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Abstract

Background: Discovering single nucleotide polymorphisms (SNPs) from agriculture
crop genome sequences has been a widely used strategy for developing genetic
markers for several applications including marker-assisted breeding, population diversity
studies for eco-geographical adaption, genotyping crop germplasm collections, and
others. Accurately detecting SNPs from large polyploid crop genomes such as wheat is
crucial and challenging. A few variant calling methods have been previously developed
but they show a low concordance between their variant calls. A gold standard of
variant sets generated from one human individual sample was established for variant
calling tool evaluations, however hitherto no gold standard of crop variant set is
available for wheat use. The intent of this study was to evaluate seven SNP variant
calling tools (FreeBayes, GATK, Platypus, Samtools/mpileup, SNVer, VarScan, VarDict)
with the two most popular mapping tools (BWA-mem and Bowtie2) on wheat whole
exome capture (WEC) re-sequencing data from allohexaploid wheat.

Results: We found the BWA-mem mapping tool had both a higher mapping rate and
a higher accuracy rate than Bowtie2. With the same mapping quality (MQ) cutoff, BWA-
mem detected more variant bases in mapping reads than Bowtie2. The reads
preprocessed with quality trimming or duplicate removal did not significantly affect the
final mapping performance in terms of mapped reads. Based on the concordance and
receiver operating characteristic (ROC), the Samtools/mpileup variant calling tool with
BWA-mem mapping of raw sequence reads outperformed other tests followed by
FreeBayes and GATK in terms of specificity and sensitivity. VarDict and VarScan were the
poorest performing variant calling tools with the wheat WEC sequence data.

Conclusion: The BWA-mem and Samtools/mpileup pipeline, with no need to preprocess
the raw read data before mapping onto the reference genome, was ascertained the
optimum for SNP calling for the complex wheat genome re-sequencing. These results also
provide useful guidelines for reliable variant identification from deep sequencing of other
large polyploid crop genomes.
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Background
Recent advances in next generation sequencing (NGS) technology enables us to detect

genome wide genetic variants, such as single nucleotide polymorphisms (SNPs) and in-

sertion/deletions (INDELs) at a low cost. There are three basic approaches for generat-

ing sequence data for genome wide variant detection against a genome reference

including whole genome sequencing (WGS), genotype-by-sequencing (GBS), and whole

exome capture (WEC) sequencing, each with different strengths and applications. WGS

covers the whole genome including the large non-coding genomic sequence regions [1,

2] while WEC focuses on the coding exome [3, 4]. GBS applies specific restriction en-

zymes for genome reduction followed by barcoding samples, and works for both large

and small genomes [5–10]. Because some genetic variants are associated with gene

function, the WEC analysis would be more immediately relevant to the interpretation

of variants underlying trait variation [11].

With high coverage of short sequence reads generated from the same regions of a

crop genome, the first task is to align these sequence reads to corresponding regions of

a reference genome. Currently, more than 60 different algorithms exist for mapping se-

quence reads to a reference genome [12, 13]. These mapping tools use different algo-

rithms to ensure that the short sequence reads are aligned accurately and quickly to

the correct locations of the reference genome. The mapped read number with metrics

of specificity and sensitivity as well as the mapping time can be used to evaluate the

mapping tools appropriate for a specific reference genome [13]. Several studies have

compared different mapping tools for either genomic sequence or RNA-seq data [13–

19]. Their conclusions are similar in that all different mapping tools have a big overlap

with the same reads mapped to the same loci [19]. The remaining differently mapped

or unmapped reads among the variety of tools were ascribed to the various parameters

of experiments such as sequencing platforms, genome complexity, and sequence quality

[13]. Once short read sequences are aligned to the reference genome, variant calling

tools determine if a SNP or an INDEL exists in the alignment. Many variant calling

software tools have been developed in recent years. Performance comparison of differ-

ent variant calling tools has been conducted in the diploid human genome and poly-

ploid crop genomes [20–22]. Surprisingly there was substantial disagreement among

variant calls made by different variant calling tools/pipelines in several studies [23, 24].

Polyploid crop genomes, for example wheat (Triticum aestivum L., 2n = 6x = 42, allo-

hexaploid), magnify the complexity and challenges in both sequence mapping and vari-

ant detection.

