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Abstract

Background: While technological advances have made it possible to profile the
immune system at high resolution, translating high-throughput data into knowledge
of immune mechanisms has been challenged by the complexity of the interactions
underlying immune processes. Tools to explore the immune network are critical for
better understanding the multi-layered processes that underlie immune function and
dysfunction, but require a standardized network map of immune interactions. To
facilitate this we have developed ImmunoGlobe, a manually curated intercellular
immune interaction network extracted from Janeway’s Immunobiology textbook.

Results: ImmunoGlobe is the first graphical representation of the immune
interactome, and is comprised of 253 immune system components and 1112 unique
immune interactions with detailed functional and characteristic annotations. Analysis
of this network shows that it recapitulates known features of the human immune
system and can be used uncover novel multi-step immune pathways, examine species-
specific differences in immune processes, and predict the response of immune cells to
stimuli. ImmunoGlobe is publicly available through a user-friendly interface at www.
immunoglobe.org and can be downloaded as a computable graph and network table.

Conclusion: While the fields of proteomics and genomics have long benefited from
network analysis tools, no such tool yet exists for immunology. ImmunoGlobe provides
a ground truth immune interaction network upon which such tools can be built. These
tools will allow us to predict the outcome of complex immune interactions, providing
mechanistic insight that allows us to precisely modulate immune responses in health
and disease.

Keywords: Systems immunology, Immune network analysis, Cytokines,
Immunobiology, Bioinformatics, Protein networks

Introduction
The immune system is composed of a complex network of cells [1], receptors [2, 3]

and secreted molecules [4], and an effective immune response requires coordination

across these many components [3, 5, 6]. Consequently, the study of immune function
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and dysfunction at the level of pathways rather than individual components is critical

in order to predict the outcome of immune interactions and precisely modulate im-

mune responses. Knowledge of the underlying interaction network is therefore essential

to the understanding of these immune responses, but its sheer complexity presents a

barrier even to seasoned immunologists [7].

Recently, high-throughput technologies such as mass cytometry and gene expression profil-

ing have enabled the measurement of immune responses in unprecedented detail [8, 9] by in-

creasing the number of immune parameters that can be measured simultaneously. However,

the lack of a foundational framework that integrates across the diverse components of the im-

mune system has made it challenging to develop detailed, causal models explaining immune

function and dysfunction [7, 10, 11]. Individual systems immunology approaches have been

successful in several cases, for example in elucidating the immune networks involved in inflam-

mation by using cytokine secretion profiles to create mathematical models of immune cell in-

teractions [12] and inferring the immune networks that define tumor immunogenicity using

genomic and transcriptomic data [13]. However, these types of systems immunology studies

largely involve personalized analysis pipelines which require high levels of specialized analytical

expertise to design and run, making them inaccessible to most researchers.

Growing recognition of the importance of such systems immunology approaches has

resulted in the creation of a number of resources to address this issue, including ana-

lyses of the genes involved in various immune pathways [14], interactions between im-

mune cells and cytokines [4], and proteomic analysis of known and potential cell:cell

interactions [2]. While existing studies have contributed to our understanding of how

parts of the immune system interact, there does not yet exist a comprehensive, gold-

standard network map of the immune system that includes the variety of components

that participate in immune responses, along with functional immune pathway annota-

tions at the intercellular level. Such a map could act as the basis for the development of

broadly applicable immune network analysis tools, such as those that exist for genomics

and proteomics (for example DAVID [15] and KEGG [16]), which enable researchers

to easily extract functional pathway-level information from high-throughput data.

Here we present ImmunoGlobe, available to the public at www.immunoglobe.org.

ImmunoGlobe is a map of the immune intercellular interactome based on a widely-used

and comprehensive immunology text [17, 18] that describes how components of the im-

mune system interact to drive immune responses. By structuring our knowledge of im-

mune interactions into a directional graph, ImmunoGlobe enables the easy querying of

immune pathways and examination of the interactions between immune system compo-

nents. By establishing a ground truth network of immune interactions, we anticipate that

this resource will accelerate the development of immune network analysis tools, ultim-

ately enabling the development of agents that can more precisely manipulate the immune

response by accurately predicting the outcome of immune interactions.

