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Abstract
Background: Genome-scale metabolic models are increasingly employed to predict
the phenotype of various biological systems pertaining to healthcare and
bioengineering. To characterize the full metabolic spectrum of such systems, Fast Flux
Variability Analysis (FFVA) is commonly used in parallel with static load balancing. This
approach assigns to each core an equal number of biochemical reactions without
consideration of their solution complexity.

Results: Here, we present Very Fast Flux Variability Analysis (VFFVA) as a parallel
implementation that dynamically balances the computation load between the cores in
runtime which guarantees equal convergence time between them. VFFVA allowed to
gain a threefold speedup factor with coupled models and up to 100 with
ill-conditioned models along with a 14-fold decrease in memory usage.

Conclusions: VFFVA exploits the parallel capabilities of modern machines to enable
biological insights through optimizing systems biology modeling. VFFVA is available in
C, MATLAB, and Python at https://github.com/marouenbg/VFFVA.

Keywords: Metabolic models, Flux variability analysis, High performance computing,
Systems biology

Background
Constraint-based reconstruction and analysis (COBRA) methods enable the study of
metabolic pathways in bacterial [1] and human [2] systems, in time and space [3]. The
metabolic models are usually formulated as linear systems [4] that are often under-
determined [5], therefore several solutions could satisfy the subjected constraints. The
set of alternate optimal solutions (AOS) describes the range of reaction rates that achieve
the optimal objective such as biomass production. The AOS space is quantified using
flux variability analysis (FVA) [5], which provides a range of minimum and maximum
values for each variable of the system. FVA has been applied to find blocked reactions
in the network [6], quantify the fitness of macrophages after the infection of Mycobac-
terium tuberculosis [7], resolve thermodynamically infeasible loops [8], and compute the
essentiality of reactions [9].
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fastFVA (FFVA) [10], a recent implementation of FVA allowed to gain substan-
tial speed over the fluxvariability COBRA toolbox MATLAB function [11].
Two main elements were decisive in the improvement: First, the C implementation
of FFVA was more flexible in comparison to MATLAB [12], allowing the use of the
CPLEX C API. The second was the use of the same LP object, which avoided solv-
ing the program from scratch in every iteration, thereby saving presolve time. FFVA
is compiled as MATLAB Executable (MEX) file, that can be called from MATLAB
directly.
However, given the growing size of metabolic models, FFVA is usually run in parallel.

Parallelism simply relies on allocating the cores through MATLAB parpool function
[12] and running the iterations through parfor loop. The load is statically balanced
over the workers such as they process an equal amount of iterations. Nevertheless, LPs
vary in complexity and their solution time varies greatly. Therefore, the static load bal-
ancing setting does not guarantee an equal processing time among the workers. For
example, the workers that were assigned a set of fast-solving LPs process their chunk
of iterations and stay idle, waiting to synchronize with the remaining slower work-
ers, which can result in larger run times globally. These situations can be inherent to
the model such as Metabolism and Expression (ME) coupled models [13] that can be
ill-conditioned. Also, intractable objective functions can induce an imbalance in the
parallel distribution of metabolic reactions such as the generation of warmup points
for sampling. Here we present veryfastFVA (VFFVA), which is a standalone C imple-
mentation of FVA, that has a lower level management of parallelism over FFVA. The
significant contribution is the management of parallelism through a hybrid integration
of parallel libraries OpenMP [14] and MPI [15], for shared memory and non-shared
memory systems respectively. While keeping the up-mentioned advantages of FFVA,
load balancing in VFFVA was scheduled dynamically to guarantee equal run times
between the workers. The input does not rely on MATLAB anymore as the LP is read
in the standard .mps file, that can be obtained from .mat files through a provided
converter. The improvements in the implementation allowed to speed up the analysis
by a factor of three and up to 100 with ill-conditioned problems and reduced mem-
ory requirements 14-fold in comparison to FFVA and the Julia-based distributedFBA
implementation [16].
Taken together, as metabolic models are steadily growing in number and complexity,

their analysis requires the design of efficient tools. VFFVA allows exploiting the multi-
core specifications of modern machines to run more simulations in less time thereby
enabling biological discovery.

