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Abstract

Background: Protein biomarkers play important roles in cancer diagnosis. Many
efforts have been made on measuring abnormal expression intensity in biological
samples to identity cancer types and stages. However, the change of subcellular
location of proteins, which is also critical for understanding and detecting diseases,
has been rarely studied.

Results: In this work, we developed a machine learning model to classify protein
subcellular locations based on immunohistochemistry images of human colon
tissues, and validated the ability of the model to detect subcellular location changes
of biomarker proteins related to colon cancer. The model uses representative image
patches as inputs, and integrates feature engineering and deep learning methods. It
achieves 92.69% accuracy in classification of new proteins. Two validation datasets of
colon cancer biomarkers derived from published literatures and the human protein
atlas database respectively are employed. It turns out that 81.82 and 65.66% of the
biomarker proteins can be identified to change locations.

Conclusions: Our results demonstrate that using image patches and combining
predefined and deep features can improve the performance of protein subcellular
localization, and our model can effectively detect biomarkers based on protein
subcellular translocations. This study is anticipated to be useful in annotating
unknown subcellular localization for proteins and discovering new potential location
biomarkers.
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Background
The knowledge of subcellular location of proteins is fundamental for understanding

their functions in biological processes [1]. In general, proteins must appear at right or-

ganelles in cells to transport signals and materials, catalyze metabolic reactions or pro-

vide structural support for cells. Mislocalization may affect these functions and lead to

diseases, including cancers [2]. Colon cancer, a cancer type with the third highest mor-

bidity and mortality across the world, has been found related to many subcellular trans-

locations of proteins. For example, protein BCAR1 residing in cytoplasm and plasma

membrane would transfer to nuclear in cancerous colon cells [3]. Other such proteins

associated with colon cancer include EBP50 [4], TET2 [5], and beta-catenin [6]. There-

fore, early detection of cancers can rely on not only the expression level of biomarker

proteins [7], but also the change of protein subcellular locations between normal and

malignant cells [8]. Nowadays, as the amount of protein data is huge and increases rap-

idly, automated subcellular location prediction is important for annotating new proteins

and detecting protein translocations on a large scale.

In the past decades, lots of protein subcellular location prediction tools were devel-

oped, and some of them have been used in location biomarker analysis. Protein amino

acid sequence, although ultimately determines the protein properties [9–11] and where

the protein resides [12–15], is not a suitable data source for analyzing subcellular trans-

locations because sequences generally do not change when the translocations occur

[16]. In contrast, image-based methods that use immunohistochemistry (IHC) images

can analyze the spatial distribution of proteins in normal and cancerous tissues and

their location changes. Newberg and Murphy proposed a framework for analysis of pro-

tein spatial distribution, where subcellular location features (SLFs) were used to

recognize protein subcellular patterns from IHC images, providing a starting point of

applying IHC images to large-scale subcellular location prediction [17]; Xu et al. devel-

oped a multi-label subcellular location predictor named iLocator and applied it to loca-

tion biomarker detection [16]; Kumar et al. proposed a pipeline to identify candidate

cancer biomarkers by measuring whether the changes of protein expression level and

subcellular location between normal and cancer tissues were significant [18]; Yang

et al. recently built a protein subcellular localization predictor MIC_Locator, which

transformed IHC images into frequency domain to capture local features and achieved

high classification performance on multi-location proteins [19]. However, most of these

statistical machine learning models used feature engineering that extracts predefined

features to train classifiers. One disadvantage is that quality of models largely depends

on the quality of features.

In recent years, the rise of deep learning provides another solution to study the pro-

tein spatial distributions. Some works based on convolutional neural networks (CNN)

have been published, but most of these studies focus on the fluorescence images of cell

lines [20–23], and cannot be used in detecting location biomarker proteins of cancer-

ous tissues. Currently, only a few works tried to use deep learning methods on tissue

images to analyze protein subcellular localization. Based on IHC images, Liu et al. pro-

posed a classifier, SAE-RF, combining traditional statistical image features with a

stacked auto-encoder [24]; and Long et al. designed a feature aggregator using deep

neural networks with a multi-head self-attention mechanism [25]. These works have

achieved good results on the protein localization task, but all of them used whole
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images as input of their deep models. This would lessen the capture of local subcellular

patterns for deep neural networks as that IHC images show wide-field cell samples and

have many non-informative sections.