The intent of this study was to find the variant calling tools that are most suitable for wheat

by evaluating different mapping tools and variant calling tools. As previous studies pointed

out that sequence quality may impact the sequence mappers’ performances, here we focused

on the two popular mapping tools, BWA-mem [25] and Bowtie2 [26] considering differently

preprocessed sequence data from the same sequence platform and the same genome, instead

of repeating the similar comparison approaches as in previous reports. Then we further evalu-

ated seven variant calling tools on the mapped data including the Genome Analysis Tool Kit

(GATK) [27], Samtools/mpileup [28], FreeBayes [29], Platypus [30], SNVer [31], VarDict [32],

and VarScan [33]. These tools are widely employed in genomic variant analyses and many of

the algorithms used in these variant calling tools were originally developed and evaluated in

human genome sequence studies, yet are frequently used in plant genomic research [22].
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In order to compare the performance of different variant calling tools, the Genome

in a Bottle (GIAB) consortium [34] has developed high confidence variant sets (true

positives) from one human individual and then generated several sequence data sets

from the same individual by different next generation sequencing (NGS) technologies.

These data sets serve as a gold standard for variant calling tool comparison for human

genetic variant discovery [21, 35, 36]. The high confidence variant sets allow the esti-

mation of true positive rate (TPR) and false positive rate (FPR) of different calling tools.

Since there is no gold standard of crop variant sets available, we defined a “true” posi-

tive SNP list as those calls that were supported by multiple variant calling tools. We

compared these seven variant calling tools based on concordance and area under the

curve of receiver operating characteristic (ROC) [37].

Results
Mapping tool comparisons using differently pre-processed sequence data

A WEC sequence data set was used from allohexaploid wheat. A total of 97,280,936 WEC

100 bp paired-end reads (Supplementary Table S1) were generated from one wheat line.

96,718,760 reads were retained after quality trimming and 70,099,964 after duplicate re-

moval. Given that the WEC data set includes a total of 321Mb sequences [3], the three

read sets had a coverage depth of ~30x, ~30x, or ~ 23x. Following the experimental design

in Fig. 1, we obtained the total mapped reads, the rate of the properly mapped paired-end

reads, map quality (MQ) greater or equal to 10, and mismatched bases per read less than

10 (Fig. 2a-e). In the raw and quality trimmed read data, BWA-mem mapped more reads

Fig. 1 Experimental design. A raw read set in fastq (raw) and two preprocessed sets by quality trimming (trim)
and duplicate removal (rep1) are shown in the first row of rectangles. Each set was aligned to the wheat
reference genome v1.0 by one of two mapping tools (mappers): BWA-mem or Bowtie2. The mapped bam files
were used for variant calling using seven variant tools (callers). A total of 42 combinations/experiments were
evaluated for two mapping tools and seven variant calling tools (callers) using three data preprocess types by
criteria: Mapping, Concordance, Discordance and Receiver Operating Characteristic (ROC). The final settings
were applied to a large population data set

Yao et al. BMC Bioinformatics          (2020) 21:360 Page 3 of 16



(100.1%) than the total number of reads (Supplementary Table S1), with a small number

of unmapped reads. Bowtie2 obtained 98% mapping rate with more unmapped reads than

BWA-mem. BWA-mem had a higher mapping rate (98.5%) than Bowtie2 (94.5%) for

properly mapped paired-end reads whose reads R1 and R2 generated from the same seg-

ment were mapped on the same chromosome at a good expected distance with the cor-

rect directions.

Furthermore, more mapped reads passed the quality filtering in BWA-mem than

Bowtie2 (Fig. 2d). Bowtie2 had more reads than BWA-mem in less than 10 mismatched

bases per read (Fig. 2e); accordingly, BWA-mem had more reads that contained more

than 10 mismatched bases per read, which suggests BWA-mem may catch more vari-

ants than Bowtie2.

After the sequence read quality was improved by removing low base quality (trim)

and duplicate (rep1) reads (Fig. 2 & Supplementary Table S1), total mapped reads

dropped accordingly and the properly paired mapped reads number were still lower

than raw reads mapping. These results suggest that the quality filtering by both base

quality and duplicates lowered the mapping performance in both BWA-mem and Bow-

tie2 in terms of mapped reads. After bad quality bases were trimmed off from both

ends of sequence reads, the mapping performances were very close to the raw sequence

reads mapping of BWA-mem and Bowtie2.