Results
The ImmunoGlobe immune interaction network codifies immune interactions described

in Janeway’s Immunobiology

To construct a comprehensive immune interaction network, we manually curated the

2799 immune interactions (edges) published in Janeway’s Immunobiology [18], widely
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regarded as an essential and comprehensive immunology text [17]. The data in this

textbook is derived directly from the research literature, and focuses on physiologic

functioning of the immune system rather than rare or atypical phenomena that may re-

sult from some experimental setups.

Detailed information about 253 immune system components (nodes) and the nature

of each directional interaction was recorded into a network table (Table S1). Nodes are

general representations of each immune component and do not represent particular

samples. For each interaction (edge), we extracted the names of the source and target

nodes, the direction and type of the interaction, and the source of the data in the text-

book (Fig. 1a). Additional information, such as the receptors involved, the activation

states of the source and target nodes, and the immune process in which a given edge

participates were recorded if available. This codification of the textbook was repeated

twice and verified by an independent panel of reviewers.

A table (Table S2) designating node attributes was also generated to provide functional

detail about each individual node. Each node was categorized into one of five types reflect-

ing its identity: cell, cytokine, antibody, effector molecule, or antigen. A subtype was fur-

ther assigned to reflect the function of each node. Of the 2799 interactions extracted

(Table S1), 1112 were unique (Table S3). These interactions linked 253 nodes.

An example of the type of information used for construction of the network is pre-

sented in Fig. 1b. Analysis of this sentence reveals seven individual edges (interactions)

between six distinct nodes (immune system components) (Fig. 1c), which were used to

generate a graphical network (Fig. 1d). Although the amount of information provided

by the sentence and the graphical network is identical, the graphical network formalizes

the mechanistic relationships between the nodes, and enables the application of graph

theory and network analysis principles to immunology.

The edge list and node attributes table were used to generate ImmunoGlobe, a graphical

immune interaction network model (Fig. 2a). ImmunoGlobe was manually organized to

group nodes according to function, with node type indicated by shape (Fig. 2b). Immune cells

are at the top, organized according to the differentiation tree from a common hematopoietic

stem cell [19]. Innate immune cells are on the left, and adaptive immune cells are on the

right. Non-immune cells that interact with the immune system are collected in a column on

the left. Cytokines are grouped together, separated into subgroups of interleukins, chemo-

kines, and other cytokines. Immune effector molecules are grouped together and further

clustered by subtype (e.g. Complement, reactive oxygen species). Antigens (foreign or patho-

genic molecules that can stimulate an immune response) are shown at the bottom of the net-

work. Antibody isotypes are shown on the right. Different edge types are represented by lines

of different colors and styles, detailed in Fig. 2c. Edge types that are considered positive inter-

actions (i.e., activate, recruit, or promote survival) are in green. Negative interactions (i.e., in-

hibit, kill) are in red. Secrete is in purple. Other edges (differentiate, polarize) are in grey.

Definitions of the edge types can be found in Note S2. ImmunoGlobe thus provides a visual

catalog of directional interactions between immune components and is available as an inter-

active network for download (File S1) and online at www.immunoglobe.org.
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The immune network model recapitulates known features of the immune system

A high-level analysis of the ImmunoGlobe network confirms known features of the hu-

man immune system, providing confidence that the topology and characteristics of this

network accurately reflect our prior knowledge of immune system functioning. Most of

the nodes in the network are cytokines (n = 109), followed by cells (n = 51), effector

molecules (n = 59), antigens of various types (n = 30), and antibodies (n = 4) (Fig. 2e).

The immune interaction network is large with 253 components (nodes) and 1112 inter-

actions (edges) but has a low density of 0.02, meaning that only 2% of all possible edges

in the network actually exist (Fig. 2d). This low density reflects specificity in the action

of immune components, as a single node with excessively high connectivity could lead

to pathologic immune responses if it were to become dysfunctional [20]. The network