Implementation
Flux variability analysis

The metabolic model of a biological system is formulated as an LP problem that has n
variables (reactions) bounded by lower bound lb(n,1) and upper bound ub(n,1) vectors.
The matrix S(m,n) represents the stoichiometric coefficients of each of the m metabolites
involved in the n reactions. The system is usually considered in its steady-state and is
constrained by S.v = 0, which is also referred to as Flux Balance Analysis (FBA) [17]. An
initial LP optimizes for the objective function of the system to obtain a unique optimum,
e.g., biomass maximization, like the following:
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maximize Zbiomass = cTbiomassv
subject to

S.v = 0
lb < v < ub

(1)

The system being under-determined (m < n), there can be an infinity of solution vectors
v(n,1) that satisfy the unique optimal objective (cTv), with c(n,1) as the objective coefficient
vector. In a second step, in order to delineate the AOS space, the objective function is set
to its optimal value followed by an iteration over the n dimensions of the problem. Con-
sequently, each of the reactions is set as a new objective function to maximize (minimize)
and obtain the maximal (minimal) value of the reaction range. The total number of LPs is
then equal to 2n in the second step which is described as the following:

For each reaction i ∈ [ 1, n]
set ci = 1
max/min Zi = cTv
subject to

S.v = 0
cTbiomassv = Zbiomass
lb < v < ub

(2)

The obtained minimum and maximum objective values for each dimension define the
range of optimal solutions.

Management of parallelism

Problem 2 is entirely parallelizable through distributing the 2n LPs among the available
workers. The strategy used so far in the existing implementations was to divide 2n equally
among the workers. Nevertheless, the solution time can vary widely between LPs because
ill-conditioned LPs can induce numerical instabilities requiring longer solution times.
Consequently, dividing equally the LPs among the workers does not ensure an equal load
on each worker.
Since it is challenging to estimate a priori the run time of an LP, the load has to be

dynamically balanced during the execution of the program.
In shared memory systems, Open Multi-Processing (OpenMP) library allows balanc-

ing the load among the threads dynamically such that every instruction runs for an equal
amount of time. The load is adjusted dynamically, depending on the chunks of the prob-
lem processed by every thread. At the beginning of the process, the scheduler will divide
the original problem in chunks and will assign the workers a chunk of iterations to pro-
cess. Each worker that completes the assigned chunk will receive a new one until all the
LPs are processed.
In systems that do not share memory, Message Passing Interface (MPI) was used to

create instances of Problem 2. Every process then calls the shared memory execution
through OpenMP.
In the end, the final program is comprised of a hybrid MPI/OpenMP implementation

of parallelism which allows great flexibility of usage, particularly in High-Performance
Computing (HPC) setting.
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Another application: generation of warmup points

The uniform sampling of metabolic models is a common unbiased tool to characterize
the solution space and determine the flux distribution per reaction [18, 19]. Sampling
starts from pre-computed solutions called warmup points, where the sampling chains
start exploring the solution space. The generation of p ≥ 2n warmup points is done
similarly to FVA. The first 2n points are solutions of the FVA problem, while the points
≥ 2n are solutions corresponding to a randomly generated coefficient vector c. The opti-
mization of a randomly generated objective function can be a source of imbalance in the
parallel distribution of load in FVA, which makes this application particularly interesting
in dynamic load balancing. Another difference with FVA lies in the storage of the solu-
tions v rather than the optimal objective cTv. The generation of 30,000 warmup points was
compared using the COBRA toolbox function createWarmupMATLAB and a dynamically
load-balanced C implementation createWarmupVF that was based on VFFVA.

Model description

FFVA and VFFVA were tested on a selection of models [10]. The models (Table 1) are
characterized by the dimensions of the stoichiometric matrix Sm,n. Eachmodel represents
the metabolism of human or bacterial systems. Models pertaining to the same biologi-
cal system with different S matrix size, have different levels of granularity and biological
complexity. The exchange reactions were set to the default values specified in the model.
E_Matrix and Ec_Matrix are ME models depicting metabolism and expression, while all
the others are metabolism only models.