Concordance of the seven variant calling tools

The concordances of the seven variant calling tools (Table 1) were assessed in a total of

42 experiments. To make fair comparisons between different variant calling tools, we

applied the same filtering to all VCF files of average variant quality score (QUAL)

Fig. 2 Comparison of mapping tools. The raw sequence read fastq file (raw) and the preprocessed trimmed
(trim), or duplicate removal (rep1) fastq files were mapped onto wheat reference genome v1.0 by Bowtie2
or BWA-mem. The mapping statistics were calculated by Samtools using different flags. The Y-axis
represents the percentage of read counts among total raw reads. a. The percentage of total mapped reads
in six different experiments (two mapping tools and three data preprocesses) among total raw read
number. b. The percentage of unmapped read number. c. The percentage of properly paired mapped
reads whose reads R1 and R2 from the same segment are mapped on the same chromosome at a good
expected distance with the correct directions. d. The percentage of read number greater than mapping
quality (MQ) of 10. e. The percentage of mapped read numbers that had MQ greater than 10 and
mismatched bases less than 10 per read
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greater than 5 and minimum total number of reads containing this variant (TR) of 3

(QUAL / TR > 5 & TR > 2) (Supplementary Data 1, 2, 3, 4, 5, 6, 7). This filter setting

was focused on the actual TRs and their average call quality. After this filtering, the

numbers of variants identified from the seven tools on each of the two mapping tools

and different preprocessed read data sets ranged from 160,000 to 1.8 million (Supple-

mentary Table S2). With the raw sequence reads, FreeBayes from BWA-mem mapping

called the highest number (1,792,861) of SNPs while Platypus with Bowtie2 called the

lowest number (166,063). For the 321Mb target sequences determined by the WEC

protocol [3], approximately 1 million SNPs were estimated, given that ~ 1 SNP exists per

300 bases. Forty-two variant call format (vcf) files were obtained using seven variant call-

ing tools and two read mapping tools on three types of preprocessed data sets from the

same sequencing sample and 2,397,343 unique SNPs were observed.

When we first examined the SNP concordance of seven variant calling tools on the

same preprocessed read sets and the same mapping tool there were only a few common

SNPs (8432) called by all seven tools from the same bam file (raw reads mapped by

BWA-mem). However, the results of some tools were closer than others. Samtools/

mpileup had more overlapping SNP calls (317,127) (Fig. 3a) with GATK, FreeBayes,

and Platypus than with SNVer, VarScan, and VarDict (10,683) (Fig. 3b). When the

pair-wise concordance similarity was calculated by a percentage of the common variant

calls over all SNPs, five clusters were identified (Fig. 4), corresponding to VarDict

(Cluster 1), VarScan (Cluster 2), SNVer + Samtools/mpileup + Platypus + GATK (Clus-

ter 3), FreeBayes + Samtools/mpileup (Cluster 4), and GATK + Platypus + FreeBayes +

SNVer (Cluster 5). The unique VarDict cluster was distinct from other variant calling

tools.

The impacts of trimming and duplicate removal on the number of variants called

were evaluated. We did not pool all 42 datasets into three categories (raw, trim,

rep1) because the impacts could also partly come from the different mapping and

Table 1 Algorithms and short descriptions of the seven variant calling tools

Variant tool Version Algorithm Pipelines Default filter Reference

FreeBayes v1.2.0–2 Haplotype-based FreeBayes b10,m1 Garrison E, et al, 2012 [29]

Bayesian

GATK 4.0.11.0 Haplotype-based MarkDuplicates b10,m20 DePristo M, et al, 2011 [27]

significant test BaseRecalibrator

HaplotypeCaller

Platypus 0.8.1 Haplotype-based Platypus callVariants b20,m20 Rimmer A, et al, 2014 [30]

significant test

Samtools /mpileup 1.9 Site align-based Samtools/mpileup b13,m0 Li H, 2011 [28]

gt likelihoods bcftools call

SNVer 0.5.3 Site align-based SNVerIndividual b17,m20 Wei Z, et al, 2011 [31]