Fig. 1 ImmunoGlobe is a directional immune interaction network that was constructed by manually
codifying immune interactions described in the Janeway’s Immunobiology 9e textbook. a Schematic
showing information recorded for each interaction. Each interaction is composed of at least a source node,
target node, edge effect and source text reference. Bold text indicates required information for each edge;
other points were recorded when available. b An example sentence showing the codification process.
Seven interactions described in this sentence are annotated, with arrows originating at each source node
and ending at each target node. Numbers on the arrows correspond to the “Interaction” column in 1c.
Highlight colors of words in 1b correspond to the highlight colors in 1c. c The information extracted from
sentence 1b is recorded into a network table. Each interaction between two nodes is recorded in its own
row. Some rows have more detail than others, but all contain the required information (detailed in 1a). d
The network table is used to generate a graphical representation of the described immune interactions. The
entirety of the Janeway textbook was codified as illustrated here
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Fig. 2 Network analysis of ImmunoGlobe recapitulates known features of the immune system. a A
visualization of the ImmunoGlobe immune interaction network, with immune cells organized by
hematopoietic lineage and other nodes grouped according to node type. Interactions between the nodes
are shown as colored edges. b A legend showing the shapes representing each node type. c A legend
showing the line shapes representing each edge type. d Summary characteristics of the immune
interaction network. Number of nodes and edges are shown, and density, average path length throughout
the network, and diameter of the network were calculated. e A pie chart showing the counts of each node
type. f A bar graph showing the number of directional edges between different node types. The majority of
interactions are between cells and cytokines. g Visualization of the number of edges between all node
types. Each chord represents one directional interaction and is colored by node type of the source node. h
Histograms showing the total degree distribution of each node type in the network. Each count on the Y
axis represents one node. For all node types, the degree distributions skew right. i A scatter plot showing
the in and out degrees of various cytokines. Points are colored by the number of cytokines with that
combination of in- and out-degree. Cytokines with higher degrees are labeled. j A bar plot showing the
degrees of various cell types. The height of the bar represents the total degree, with in and out degrees
shown by fill color
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diameter of 7 indicates that the longest path between any two nodes is 7 steps. The

average path length of the network is 3.25: It takes on average 3.25 steps along existing

directional edges (interactions) to connect any two randomly selected nodes. This is

shorter than would be expected by a random graph (Fig. S3), indicating that the net-

work structure allows the rapid dissemination of information across its components

[21], which is critical in the timely initiation of immune responses [22] (Fig. 2d).

The most common edges in the immune network describe the effects of cytokines on

cells. The second most frequent edge type is cells secreting cytokines, followed by dir-

ect cell to cell interactions. The final category captures all edges involving antibodies,

effector molecules, and antigens (Fig. 2f). The “Other” category in Fig. 2f groups to-

gether interactions between immune cells and effector molecules, antigens, and anti-

bodies. A visualization of the interactions between all node types shows that cells are

involved in over half of the total edges (Fig. 2g).

The degree counts, which measure the number of edges a node has, recapitulate prior

knowledge as well. The degree distribution of the immune network skews right (Fig.

2h), showing that most nodes have relatively low degree, although there are a number

of highly connected nodes. We examined the degrees of cytokine nodes by plotting the

number of connections in versus the number of connections out for each individual

cytokine (Fig. 2i). The number of connections in, or the “in” degree, reflects how many

cell types secrete that cytokine, and “out” degree reflect the nodes that the cytokine in-

fluences. Some cytokines have low degrees and thus are highly specific: These cytokines

are either secreted by or affect few cell types, whereas others with high degrees are se-

creted by or act upon many types of cells. The cytokines with the highest degrees are

those related to inflammation (e.g. IFNγ, TNFα) and immunosuppression (e.g. TGFβ,

IL10), which are relatively nonspecific processes that require broad activity across mul-

tiple modules of the immune system [23]. These processes are both initiated by many

cell types and affect many immune cell types.

We next examined the degrees of the cell nodes (Fig. 2j). Cells have the highest degree

of all node types because their functions are versatile, and cells can have different (and

sometimes even opposing) responses depending on their physiologic context [24]. Cells

carry out these varying functions by interfacing with and producing different components

of the immune system. Antigen-presenting cells (APCs; here referring to dendritic cells,

as described in Note S1) both sense a wide range of inputs and express or secrete numer-

ous immune cell effectors [25]. Myeloid cells (including granulocytes), whose primary re-

sponsibility is to sense and respond rapidly to threats from the environment, have high

“in” degrees but lower “out” degrees, reflecting their limited effector mechanisms [26].

Lymphocytes, the main effectors of the adaptive immune system, have lower degrees than

other immune cells, reflecting their specialized and antigen-specific functions [27]. Im-

mune cell precursors have low “in” degrees and slightly higher “out” degrees, reflecting

their sensing of specialized growth and differentiation signals and their subsequent differ-

entiation into mature immune cell subsets [19].