Hardware and software

VFFVA and createWarmupVF were run on a Dell HPC machine with 72 Intel Xeon E5
2.3 GHz cores and 768 GB of memory. The current implementation was tested with
Open MPI v1.10.3, OpenMP 3.1, GCC 4.7.3, and IBM ILOG CPLEX academic ver-
sion (12.6.3). FFVA and createWarmupMATLAB were tested with MATLAB 2014b [12]
and distributedFBA was run on Julia v0.5. ILOG CPLEX was called with the following
parameters:

PARALLELMODE=1

THREADS=1

AUXROOTTHREADS=2

Table 1Model size and description

Model Organism Size

Ecoli_core [20] Escherichia coli (72,95)

P_putida [21] Pseudomonas putida (911,1060)

EcoliK12 [22] Escherichia coli (1668,2382)

Recon2 [23] Homo sapiens (4036,7324)

E_Matrix [24] Escherichia coli (11991,13694)

Ec_Matrix [25] Escherichia coli (13047,13726)

WBM [2] Homo sapiens (157056,80016)
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Additionally, coupled models with scaling infeasibilities might require turning off the
scaling:

SCAIND=-1

The call to VFFVA is done from bash as follows:
mpirun -np <nproc> --bind-to none -x OMP_NUM_THREADS=<nthr>

veryfastFVA <model.mps> <optPerc> <scaling> <rxns>

where nproc is the number of non-shared memory processes, nthr is the number
of shared memory threads, optPerc is the percentage of the optimal objective of the
metabolic model considered for the analysis, scaling is CPLEX scaling parameter where 0
leaves it to the default (equilibration) and -1 sets it to unscaling such as for coupled mod-
els, and rxns is an optional user-defined subset of reactions to analyze. createWarmupVF
was called in a similar fashion:
mpirun -np <nproc> --bind-to none -x OMP_NUM_THREADS=<nthr>

createWarmupPts <model.mps> <scaling>

For large models, OpenMP threads were bound to physical cores through setting the
environment variable

OMP_PROC_BIND=TRUE

while for small models, setting the variable to FALSE yielded faster run times. The
schedule is set through the environment variable

OMP_SCHEDULE=schedule,chunk

where schedule can be static, dynamic or guided, and chunk is the minimal
number of iterations processed per worker at a time.

Other possible implementations

The presented software can be implemented in Fortran since the library OpenMP is sup-
ported as well. Additionally, Python’s multiprocessing library allows to balance the load
dynamically between non-shared memory processes, but the parallelism inside one pro-
cess is often limited to one thread by the Global Interpreter Lock (GIL). This limitation
could be circumvented through usingOpenMP and Cython [26]. The unique advantage of
the presented implementation of VFFVA is the deployment of two levels of parallelism fol-
lowing a hierarchical model where MPI processes are at a top-level and OpenMP threads
at a lower level. The MPI processes manage the coarse-grained parallelism, and OpenMP
threads manage the finer-grained tasks that share memory and avoid copying the original
problem, which increases performance and saves consequent memory. This architec-
ture adapts seamlessly with modern distributed hardware in HPC setting. MATLAB and
Python wrappers of the C code were provided at https://github.com/marouenbg/VFFVA.

Results
The OpenMP/MPI hybrid implementation of VFFVA allowed to gain a significant
speedup over the static load balancing approach. In this section, the run times of VFFVA
were compared to FFVA at different settings followed by a comparison of the different
strategies of load balancing with respect to their impact on the run time per worker. In

https://github.com/marouenbg/VFFVA
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contrast to previous work where FFVAwas benchmarked in serial runs [10], in the present
work the emphasis was put upon parallel run times.

Parallel construct in a hybrid openMP/MPI setting

The MATLAB implementation of parallelism through the parallel computing toolbox
provides great ease-of-use, wherein two commands only are required to allocate and
launch parallel jobs. Also, it saves the user the burden of finding out whether the jobs
are run on shared or non-shared systems. VFFVA provides the user with a similar level
of flexibility as it supports both types of systems while guaranteeing the same numeri-
cal results as FVA in double precision (Figure S1). Besides, it allows accessing advanced
features of OpenMP and MPI such as dynamic load balancing. The algorithm starts first
by assigning chunks of iterations to every CPU (Fig. 1), where a user-defined number of
threads simultaneously process the iterations. In the end, the CPUs synchronize and pass
the result vector to the main core to reduce them to the final vector.
The main contributions of VFFVA are the complete use of C, which impacted mainly

the computing time of small models (n < 3000), and the dynamic load balancing that was
the main speedup factor for larger models.