MAF p-value f0.25,r1,p0.05

VarScan v2.3.9 Site-based Samtools/mpileup b15,m0 Koboldt D, et al, 2012 [33]

allele frequency mpileup2snp f0.2,r2,p0.01

VarDict 2018 Site-based VarDict b22.5,m0 Lai Z, et al, 2016 [32]

alleles Fisher’s var2vcf_valid f0.01,r2
aOnly default settings were listed. bBQ Base quality; mMQ Mapping quality; rVR Variant containing reads or total reads
containing variants (TR); fVF Variant frequency; p P-value; dDP Depth coverage
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calling methods in each category. We investigated the SNP concordance of the

three different preprocessed read sets with the same variant calling tool and the

same mapping tool (Table 2, Supplementary Table S2). For example, the data

preprocessing methods affected the outcomes generated by the Samtools/mpileup

tool (Supplementary Fig. S1). Three data sets of raw sequence reads, duplicate re-

moval, and quality trimming, showed high concordance in GATK and Platypus

calling. Other variant calling tools only had ~ 50% concordance on the same pre-

processed read sets (Fig. 4).

Lastly we detected the SNP concordance of two different mapping tools (BWA-mem

and Bowtie2) with the same variant calling tool and the same data preprocess. The dif-

ferent mapping tools impacted the variant calls with only around 50% concordance

(Supplementary Fig. S2).

Discordance among different variant calling tools

The discordance calls of the seven variant calling tools were first explored by those calls

that were missed in one variant calling tool but appeared in all other six tools. As

shown in Table 2, VarScan and VarDict missed the most SNP calls, followed by Platy-

pus and SNVer. The FreeBayes, GATK and Samtools/mpileup tools had the lowest

number of missed calls in all different mapping tools and differentially preprocessed

reads. Interestingly, Samtools/mpileup had fewer missed calls in the BWA-mem align-

ment than in Bowtie2, which was opposite to FreeBayes and GATK that had fewer

missed calls in Bowtie2 than in BWA-mem. We examined the number of reads that

supported the variant calls and the quality at those missed call sites. Some missed SNP

Fig. 3 Venn diagrams for variant calling tool comparison. SNP variants were called using different variant
calling tools and filtered through the same stringent filtering criteria. The numbers of overlap and unique
SNP loci were displayed. a. Samtools/mpileup compared with FreeBayes, GATK, and Platypus. b Samtools/
mpileup compared with SNVer, VarDict, and VarScan
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calls by GATK and Samtools/mpileup were found to not really be missed but due to a

stringent filtering instead. For example, the locus 397,560,208 on chromosome 7D

(chr7D397560208, Table 2) with QUAL of 29 and total read depth of 4 was filtered out

(TR = 2). Similarly, the locus chr2A36897168 was filtered out by Samtools/mpileup.

However, one of the five variant calling tools (FreeBayes, Platypus, Snver, VarDict, or

VarScan) missed some SNP calls at loci where other tools identified high QUAL and

TRs. All these data suggest that GATK and Samtools/mpileup missed fewer true SNPs

than other variant calling tools.

We also inspected those calls that appeared in only one variant calling tool out of the

seven tools. This examination reflects the sensitivity of each tool, although high sensi-

tivity could mean a higher false positive rate. FreeBayes, VarScan, and VarDict were

most sensitive with many unique calls (Table 2). GATK, Platypus, and Snver had the

lowest sensitivity with fewest unique calls. Samtools/mpileup was moderately sensitive.

The total variant-containing reads (or TRs) and the variant call QUAL were defined

based on different variant calling tools’ algorithms, which use different filtering criteria.

For example, at site chr1A23072417, FreeBayes identified all 4 aligned reads as TR with

a total QUAL score of 111, while GATK and Samtools/mpileup only defined 2 TRs.

Fig. 4 Similarity heatmap of variant calling tools. The SNP call similarity between two variant calling tools
was calculated by a percentage of SNP calls shared by two tools. The darker color represents a higher
similarity between the paired variant calling tools or their neighbors
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The four other variant calling tools called nothing at this site. At site chr1A286123173,

Samtools/mpileup called four TRs and six other tools called nothing at this site.