ImmunoGlobe accurately represents multi-step immunologic mechanisms

One potential value of the ImmunoGlobe network lies in its capacity to uncover novel

multi-step immune pathways. To test this, we performed two case studies of multi-step
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pathways assembled from individual network interactions to determine if there was evi-

dence for them in the literature. Iwamoto et al. [28] reported that activation of

monocyte-derived dendritic cells by TNFα and GMCSF influences their capacity to in-

duce differentiation of CD4+ T cells into Th1 and Th17 cells (Fig. 3a). Although this

particular pathway was not described in the textbook it exists in the network because

the eleven cell types and cytokines involved exist as nodes in ImmunoGlobe, and 13 of

the 14 interactions comprising it were described in other contexts in the textbook. Only

one of the 14 interactions reported by these authors was absent in ImmunoGlobe (se-

cretion of IL23 by monocytes). ImmunoGlobe also identifies several additional interac-

tions between these nodes not reported in the Iwamoto paper. In the second study,

Daftarian et al. [29] reported that IL10 secretion is enhanced in CD4+ T cells by the cy-

tokines IL6 and IL12, and in monocytes by TNFα (Fig. 3b). In the ImmunoGlobe net-

work, all edges described in the paper are present, along with additional interactions

between the nodes not described in the paper. The abstracts for both papers are in-

cluded in Note S3. Thus, ImmunoGlobe links interactions reported individually in the

textbook into more extensive pathways supported by experimental evidence but not ex-

plicitly described in the source text. This illustrates the comprehensiveness of the net-

work despite its being based on a single source text, and suggests that the network can

be mined for previously unknown or unaccounted for interactions and pathways of

interest.

Mouse and human immune systems differ largely in the properties of their respective

immune system components

Next we used ImmunoGlobe to investigate whether differences between mouse and hu-

man immune systems are reflected in the immune network structure. Each mention of

a difference between mouse and human immune components (including cells, proteins,

or molecules) described in Janeway’s Immunobiology was classified into one of four cat-

egories (Table S4) and annotated with the nodes and immune processes affected. We

classified differences in node properties into four categories (Fig. 4a). Category 1 differ-

ences are those in which the component is the same between mouse and human, but

form, function, or copy number differs. Category 2 are different components that per-

form equivalent functions. Category 3 differences are those in which the components

are identical, but their levels or expression patterns differ. Category 4 are components

that have no equivalent in one of the species. The most common differences between

mouse and human immune components were those in Category 1 (Fig. 4b), with Category

4 being the least common. This predominance of subtle differences between the species

highlights the common origin of their immune systems [30]. Indeed, the Category 4 dif-

ferences (CCL6, CCL9, CCL12, SAP, and dendritic epidermal T cells are found only in

mice, Granulysin and MIC molecules are found only in humans) all affect innate immune

functions such as inflammation and barrier immunity, likely reflecting the different evolu-

tionary pressures encountered by each species since their divergence [31].

Figure 4c shows the distribution of species-specific differences across the immune

network, with the specific nodes and immune processes affected detailed in Fig. 4d.

The differences between human and mouse affect both the innate and adaptive arms of

the immune system, as well as some effector molecules (defensins, granulysin, acute
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phase molecule SAP) and chemokines (CCL12, CCL8, and CCL9). There are several

differences in components involved in antigen presentation, including in the sequences

and structures of MHC/HLA molecules, T cell receptors, the structures of antibodies,

and the ratios of antibody isotypes. The ratios of circulating immune cells as well as

the specific surface markers of various immune cell types differ as well. Innate immune

recognition differs in the Toll-like receptors, antimicrobial molecules and enzymes that

exist in each species, as well as activation control of B and NK cells. The nodes with

the largest number of species-specific differences are those that represent B cells and

NK cells. For B cells, these differences include differences in the positioning and se-

quences of the genes encoding HLA molecules, the structures of the HLA molecules,

the effect of cytokines such as IL7 and TSLP on developing B cells, the surface markers

that differentiate B cells, the process of recombination of the B cell receptor, and the

expression of Toll-like receptors on naïve B cells. For NK cells, the differences impact

their role in innate immunity, particularly in antigen recognition and cytotoxicity.

