structure of study species by coupling this process with the determination of popu-

lation structure. Integration with CLUMPAK, and our custom options that allow plotting

of data, to include variability in CV-values and customization of population-assignment

plots, will facilitate the selection of appropriate K-values and allow variability to be

assessed across runs. These benefits will allow researchers to implement recommenda-

tions regarding assignment of population structure in their studies, and to accurately

report the variability found in their results [34]. In conclusion, ADMIXPIPE is a new tool

that successfully fills a contemporary gap found in pipelines that assess population

structure. We anticipate that ADMIXPIPE, and its subsequent improvements, will greatly

facilitate the analysis of SNP data in non-model organisms.

Availability and requirements
Project name: AdmixPipe: A Method for Parsing and Filtering VCF Files for Admix-

ture Analysis.

Project home page: https://github.com/stevemussmann/admixturePipeline

Operating system(s): Linux, Mac OSX.

Programming language: Python.

Other requirements: Python 2.7+ or Python 3.5+; Python argparse and matplotlib li-

braries; Dependencies include additional software packages (ADMIXTURE V1.3, DISTRUCT

V1.1, PLINK 1.9 beta 4.5 or higher, and VCFTOOLS V0.1.16).

License: GNU General Public License v3.0.

Any restrictions to use by non-academics: None.
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BA: Bayesian Analysis; CV: Cross-validation; ddRAD: Double digest Restriction-site Associated DNA; MAF: Minor Allele
Frequency; ML: Maximum Likelihood; SNP: Single Nucleotide Polymorphism; VCF: Variant Call Format
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