Performance comparison

We defined a list of “true” SNP calls that were supported by at least 13 out of the 42

experiments with different mapping tools, preprocesses and variant calling tools. The

cut-off of 13 experiments was determined by three categories of variant calling tools

(Table 1) because each tool detected six datasets and 13 experiments is the worst case

for having three tools (6 + 6 + 1 = 13). A total of 505,286 SNPs were used to generate

Table 2 Missed and unique calls for seven variant calling tools to show discordance

FreeBayes GATK Samtools Platypus SNVer VarScan VarDict

Missed calls

Bowtie2 raw 105 73 397 295 521 4000 52,215

trim 98 79 382 281 526 4146 52,885

rep1 43 54 204 148 316 5179 45,663

BWA- raw 254 354 100 1051 1035 14,773 120,053

mem trim 249 370 84 1044 1073 15,334 120,792

rep1 159 214 47 677 860 20,054 97,722

BWA_raw loci chr2B93040165 missed 868, 32 225, 47 1019, 37 67 47 230, 66

chr7D397560208 67, 7 29,4 (f) 94, 7 71,4 7 7 112, 7

chr2A36897168 220,27 323, 18 44, 36 (f) 457, 21 26 36 200, 45

chr1A14084557 260, 46 903, 25 134, 45 missed 51 45 207, 42

chr3B133439650 122, 8 71, 3 114, 8 147, 3 missed 8 120, 8

chr1A11663841 150,5 79,4 110,4 117,5 5 missed 79,4

chr1A42695010 336,16 71, 4 152,9 54,9 16 9 missed

Unique calls

Bowtie2 raw 398,709 3568 33,865 1516 1738 124,696 170,880

trim 389,184 3601 33,522 1790 1688 124,154 170,837

rep1 185,984 5580 9162 1477 608 78,446 109,310

BWA-mem raw 472,999 20,057 134,717 6614 4429 30,120 102,023

trim 447,527 20,397 132,482 7411 4283 29,518 100,868

rep1 167,601 32,299 36,730 6532 1569 15,526 55,835

BWA_raw loci chr1A23072417 111,4 21,2 59,2 none none none none

chr2A178387501 none 101,3 63,2 none none none none

chr1A286123173 none none 95,4 none none none none

chr1A357077575 none none none 35,3 none none none

chr7D310148693 6,23 none 10,11 none 19 none none

chr1A232066481 none none none none none 6 none

chr1B23898050 none none none none none none 73, 4

The missed calls were only called by one of the seven variant calling tools. The total missed call numbers of seven
variant calling tools using either Bowtie2 or BWA-mem mapping and seven locus examples (five “missed” SNP calls and
two falsely missed calls due to filtering) were presented. The falsely missed loci were indicated by call QUAL, total read
depth, filtered (score, depth, and f). Other calls were presented by call QUAL score and total read depth (score, and
depth). SNVer and vascan did not have QUAL score. The unique calls appeared in only one out of the seven variant
calling tools. Total unique calls and seven locus examples were presented. The loci were not called with “none”, or called
with QUAL score and total read depth (score, depth). Three unique call loci from one of the FreeBayes, GATK, or SNVer
were filtered in other variant calling tools
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receiver operating characteristic (ROC) curves. The Area Under Curve (AUC) was

employed for performance comparison of variant calling tools (Supplementary Fig.

S3). Platypus caught around 60% of true positives if the false positive was controlled

under 5%. GATK caught around 90% of true positives under 25% of false positive.

However Samtools/mpileup had the best overall AUC (0.81) when using raw reads with

the BWA-mem mapping tool, followed by GATK (0.781) and FreeBayes (0.777). The

lowest was VarDict (0.13) followed by VarScan (0.39) (Fig. 5).

The performance of different mapping tools in variant detection was examined by

using Samtools/mpileup and GATK tools. BWA-mem mapping tool was found to out-

perform Bowtie2 using either Samtools/mpileup or GATK (Supplementary Fig. S4).

The preprocessed data by removing duplicate reads did not improve SNP calling while

quality trimming had almost the same AUC performance as the non-preprocessed raw

read data (Supplementary Fig. S5).

Exploring the genetic population diversity in 114 genotypes

We applied our best data process (raw reads), mapping tool (BWA-mem), and variant

calling tool (Samtools/mpileup) to a larger wheat WEC data set. In total 128,850,093

variants including SNPs and INDELs were called from 114 genotypes. After filtering

with a criteria of SNPs only, total variant-containing reads of 10 or greater, and missing

calls less than 5% in 114 samples, a total of 1,524,455 SNPs were identified. These SNPs

were used to assess the population diversity of the 114 wheat genotypes that represent

origins across the whole of Canada. The 114 genotypes were separated into two large

groups by principal component 1 (PC1) and PC2 (Fig. 6a). However, additional sub-

groups were revealed by PC2 and PC3 (Fig. 6b). The structural variances of the same

two groups were caught by PC3 and PC1 (Fig. 6c).