We expected that there would be differences in network structures between mice and

humans based on the difficulty in translating immunomodulatory therapies between

the species, but instead found that the 59 differences related instead to properties of

the nodes themselves, largely in what activates the different immune components and

how they are activated. The edges between the nodes do not appear to differ. For

Fig. 3 The ImmunoGlobe network model accurately reflects multi-step immunologic mechanisms. a
Visualization of the pathway described in Iwamoto et al. Bold edges are those described in the paper, while
transparent edges are additional interactions between the involved nodes that are found in ImmunoGlobe.
b Visualization of the pathway described in Daftarian et al. Again, bold edges are those described in the
paper, while transparent edges are additional interactions between the involved nodes that are found
in ImmunoGlobe

Atallah et al. BMC Bioinformatics          (2020) 21:346 Page 8 of 18



Fig. 4 (See legend on next page.)
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example, while TLR expression can be found in B cells of both species, they are

expressed in naïve B cells constitutively in mice but only after BCR stimulation in

humans [32], and the MIC and KIR genes involved in NK activation in humans are not

found in mice [18]. These changes affect the reactivity of immune components rather

than their interactions with other parts of the immune system.

Immune network structure can be used to examine the network effects of immune

stimuli

To demonstrate the potential application of ImmunoGlobe in helping to interpret ex-

perimental data, we performed a mass cytometry experiment to see whether we could

use the immune network structure to identify a relationship between network charac-

teristics and the strength of immune cell activation in response to stimuli. Briefly,

spleens were harvested from 4 wild-type B6 mice, and whole splenocytes were incu-

bated with LPS, TNFα, or IFNγ for 8 h, after which they were stained with a panel of

antibodies that recognize phenotypic markers of major immune cell types as well as

several markers known to shift in expression with activation (Fig. S1). We calculated a

composite activation score for each combination of cell type and stimulus by finding

the difference in average expression of each activation marker between stimulated and

unstimulated, then summing across all activation markers for each cell type.

We hypothesized that activation scores would be highest for cell types directly acti-

vated by a given stimulus, with a decrease as the number of intermediates between the

stimulus and cell type increased. Our findings broadly support this hypothesis (Fig. 5a).

One notable exception is the low activation score of T cell subsets, which is likely be-

cause no antigen-specific stimuli or costimulatory signals were included in the experi-

mental conditions.

With the exception of cells directly activated by a given stimulus, the distance (de-

fined as the number of steps comprising the shortest path) between stimulus and cell

was not correlated with activation score (Fig. S2). Rather, we found that for cells not

directly activated by a stimulus, the number of shortest paths between a stimulus and

cell type showed a positive correlation with that cell type’s activation score (Fig. 5b),

with a Pearson’s correlation coefficient of 0.55 (p-value 0.007). To quantify how likely

one was to observe a correlation coefficient of 0.55 or stronger at random, we per-

formed a permutation test which gave an empirical p-value of 0.009. Eosinophils

(dark green) and neutrophils (dark orange) are the best examples (Fig. 5b), with the

(See figure on previous page.)
Fig. 4 Examination of species-specific differences in mouse and human immune systems. a Each difference
between mouse and human immune components described in Janeway was recorded and classified into
one of four categories. The coloring of each category is consistent across 4a, 4b, and 4d. b Bar graph
showing the frequency of each difference category. c A network visualization of ImmunoGlobe
highlighting the concentration of species-specific differences in immune cells. Intensity of node color
reflects the total number of differences affecting that node’s function in the immune system. d A
visualization of the immune processes and specific nodes that differ between mouse and human
immune systems. The boxes represent immune processes and are sized according to the number of
species-specific immune differences affecting that process. Nodes are sized to reflect the number of
differences affecting each node, and are positioned according to the process in which its differences
are involved. The coloring of each node shows which proportion of differences affecting that node
belong to each of the four categories described in (a)
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Fig. 5 Immune network structure can be used to examine the network effects of immune stimuli. a A
network visualization of the nodes involved in the immune response to LPS. Immune cells involved are
arranged in layers corresponding to their degree of connection to the stimulus, with other interacting
immune components grouped together at the bottom. Direct cell:cell edges are shown in darker grey, with
all other edges involved in response to LPS shown in light grey. Immune cell node size corresponds to the
number of paths between the stimulus and cell, and node color corresponds to activation score of the cell.
b A scatter plot showing a positive correlation between the number of shortest paths that exist between a
stimulus and a cell and the activation score of that cell. Data points are colored according to immune cell
type and shaped according to stimulus
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strongest relationships between the number of shortest paths and activation score.