Impact on computing small models

VFFVA and FFVA were run five times on small models, i.e., Ecoli_core, EcoliK12, and
P_putida. VFFVA had at least 20-fold speedup on the average of the five runs (Table 2).
The main contributing factor was the use of C over MATLAB in all steps of the analysis.
In particular, the loading time of MATLAB Java machine and the assignment of workers
through parpool was much greater than the analysis time itself.
The result highlighted the power of C in gaining computing speed, through managing

the different low-level aspects of memory allocation and variable declaration.
In the analysis of large models, where MATLAB loading time becomes less significant,

dynamic load balancing becomes the main driving factor of run time decrease.

Impact on computing large models

The speedup gained on computing large models (Recon2 and E_Matrix) reached three
folds with VFFVA (Fig. 2) at 32 threads with Recon 2 (35.17s vs 10.3s) and E_Matrix (44s

Fig. 1 Hybrid OpenMP/MPI implementation of FVA ensures two levels of parallelism. The distribution of tasks
is implemented following a hierarchical model where MPI manages coarse-grained parallelism in non-shared
memory systems. At a lower level, OpenMP processes within each MPI process manage fine-grained
parallelism taking advantage of the shared memory to improve performance
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Table 2 Comparison of run times of FFVA and VFFVA in small models in seconds. The results are
presented as the mean and standard deviation of five runs

Model FFVA mean(std)
loading and analysis time

VFFVA mean(std)
loading and analysis time

FFVA mean(std)
analysis only

2 cores

Ecoli_core 19.5(0.5) 0.2(0.01) 0.37(0.1)

P_putida 19.2(0.7) 0.6(0.02) 0.81(0.09)

EcoliK12 20.4(0.6) 2.2(0.06) 2.41(0.09)

4 cores

Ecoli_core 19.6(0.6) 0.2(0.005) 0.32(0.01)

P_putida 19.4(1) 0.5(0.02) 0.61(0.01)

EcoliK12 20(0.8) 1.3(0.04) 1.64(0.08)

8 cores

Ecoli_core 19.4(0.5) 0.2(0.03) 0.35(0.05)

P_putida 19.6(0.7) 0.4(0.04) 0.53(0.009)

EcoliK12 20(0.49) 0.9(0.01) 1.22(0.08)

16 cores

Ecoli_core 20.2(0.4) 0.2(0.008) 0.41(0.05)

P_putida 19.5(0.4) 0.4(0.04) 0.51(0.03)

EcoliK12 22(0.7) 0.7(0.01) 0.87(0.03)

32 cores

Ecoli_core 22.2(0.4) 0.3(0.008) 0.6(0.12)

P_putida 21.5(0.6) 0.4(0.01) 0.53(0.004)

EcoliK12 21.5(0.6) 0.6(0.03) 0.78(0.04)

vs 14.7s) for the loading and analysis time. In fact, with dynamic load balancing, VFFVA
allowed to update the assigned chunks of iterations to every worker dynamically, which
guarantees an equal distribution of the load. In this case, the workers that get fast-solving
LPs, will get a larger number of iterations assigned. Conversely, the workers that get ill-
conditioned LPs, e.g., having an S matrix with a large condition number, require more
time to solve them and will get fewer LPs in total. Finally, all the workers synchronize
at the same time to reduce the results. Particularly, the speedup achieved with VFFVA
increased with the size of the models and the number of threads (Fig. 2E_Matrix). Finally,
the different load balancing strategies (static, guided, and dynamic) were compared
further with two of the largest models (Whole Body Model (WBM) and Ec_Matrix).

Fig. 2 Run times of Recon2 and E_Matrix model using FFVA and VFFVA on 2,4,8,16, and 32 threads. The
guided schedule was used in the benchmarking. The run time accounted for the creation of the parallel pool
(loading time) and analysis time
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Loadmanagement

Load management describes the different approaches to assign iterations to the workers.
It can be static, where an even number of iterations is assigned to each worker. Guided
schedule refers to dividing the iterations in chunks of size 2n/workers initially, with n
equal to the number of reactions in the model, and q/workers afterward, with q equal
to the remaining reactions after the initial assignment. The main difference with static
balancing was the dynamic assignment of chunks, in a way that fast workers can process
more iteration blocks. Finally, the is very similar to guided except that chunk size is given
by the user, which allows greater flexibility. In the following section, the load balancing
strategies of Ec_Matrix which is an ME coupled model and WBM were compared for the
time required to load and perform the analysis.