In this work, we built an automated classifier of protein subcellular localization based

on IHC images of colon tissue, and tested its ability of detecting protein translocation

based on two constructed colon cancer biomarker datasets. The classifier used small

image patches with high protein expression as model input, and combined both feature

engineering and CNN models. Our results indicated that use of patches can improve

the classification performance, and concatenating deep features and predefined features

can be quite competitive in classifying subcellular localization of new samples. Proteins

in the two biomarker datasets are collected from published literatures and the human

protein atlas (HPA) database, respectively, and our classifier showed promising per-

formance in identification of protein location changes.

Results
Flow chart of our experiments is shown in Fig. 1. There are two stages, i.e., building

classification models and distinguishing location biomarkers. In the first stage, an

image-based protein subcellular localization model was built through combining feature

engineering and deep learning methods. The feature engineering models were built

through four steps, i.e., unmixing IHC image into protein and DNA channels, selecting

interest image patches, extracting and selecting features, and training support vector

machine (SVM) models (METHODS). Meanwhile, the selected interest patches were

Fig. 1 Framework of the experiments in this paper. a Training classifier models using IHC images. b
Identifying location biomarker proteins using integrated model
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fed into deep CNN networks to fine-tune models and extract feature maps

(METHODS). Then, a combined model was built by concatenating the features derived

from the two pipelines and training a final SVM model. As one protein has 3 ~ 6 IHC

images, two partition approaches were used to divide training and testing sets during

model construction, i.e., per image and per protein. The former partition approach puts

images into the training or testing set while the latter puts proteins into training or

testing set. The difference is that the per protein way can ensure no overlap of proteins

between training and testing set. In the second stage, we applied the model on the two

biomarker datasets to test whether it can identify protein subcellular location changes,

respectively.

Classification results of using whole images

As a baseline, we firstly trained classification models based on the whole IHC images,

where the patch extraction step was skipped. Each IHC image were unmixed using two

methods, i.e., linear spectral unmixing (LIN) and blind spectral unmixing by non-

negative matrix factorization (NMF), and then extracted global SLFs and local binary

pattern (LBP) features. As SLFs extraction processed images by discrete wavelet trans-

form using 10 Daubechies filters, we used db1 to db10 to represent different sets of

features.

Figure 2 shows the 10-fold cross validation results of using the two unmixing

methods and whether using LBP features. These results are from experiments using the

per image partition approach. It can be seen that the performance of the LIN approach

outperformed NMF by 1.80 to 12.99% of accuracy when using only SLFs features. After

adding the LBP features, the performance of LIN was better than NMF by 4.03 to

16.26% of accuracy. Besides accuracy, we also used recall, precision, and F1-score as

Fig. 2 Classification results of using whole images with different image separation methods and features

Xue et al. BMC Bioinformatics          (2020) 21:398 Page 4 of 15



evaluate metrics, and the three metrics showed similar results with accuracy (Table S-

1). Since LIN produces better performance, which is consistent with conclusions in a

previous study [17], all of subsequent experiments would use the LIN separation

method to separate the DNA and protein channels. In addition, it seems that the classi-

fication performance benefit from the LBP features of whole images very slightly. This

might be because that LBP features are more suitable for encoding local patterns, and

are sensitive to the uninformative regions in images.

Classification results of using interest patches

An original IHC image commonly consists of stained glands, unstained stroma, and un-

specific background, but only the protein stained tissue section contains location pat-

tern information. Therefore, we selected interest patches with high protein expression

to represent subcellular patterns. It is assumed that two parameters, the number of

patches in each image and the patch size, highly affect whether the patches contain

enough and useful pattern information. Here, we set ranges for the two parameters and

used grid search to determine the optimal ones. The number of patches was set from

25 to 385 in increments of 20, while the side length of the square patch was set from

45 to 225 pixels in increments of 30. Figure 3a shows the accuracy results of using dif-

ferent combinations of the two parameters.

It can be seen from the heat maps that when the size of patches gets small and the

number of regions increases, the classification accuracy gradually increases and then

tends to be flat. Overall, the results below the main diagonal are better than the above.

These results indicated that the patches should be sufficient to show protein patterns

and be small to highlight the micropatterns in cells. Based on these heat maps, we se-

lected optimal parameters for this classification task: the optimal size for the patches is

75 pixels and the optimal number of patches is 205. Some example patches with the

optimal parameters are shown in Fig. 4.