Discussion
In this study we attempted to select a set of genome wide variant analysis procedures

that are suitable for wheat or other polyploid crops. Variant calling involves three basic

steps: read data pre-processing, read mapping, and variant calling. Thus, we focused on

the two widely employed open-source mapping tools Bowtie2 and BWA-mem on three

preprocessed read sets, since both the genome and the read data may affect the short

sequence reads mapping [13]. Based on read mapping results, we evaluated seven dif-

ferent variant calling tools. As such, we performed variant calling comparisons of 42

combinations at three different levels, i.e., three data preprocesses, two mapping tools,

and seven variant calling tools.

Previous studies have comprehensively compared many mapping tools [13–19]. In-

stead, we only focused on the two most popular mapping tools, BWA-mem and Bow-

tie2, but expanded our knowledge of the impact of data preprocessing on read

mapping, and subsequent variant calling. With the default option settings, BWA-mem

mapped more reads than Bowtie2, despite a few multiple mapping sites. BWA-mem

also had more accurate mapping rates based on properly paired-end reads mapped and

had more mapped reads pass the quality threshold than Bowtie2, indicating BWA-mem

is more accurate than Bowtie2 in mapping polyploid wheat genome sequence reads.

Though either variant calling tool can be applied in crop genome alignment, our results
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suggested that BWA-mem was a more suitable mapping tool than Bowtie2 for poly-

ploid wheat genome re-sequence data. In our study, we could not see any benefit to the

extra computing efforts in preprocessing the sequence data. The trimming by base

quality did not improve the mapping performance of both BWA-mem and Bowtie2.

Similar results were previously reported that the adaptor removal did not improve the

read mapping [38]. The mapping process itself acts as a quality control in which only

good reads can be properly mapped on a reference. The soft clipping process in BWA-

mem mapping will remove the unmapped end sequence bases including adaptor or un-

certainly called bases, like a quality trimming.

The low concordances of variant calls among different variant calling tools were be-

lieved to be attributed by the different intrinsic algorithms of these variant calling tools,

data platforms, variant filtering methods, as well as the number of variant calling tools

compared in experiments [35]. The call QUAL or read depth alone are inappropriate

Fig. 5 Performance comparison of seven variant calling tools. The performance of a variant calling tool was
examined by ROC using the same mapping tool (BWA-mem) and the raw read data
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for SNP filtering. Our filter was based on the total number of reads containing this

variant (TR) and their average call QUAL, i.e., we kept a SNP site call that is highly

supported by at least three TRs [39]. We could use this same filtering for all seven dif-

ferent variant calling tools. With this filtering we saw a low concordance among the

seven variant calling tools though our filtering criteria may look less rigorous. But more

stringent filtering could lead to even less overlap. Therefore this low concordance may

be attributed to a large difference among these variant calling tools. Comparison of

only two or three variant calling tools resulted in more overlaps. It is worth noting that

in these tool comparisons, a common practice of using the default settings/parameters

was applied to reduce the complexity. For a particular algorithm, changing the parame-

ters, such as twisting the hyper-parameters, usually resulted in different outcomes and

eventually better results. However, the intrinsic algorithm appropriate to the genome

complexity impacts the performance and accuracy the most.

At a particular genomic locus where the same sequence reads were aligned, it is in-

teresting to explore why some variant calling tools called a SNP while others did not.

One reason is that a variant calling tool’s algorithm could not catch this site or this site

was filtered out by an inappropriate filtering setting. VarScan and VarDict tools mani-

fested large discordance calls compared to the other five variant calling tools. Our con-

cordance results showed much lower concordance rates than previous reports with ~

92% concordance observed among the variant calls by three variant calling tools

(GATK ∩ Samtools/mpileup ∩ FreeBayes) [21] and ~ 57% [23] and ~ 70% [35] of con-

cordance levels among variant-calling pipelines. These studies used the gold standard

sets that were generated from the same one human individual. Our results implied that

the variant calling tools should be selected based on the genome complexity. The site-

based allele test method, VarDict, had the best performance in targeted human gene vari-

ant calling [40]. The haplotype-based Bayesian model method, FreeBayes, may be too sen-

sitive for the hexaploid wheat genome as it detected the highest number of calls (BWA-

mem alignment of raw reads), which contained 472,999 SNPs that were not supported by

any of other six variant calling tools. Our data indicated that the site-alignment based

genotype likelihood method, Samtools/mpileup, is moderate in both specificity and

sensitivity, which balanced sensitivity with avoiding being excessively conservative

when calling variant bases in the hexaploid wheat genome. Interestingly, in a com-

parison of four variant calling tools (GATK, Samtools/mpileup, FreeBayes, and Ion