Cell types directly activated by a stimulus did not follow this correlation as they were

more strongly activated, which is expected given the direct nature of the interaction.

These data therefore suggest that the strength of a cell’s response to a stimulus is

dependent not just on its direct responsiveness to the stimulus, but also on the num-

ber of paths that exist between the stimulus and the cell. This finding held true for all

three stimuli tested in this experiment (TNFα, LPS, and IFNγ) and demonstrate that

the prediction of how strongly a given immune cell will respond to a stimulus can be

informed by knowledge of its place in the immune network structure.

Discussion
Because the immune system is complex and interconnected, it is difficult to understand

how changes in one component are propagated across the entire network or how they

affect the higher-level immune response as a whole. Without this understanding we are

unable to predict the outcome of immune interactions or precisely modulate immune

responses. This compromises our ability to manage disease as we are unable to identify

the most effective drug targets, predict how drugs will alter the immune response, or

determine the causes for most types of drug resistance or nonresponse. Here we de-

scribe ImmunoGlobe, a network map of the immune interactome upon which network

analysis tools to accomplish these goals can be built.

To provide meaningful results network analysis tools must be based upon a network

map that is highly accurate, in order to correctly represent the underlying biology,

and detailed, in order to provide interpretable insights into immune mechanisms. For

these reasons we decided to build ImmunoGlobe by manually curating a widely-used

immunology textbook. Manual curation allowed ImmunoGlobe to achieve an accur-

acy rate of 99.7%, compared to one analysis of nearly 100,000 text-mined interactions

with an approximate accuracy of 65% [33]. Manual curation also allows for the cap-

ture of a high level of detail: each interaction in ImmunoGlobe is annotated with one

of 8 interaction types, all nodes are classified by type and subtype, and context-

specific information such as anatomical location, association with disease or immune

process, and species-specificity was recorded whenever available. This information

would be difficult to capture accurately through text-mining because the sentences

and paragraphs describing it are not consistently structured. However, ImmunoGlobe

also offers an opportunity here in that the text source is included alongside each edge

in the network table, providing a database that could be used to train a natural lan-

guage processing algorithm. Finally, information in textbooks is (to the best of our

collective scientific knowledge) that which we consider to be true – it has been satis-

factorily reproduced by the scientific community and reflects true physiology rather

than experimental artifacts. Manually curating a reputable textbook as a source thus

ensures that all interactions comprising the network are the closest thing we can get

to ground truth in biology.

As a directed graph, ImmunoGlobe enables inquiries that would be difficult or im-

possible to achieve by searching unstructured text. For example, searching for paired

source and target nodes with differing edge types identifies all instances in which a sin-

gle pair of nodes has multiple types of interactions with one another (Table S6). Most

of these are unsurprising; for example, it is well known that dendritic cells can activate
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(via MHC:TCR interactions and costimulatory molecules), polarize (by secretion of spe-

cific cytokines) [34], or inhibit (through checkpoint molecules) naïve CD4+ T cells [35].

However, this analysis also revealed that IgG1 can either activate [36] or inhibit [37]

granulocytes depending on which cell surface receptor it binds to. Such patterns and

interactions are difficult to find in unstructured text but can be quickly identified in the

graph structure.

ImmunoGlobe’s graphical structure also allows the application of more complex

graph theory methods from mathematics, physics, and computer science to immun-

ology. These methods, which leverage a network’s structure to reveal properties of its

component nodes and pathways, may reveal previously unknown characteristics of im-

mune system components – for example, the identification of critical regulatory nodes

(termed hubs in network science) that may represent important control points for im-

mune pathways and mechanisms. Additional graph-based analyses, such as process en-

richment and pathway tracing, can be used to identify the cells, molecules, and

processes driving a given immune response. In addition, restructuring ImmunoGlobe

into a directed acyclic graph will enable dynamical modeling of immune responses and

statistical network analyses such as Bayesian modeling. Additional details captured in

ImmunoGlobe describe other regulatory aspects of immune function, such as anatom-

ical location, surface receptors involved, and combinatorial signaling outcomes. Com-

putational methods leveraging these detailed network features can be used to study

how immune cells integrate a variety of (often conflicting) inputs on an intracellular

level to decide their overall cellular state, and to determine how a change in the func-

tion, state, or responsiveness of one immune system component propagates across the

entire immune network.