Static schedule

Using static schedule, VFFVA assigned an equal number of iterations to every worker.
With 16 threads, the number of iterations per worker equaled 1715 and 1716 (Fig. 3c).
Expectedly, the run time varied widely between workers (Fig. 3b) and resulted in a final
time of 393s.

Guided schedule

With guided schedule (Fig. 3a), the highest speedup (2.9) was achieved with 16 threads
(Fig. 3b). The iterations processed varied between 719 and 2581 and the run time per
worker was quite comparable with a final run time equal to 281s.

Dynamic schedule

Using dynamic load balancing with a chunk size of 50 resulted in similar performance to
the guided schedule. The final run time equaled 197s, while FFVA took 581s. An optimal

Fig. 3 Run times of Ec_Matrix model. a-Run times of Ec_Matrix model at 2,4,8,16, and 32 threads using FFVA
and VFFVA. The run time accounted for the creation of the parallel pool (loading time) and analysis time.
b-Run time per worker in the static, guided, and using 16 threads. c-The number of iterations processed per
worker in the static, guided, and using 16 threads
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chunk size has to be small enough to ensure a frequent update on the workers’ load, and
big enough to take advantage of the solution basis reuse in every worker. At a chunk
size of one, i.e., each worker is assigned one iteration at a time, the final solution time
equaled 272s. In fact, for a small chunk size, the worker is updated often with new pieces
of iterations, loses the stored solution basis of the previous problem, and has to solve the
LP from scratch which slows the overall process.
Similarly, the computation of the solution space for WBM Homo sapiens metabolic

model [2] (Fig. 4a) had a twofold speedup with 16 threads using a chunk size of 50 (806
mn) compared to FFVA (1611mn). The run times with guided schedule (905mn) and
dynamic schedule with chunk size 100 (850mn) and chunk size 500 (851mn) were less
efficient due to the slower update rate leading to a variable analysis time per worker
(Fig. 4b,c,d). VFFVA on eight threads (1323mn with chunk size 50) proved compa-
rable to FFVA (1214mn) and distributedFBA (1182mn) on 16 threads, thereby saving
computational resources and time.

Impact onmemory usage

In MATLAB, the execution of j parallel jobs implies launching j instances of MATLAB.
On average, one instance needs 2 GB. In a parallel setting, the memory requirements
are at a minimum 2j GB, which can limit the execution of highly parallel jobs. In the
Julia-based distributedFBA, the overall memory requirement exceeded 15 GB at 32 cores.
VFFVA requires only the memory necessary to load j instances of the input model,
which corresponds to the MPI processes as the OpenMP threads save additional mem-
ory through sharing one instance of the model. The differences between the FFVA and

Fig. 4 Run times per worker of WBM Homo sapiensmetabolic model. a-Final run time of the different load
balancing schedules at 8, 16, and 32 threads. The run time accounted for the creation of the parallel pool
(loading time) and analysis time. b-Run time per worker as a function of the number of iterations processed
using the guided schedule and the dynamic schedule with a chunk size of 50, 100, and 500 with eight
threads, c-16 threads, and d-32 threads
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Table 3 Comparative summary of the features of each implementation

Feature VFFVA distributedFBA FFVA FVA

Speed ++++ +++ ++ +

Memory +++ ++ + +

Load balancing Dynamic Static Static Static

VFFVA get more pronounced as the number of threads increases (Fig. 5), i.e., 13.5-fold
using eight threads, 14.2-fold using 16 threads, and 14.7-fold using 32 threads.
Finally, VFFVA outran FFVA and distributedFBA both on execution time and mem-

ory requirements (Table 3). The advantage becomes important with larger models and
a higher number of threads, which makes VFFVA particularly suited for analyzing
large-scale metabolic models in HPC setting.