Figure 3b compares the classification accuracies of using the whole images and patches,

and results of other metrics are shown in Table S-2. It can be seen that using patches with

appropriate parameters can achieve better results than directly using the features of whole

images. Specifically, in the per image way, the results of selected patches outperform the

whole image results by 0.88–4.37% when using the SLFs features, and by 4.05–6.95%

when using the SLFs+LBP features. In the per protein way, the patch results outperform

the whole image results by 0.7–4.9% if using the SLFs features, and by 1.94–7.42% if using

the SLFs+LBP features. This also implies that LBP features play an important role in de-

scribing the subcellular location patterns in small image patches better than in images of

wide vision, emphasizing the ability of LBP features to capture subtle local patterns.

In addition, we can see prediction accuracies in per protein way are lower than the

per image way. This is because per protein way is a rigorous method for dataset parti-

tion, and it can objectively illustrate the generalization ability of trained models for new

protein samples.

Results of deep convolutional neural network models

As deep learning methods perform well in image classification, we tried to use convolu-

tional neural networks to predict the subcellular location of proteins from IHC images.

Xue et al. BMC Bioinformatics          (2020) 21:398 Page 5 of 15



Seven pre-trained networks were used in the study, i.e., GoogLeNet [26], ResNet18

[27], ResNet50 [27], ResNet101 [27], Inception v3 [28], DenseNet201 [29] and GapNet-

PL [30] (METHODS). To augment image data and grasp micropatterns of proteins, we

extracted 26,705 patches with high protein expression from the images as the network

inputs.

Classification results of using features from pre-trained networks

We investigated the features extracted from the seven pre-trained networks. For each

image, 35 patches of 224*224 pixels (Fig. 4) were extracted and fed into the networks

to get feature maps. The features of patches in one image were averaged to obtain the

image features, and fed into SVM models to perform a 10-fold cross-validation. The

Fig. 3 Classification results of using image patches. a Results of using different combinations of patch
parameters. b Comparison of results between using whole images and using patches of 75*75 pixels.
Features of db4 were used here
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classification results using these features are shown as red bars in Fig. 5, where the In-

ception v3 network outperforms others. GapNet-PL shows bad performance probably

because that it was a relatively shallow network designed for high-throughput fluores-

cence microscopy images, and the network structure cannot well identify the features

in IHC images.

Then we attempted to combine the deep network features with SLFs+LBP features to

see if the performance can be enhanced. It is shown as purple bars in Fig. 5 that con-

catenating the two types of features can achieve improved accuracies, especially for the

GapNet-PL model. This is due to the robustness of SLFs+LBP features, which main-

tains the performance at a high level. Results of other evaluating metrics can be seen in

Table S-3.

Classification results of fine-tuned deep neural networks

Besides, we also trained networks by fine tuning the seven pre-trained network models

using the 26,705 image patches. The classification results are shown as yellow bars in

Fig. 5. It can be seen that all the accuracies of networks in the per image way are above

94%, which is much better than the methods of feature engineering. However, the ac-

curacies in the per protein way are quite low compared with the feature engineering

models. This indicates that there might be overfitting in the per image models. As one

protein may have different images in training and testing set when using the per image

partition method, the results of per protein models are more objective in the method

evaluation. The performances of all the pre-trained network models are very close, but

Fig. 4 Examples of image patches of proteins in the three subcellular location classes. The patches in the
left three columns have 75*75 pixels, while in the right three columns have 224*224 pixels
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there is a big gap in training time (Table S-4). For example, DenseNet201 model is su-

perior to other networks in accuracy, but the training phase costs about 10 times longer

than other models.

Results of combined model

It can be concluded from Fig. 5 that concatenating SLFs, LBP, and the deep CNN fea-

tures can achieve the best performance when using the per protein partition method.

To build a final classifier with high classification and generalization performance, we

concatenated SLFs, LBP features, and the feature maps of the seven networks together

(each patch got a 7104-dimensional feature vector), selected 97 informative features by

stepwise discriminant analysis, and then trained a final SVM model. Here, the feature

maps were directly derived from the penultimate layers of the seven CNN models.