Towards the goal of predicting the outcome of immune interactions, we showed that

it is not just a cell’s direct responsiveness to a stimulus that determines the strength of

its response, but by how many paths through the network the stimulus can activate the

cell (Fig. 5b). This demonstrates the value of the immune network graph in interpreting

experimental data by showing that we are better able to predict how an immune cell

will respond to stimulus with prior knowledge of its place in the immune network

structure. This has applications in drug discovery and therapeutic selection in that it

may be possible to predict which cells or nodes are likely to respond most strongly to a

given drug or drug candidate by mapping out the connections between the molecule

and cell in the immune network. It also provides a new framework with which to

analyze data: given data on the response of immune cells to a given drug, one can esti-

mate the number of paths we expect to see between the two. This may become a useful

tool for hypothesis generation and suggest new directions of research to complete our

understanding of the immune interactome.

In mapping the differences between human and mouse immunity onto the immune

network, we had hoped to identify patterns that could inform the translation of thera-

peutics to humans. However, we found that most differences between mice and human

immune components are subtle as even though components are not identical, they per-

form similar functions. Human and mouse immune responses differ largely in what ac-

tivates the different immune components and how they are activated (Fig. 4); the edges

between the nodes do not appear to differ. To extend the example of TLR differences

between mice and men identified by ImmunoGlobe, additional research has shown that
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not only are TLR expression patterns different between the species [32], but some mol-

ecules including TLR2 [38] and TLR4 [39] show species-specific differences in activa-

tion to certain stimuli. Thus, mouse and human immune cells are not necessarily

activated in the same way by the same stimuli – this is an area that could benefit from

additional validation in translational research. With knowledge of the areas and path-

ways of the immune network that are affected by species-specific differences, and fur-

ther data that quantifies the difference in function, we may better understand how to

translate preclinical therapies to humans.

The immune systems analysis resource most comparable to ImmunoGlobe is immu-

neXpresso. ImmuneXpresso is a database of directional interactions between immune

cells and cytokines text-mined from abstracts available on PubMed [4]. This method

increases the number of interactions by including recently-reported findings, but limits

the detail that can be captured for each and results in a lower accuracy of extracted in-

teractions. In examining the overlap between these resources (methodology described

in Note S4), we found that slightly more than half of the interactions in ImmunoGlobe

also exist in immuneXpresso, but that there are interactions unique to each resource as

well (Fig. S4). These data demonstrate that databases based on textbooks and literature

are complementary and only partially redundant, and illustrate the value ImmunoGlobe

adds to currently available immune interaction resources.

Conclusions
ImmunoGlobe is available as an interactive network map on our website, where a user-

friendly interface makes it an accessible resource for exploring the interactions between

immune components (Note S5). It’s also available as a detailed edgelist (Table S1)

which can be made into a fully computable graph object in analysis programs like R or

Python, and as a Cytoscape network (File S1) which users can personalize and use to

visualize their own data by overlaying it on the immune network structure.

ImmunoGlobe represents an important tool enabling immunology researchers to bet-

ter interpret their data and explain multi-step immune-related processes. In the future,

as additional tools are added on top of the core network, we anticipate that it will be-

come possible to use ImmunoGlobe to analyze, model and explain the dynamics of im-

mune function and dysfunction. Understanding the immune mechanisms underlying

health and disease will be a first step towards developing predictive diagnostics, tools to

monitor disease activity, and more targeted therapeutics.

Methods
Immune network table creation

Edge list

To capture directional immune interactions, a human curator manually extracted (co-

dified) all interactions described in the most recent edition of Janeway’s Immunobiology

[18]. For each interaction we recorded the page number; the descriptive text (all rele-

vant sentences if minimum required information spanned multiple sequential sen-

tences), figure, or table from which it was extracted; the names of the source and target

nodes; and the type of interaction (hereafter referred to as the edge effect). When avail-

able, we also recorded the receptor(s) involved, the activation states of the source and
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target nodes, any products of the interaction, the immune process being described,

whether the interaction results in proliferation of the target node, and whether the

interaction occurs primarily in a specific anatomical site. For interactions described

multiple times, each instance was recorded. This process yielded 2799 interactions

(Table S1); 1112 unique interactions remained after merging repeated mentions.