Proton Variant Caller TVC), a pipeline with BWA-mem and Samtools/mpileup was

also recommended for SNP calling for human WEC sequencing data [21]. The

Fig. 6 Inspection of genetic variants in a large wheat data set. Whole exome capture sequences of 114 wheat
lines were used for SNP calling by Samtools/mpileup. A total of 1,524,455 filtered SNPs were applied to principle
component analysis (PCA). The top three PCs were used to project the population genetic variation structure

Yao et al. BMC Bioinformatics          (2020) 21:360 Page 11 of 16



Samtools/mpileup and GATK showed a comparable performance in plant variant

calling [22].

For an accuracy comparison of different variant calling tools, the real or “true” posi-

tive call data is required to estimate the TPR and FPR of different calling tools. Al-

though a gold standard of variant datasets has been developed for evaluating human

variant calling tools [34], there is no gold standard of datasets available for crop variant

calling tool evaluation. In an attempt to benchmark variant identification tools for plant

diversity discovery [22], the main effort has been put on mapping tools. However, only

two variant calling tools, GATK and Samtools/mpileup, were evaluated by the total

SNP calls from tomato data sets instead of by TPR because the true positives were un-

known, though simulation data has been used to conduct the Precision Recall analysis

in this study [22]. We defined a “true” positive SNP list as those calls that were sup-

ported by at least 13 out of 42 experiments of different preprocessed data, mapping

tools, and variant calling tools (supported by at least three variant calling tools). These

“true” positive list allowed us to measure the performance of variant calling tools using

an area under the ROC curve. Samtools/mpileup showed the best overall performance

followed by GATK. The VarScan and VarDict do not appear to work well for polyploid

crop genomes. Consistent with the concordance data, the ROC results also supported

the Samtools/mpileup as a suitable variant calling tool for hexaploid wheat.

When we applied the procedure of mapping with BWA-mem and variant calling with

Samtools/mpileup to the data of the 114 lines, we found 1,524,455 SNPs within the exome

of allohexaploid wheat that could be used for diversity analysis. Two main diversity groups

and several subgroups were revealed by the top three PCs from principal component ana-

lysis which explained 13.4%, 6,7, and 3.8% of variance of the population, with respect to

PC1, PC2, and PC3, indicative of effectiveness for a large SNP data set. For example, in a

human study, the first two components represented only 0.3693 and 0.117% of the vari-

ation yet revealed clear population structure in a large dataset with over 107,000 SNPs for

over 6000 people [41]. In contrast, a PCA graph could capture a large percentage of the

total variation, even 50% or more, but that would not guarantee that it will show evident

structure in the data [42]. Our SNP discovery in this population data collection would

help in investigating trait-associated variants by high functional impacts.

A limitation of the current study is our focus on SNPs and not evaluating these tools

for INDEL detection. The decision to consider only SNPs was based on the following

considerations: 1) Due to their high frequency and binary variation patterns, SNPs are

most interesting as generic markers in various biological studies. However, INDELs are

not; 2) INDELs are the hardest to detect among variants, for example, because of the

different lengths of INDELs. A variant calling tool may have a different strength for

SNP and INDEL detection. In order to make a clean analysis and lead to a clear conclu-

sion, we decided not to include INDEL data in the current study.

Conclusion
In summary, for the complex wheat genome our recommendation is to use a BWA-

mem and Samtools/mpileup pipeline for SNP calling. This would be a good starting

point for other polyploid crop species. There is no need to preprocess the raw read data

before mapping onto a reference genome. A recommended SNP filtering is at least 3

reads containing the variant with average QUAL of at least 5. This filtering can be
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more stringent depending on the needs of the specific study. Our study will provide a

practical and comprehensive guide to more accurate and consistent variant identifica-

tion, ultimately leading to crop genome variant information for breeding, diversity

study, and germplasm genotyping.