Creation of warmup points for sampling

Sampling the solution space of metabolic models is an unbiased method that allows to
characterize the space of metabolic phenotypes, as opposed to FBA that provides single
solutions, and FVA that computes solution ranges. The uniform sampling of the solution
space is a time-consuming process that starts with the generation of warmup points to
determine the initial starting points for sampling. This step is formulated similarly to FVA
and could be accelerated using dynamic load balancing. The generation of 30,000 warmup
points were compared using the COBRA toolbox function createWarmupMATLAB and
a dynamically load-balanced C implementation createWarmupVF on a set of models
(Table 4). Since the COBRA toolbox implementation does not support parallelism, it was
run on a single core and the run time was divided by the number of cores to obtain an
optimistic approximation of the parallel run times. The speedup achieved varied between
four up to a factor of 100 in the different models (Table 4). Similarly to FFVA [10], the
main driving factor for the decrease in computation time was the C implementation
that allowed to reuse the LP object in every iteration and to save presolve time. Equally,
dynamic load balancing between the workers ensured a fast convergence time.
In general, dynamic load balancing is a promising avenue for computing parallel FVA

on ill-conditioned problems such as ME coupled models [13], the generation of warmup

Fig. 5 Physical memory usage at 8, 16, and 32 threads using FFVA, VFFVA, and distributedFBA highlights a
lower memory usage with VFFVA
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points, and loopless FVA [8, 27]. The sources of imbalance in metabolic models could be
inherent to the model formulation like ME coupled models that represent processes at
different scales. However, there were no correlation between themodel condition number
and the performance gain attributed to dynamic load balancing (Figure S2). A second
cause of imbalance is the formulation of the objective function such as the case of the
generation of warmup points, where the optimization of a randomly generated objective
function induces a severe imbalance. In this case, dynamic load balancing was up to 100
times faster than static load balancing (Table 4) in particular with ME coupled models
such as Ec_Matrix. This finding suggests that a combination of the ill-conditioning of the
stoichiometric matrix and the formulation of the objective function could contribute to a
large imbalance, therefore a larger benefit of using dynamic load balancing.
Taken together, the dynamic load balancing strategy allows efficient parallel solving

of metabolic models through accelerating the computation of FVA and the fast prepro-
cessing of sampling points thereby enabling the modeler to tackle large-scale metabolic
models.

Conclusions
Large-scale metabolic models of biological organisms are becoming widely used in the
prediction of disease progression and the discovery of therapeutic targets [28]. The stan-
dard tools available in the modeler’s toolbox have to be up-scaled to meet the increasing
demand in computational time and resources [29]. VFFVA is the precursor of the next
generation of modeling tools that leverage the specifications of modern computers and
computational facilities to enable biological insights through parallel and scalable systems
biology analyses.

Availability and requirements
Project name: VFFVA
Project home page: https://github.com/marouenbg/VFFVA
Operating system: Unix systems
Programming language: C, MATLAB (>2014b), Python (>3.0)
Other requirements: Open MPI (v1.10.3), OpenMP (v3.1), GCC (v4.7.3), IBM ILOG
CPLEX free academic version (v12.6.3).
License: MIT
Any restrictions to use by non-academics: None, conditional on a valid CPLEX license.

Table 4 Generation of sampling warmup points using dynamic load balancing

Model createWarmupMATLAB createWarmupVF

Cores 1 1 2 4 8 16 32

Ecoli_core 149 2.8 1.8 0.8 0.7 0.5 0.5

P_putida 385 12.5 13 8 4 2 2

EcoliK12 801 49 43 23 10.4 9.5 9.1

Recon2 11346 288 186 30 32 24 21

E_Matrix NA* 602 508 130 52 43 43

Ec_Matrix NA* 5275 4986 924 224 118 117
*The generation of warmup points of E_Matrix and Ec_Matrix models did not converge after 20000s. The creation of warmup
points can vary widely between runs as it involves the generation of a random c vector in the linear program. The runs were
repeated three times and the average was reported.
The run times of the generation of 30,0000 warmup points for sampling of six metabolic models using the standard serial
implementation createWarmupMATLAB and the dynamic load balanced implementation createWarmupVF

https://github.com/marouenbg/VFFVA
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