Network construction quality control

For quality control purposes the manual extraction process was repeated twice and the

results were compared. Only nine differences between the extractions were identified

for a low error rate of 0.3%; These differences were reconciled with an independent re-

viewer. In addition, a panel of readers were given a randomly selected set of text refer-

ences and asked to independently extract the resultant immune interactions; their

results matched those of the primary ImmunoGlobe edge table. Finally, a series of pro-

grammatic sense checks were also run to ensure that no nonsensical edges existed (for

example, an interaction indicating the secretion of a cell).

Node attributes table

The node attributes table (Table S2) was created to classify and provide details on each

node. The attributes captured, including Type and Subtype, were taken from mentions

of each node throughout the textbook. The node types were Cell, Cytokine, Antibody,

Antigen, and Effector Molecule and are designated using definitions from Janeway [18]

as follows. Cytokines are secreted proteins that affect the behavior of cells upon binding

to the appropriate receptor. Antibodies are immunoglobulins secreted by cells of the B

cell lineage. Effector molecules are any non-cytokine molecule, such as lipid mediators

and reactive oxygen species, which interact with immune components to influence their

behavior. Antigens are molecules that can initiate an immune response, such as patho-

gens or pathogen-associated molecules (e.g., LPS, viral genomic material, and bacterial

peptidoglycans). Subtype reflected the function of the node. Additional details on classi-

fication can be found in Note S1. Each cell node is linked to the official cell ontology

catalog in order to provide an objective/accepted definition of each cell type. All pro-

tein cytokines and effector molecules also include a link to UNIPROT. Nodes specific

to mouse or human are noted in the Species Specificity column.

Ontology

Because we generalized some features (including node names, immune process annota-

tions, and locations) in order to standardize the level of detail across the network, we built

an ontology to describe the classification system. This ontology (File S2) includes cells, cy-

tokines, effector molecules, antigens, immune processes, anatomical locations, and dis-

eases and can be used to link edges from the original extracted edge table (Table S1) to

the final edge list (Table S3) used to generate ImmunoGlobe.

Immune network analysis

Network analysis

The network was created and analyzed using the igraph package version 1.2.2 in R ver-

sion 3.5.1. Briefly, the edge list consisting only of unique combinations of Source Node,
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Target Node, and Edge Effect (Table S3) along with the node attributes table (Table S2)

were read into R as CSV files, assembled into a directed network, and analyzed using

functions available in the igraph package.

Network visualization

The network visualizations were generated with Cytoscape [40] version 3.6.0 (File S1).

The default visualization was generated by manually arranging nodes with immune

cells on top according to their hematopoietic differentiation hierarchy. Non-immune

cells, chemokines, cytokines, antibody isotypes, and effector molecules were clustered

into groups according to their Node Types and Subtypes.

The website was generated using Cytoscape.js [41].

Mouse versus human network comparisons

We extracted every mention of a difference between components of mouse and human

immune systems (Table S4). For each difference we catalogued the page and source

sentences, node or nodes involved, and primary immune process involved. The differ-

ences were then classified into one of four categories, with justification for each classifi-

cation included in Table S4.

Each mentioned difference was also assigned to the node with function affected by

the difference. For example, differences in MIC proteins (which are expressed on epi-

thelial cells and fibroblasts) were assigned to natural killer (NK) cells because activation

of these cells is dependent upon recognition of the MIC proteins in humans and their

orthologs, ligands similar to RAET1, in mice. All nodes in Fig. 5c map directly onto

nodes in the ImmunoGlobe network with the exception of the T node, which refers to

mentions of unspecified T cell subsets.

Primary mouse splenocyte stimulations and mass cytometry

Tissue from each individual mouse was prepared simultaneously. Primary mouse spleno-

cytes were stimulated with 40 ng/mL IFNγ, 40 ng/mL TNFα, or LPS 1 μg/mL, incubated

in a humidified 37 °C 5% CO2 incubator for 8 h, washed, and fixed as reported previously

[9]. Mass-tag cellular barcoding, antibody staining, analysis on a CyTOF 2 mass cytometer

(Fluidigm), and data normalization were performed as previously described [42]. A gating

strategy is given in Fig. S5. In accordance with generally accepted practices in the field, we

analyzed 1-5 × 10^5 cells per animal, per tissue, and per time point.
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