Methods
Sequence data and experiment design

As an initial methodology study, the unpublished wheat allohexaploid WEC sequence

data generated by the Canadian Triticum Applied Genomics (CTAG2) was used.

Briefly, 114 diverse hexaploid wheat lines representing the genetic diversity of a large

wheat population in Canada were collected. Genomic DNA was extracted from leaf tis-

sue for each accession using the Agencourt DNAdvance Genomic DNA Isolation Kit

(Beckman Coulter) and subjected to sequence capture using the NimbleGen SeqCap

EZ wheat whole-genome assay to generate a sequence capture library [3]. The sequence

capture library was sequenced on an Illumina HiSeq2000 instrument to generate about

30 million reads per accession. Three data sets (raw read fastq file, preprocessed with

quality trimming, and duplicate removal) generated from one sample were used for

variant calling tool evaluation before a whole population diversity was investigated. The

experiment design and workflow were depicted in Fig. 1.

Sequence data preprocess

Besides the raw read fastq files, two preprocessed fastq files were produced from the same sam-

ple. The software Prinseq-lite v0.20.4 [43] with options -trim_qual_right 10 and -trim_qual_left

10 to generate trim fastq file. These options trimmed off the bases from both ends of reads that

meet the first base call quality less than 10. Prinseq-lite with an additional option derep 1 cre-

ated rep1 fastq in which the duplicates, and end bases with poor quality were removed.

Sequence mapping

The sequence reads were mapped to the wheat reference genome (IWGSC RefSeq

v1.0). Two mapping tools BWA-mem (v0.7.17) [25] and Bowtie2 (v2.3.4.3) [26] were

run with their default parameters (Table 1). BWA-mem mapper had default settings of

penalty 4 for a mismatch, gap open penalties 6 and 6 for deletions and insertions.

BWA-mem conducted for 5′- and 3′-end clipping both with penalty of 5. BWA-mem

reported multiple mapped reads in bam files. Bowtie2 had a maximum penalty 6 for a

mismatch, and gap open and extend penalties of 5 and 3, respectively. Bowtie2 only re-

ported the best mapping quality (MQ) read for multiple alignments. For mapping sta-

tistics such as the total mapped, unmapped, and paired mapped reads, and further

analysis of the alignment files, Samtools v1.9 [44] was employed.

Variant calling tools, parameters and filtering

Seven variant calling tools, their description and parameters are summarized in Table

1 . All vcf files of the seven tools were filtered by QUAL/TR > 5 and TR > 2 or the calls

with TR > 40.
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Concordance of the seven variant calling tools

For concordance analysis, variants identified with different data preprocessing and

mapping tool were merged into one VCF file for each variant calling tool. The merged

VCF was filtered against low confident variants with the same filtering criteria as de-

scribed above. Venn diagrams and percentage of overlap were generated to examine

the concordance among the seven variant calling tools under different mapping tools

and data preprocesses.

ROC curves

The vcflib-1.0.1 package [45] was used to calculate the true positive rate (TPR) and

false positive rate (FPR) of each variant calling tool and generate ROC curves. The in-

put true positives were the SNPs that were supported by at least three variant calling

tools or 13 out of the 42 calling experiments. The cut-off of three variant calling tools

was based on the three classes of algorithms (Table 1): haplotype-based (FreeBayes,

GATK, Platypus), site align-based likelihoods (Samtools/mpileup, SNVer), and site-

based allele frequency (VarScan, VarDict). Thirteen experiments represented the worst

case for having three tools since each variant calling tool detected 6 datasets. The ROC

curves were created by the vcfroc program in the same vcflib package. Vcfroc con-

ducted TPR and FPR calculations as follows:

TPR = TP/(TP + FN), where TP is the true positive number, FN the false negative

number.

FPR = FP/(FP + TN), where FP is the false positives, TN the true negatives.

Principle component analysis (PCA)

The vcf generated from 114 wheat lines by the BWA-mem mapping tool and Samtools/

mpileup variant calling tool was filtered with a criteria of SNPs only, total variant-

containing reads (TR) of10 or greater, and missing calls less than 5% in 114 samples. The

filtered vcf file generated from variant calling of 114 wheat lines was entered into TASSEL

v5 package [46] for PCA analysis. The genotype calls were transformed and eigenvalue of

each variable was calculated by variance correlation and transformation. The top three

components’ eigenvalues were exported for PCA plot using R script.
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