The combined model has better performance than all of the above single models. We

compared its performance with four published models of IHC image-based protein

subcellular localization, i.e., iLocator [16], SC-PSorter [31], MIC_ Locator [19], and

SAE-RF [24] (Table 1). Among these models, iLocator studied the effects of local fea-

tures and multi-label learning on classification of multi-locational proteins, while SC-

PSorter introduced structural relationships among subcellular locations into models to

enhance the performance. MIC_Locator used frequency features with different fre-

quency scales to describe and classify protein subcellular patterns, while SAE-RF used

conventional image features as input of 3-layer neural networks to distinguish

Fig. 5 Classification results of SVM models and CNN models

Table 1 Comparison of our method with four existing protein location predictors

Method Accuracy Recall Precision F1-score

iLocator 76.16% 76.73% 81.57% 0.7908

SC-PSorter 78.81% 76.66% 86.22% 0.8040

MIC_Locator 79.69% 80.17% 86.71% 0.8291

SAE-RF 83.29% 85.57% 87.05% 0.8629

Our method 92.69% 93.55% 94.55% 0.9400
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subcellular patterns. All of them extract features from the whole IHC images. It can be

seen that our method outperforms the other methods on all metrics, demonstrating

that using image patches and integrating conventional features and deep features are

effective in recognizing protein subcellular patterns.

Distinguishing protein biomarkers

The final classifier model was then applied to predicting the literature biomarker and

HPA biomarker datasets to test its ability of distinguishing protein biomarkers

(METHODS). Proteins in the two datasets have images of both normal and cancerous

colons, and are likely to have different subcellular patterns between the two situations.

Our model was expected to detect the differences. An independent sample t-test was

performed based on the predicted score vectors, and the P values were used to assess

the significance of location changes.

In the two biomarker datasets, one protein has 3 ~ 6 images of normal colon and 10

~ 29 images of cancerous colon. For each protein, we determined its subcellular loca-

tion of normal and cancer status by voting based on the outputs for images from the

final models. Then, to generate more representative vectors for statistics, the output

vectors of images of normal and cancer tissues from all the seven single classifiers

trained on predefined and deep features are used to conduct independent sample t-test.

In the literature biomarker dataset, 18 of the 22 proteins were detected as having sig-

nificant location changes (Table S-5). Compared with the subcellular locations reported

in literatures, the accuracy of the predicted subcellular locations in normal and cancer

conditions are 68.18 and 40.19%, respectively. In the HPA biomarker dataset, 65.66% of

the 795 proteins show significant location changes with P values less than 0.05 (Table

S-5). The classification accuracies of subcellular locations of normal and cancer condi-

tions are 84.36 and 84.66%, respectively. The results indicate that our model to some

extent is able to distinguish the location changes of cancer biomarkers.

Discussion
We have shown that the developed model benefits from the use of patches and com-

bination of feature engineering and deep learning methods. The ability of the model in

terms of detecting biomarker translocations was confirmed.

In this work, the IHC images were labeled as one of three subcellular location pat-

terns (Fig. 4) according to annotations in the HPA database. We only considered the

broad subcellular categories because IHC images showing tissue section are typically

observed at cytoplasmic and nuclear levels, and fine-grained patterns in cells (for ex-

ample, mitochondria and centrosome) can be hierarchically reflected in cytoplasm, nu-

cleus or membrane. Another reason is that most of cancer biomarkers reported in

literatures undergo translocations only among cytoplasm, nucleus, and plasma

membrane.

We noted that our model was able to find subcellular location change between nor-

mal and cancer states. However, given the overall changes expected in visual appear-

ance of cells in the comparison of cancer to normal tissue, there is a concern that most

pairs of images would appear statistically different. Here we analyzed pairs of normal

tissue images as a control. For each protein, we randomly split its normal tissue images
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into two sets, then used their model outputs to conduct independent sample t-test. It

turned out that over 85% of the P values between normal images of the same proteins

were larger than 0.05. It implies that our model might misclassify non-translocation

cases as translocations when there is some certain variation in tissue structure or pro-

tein expression level. This could be improved in future work by better subcellular loca-

tion classifiers and translocation discriminant rules.

We also investigated whether the detected location changes between normal and can-

cer tissues came from the variation of image pixel distributions. For each protein in the

HPA biomarker dataset, we represented its images by intensity distributions of their

protein channels, and calculated Euclidean distances between all pairs of normal and

cancer images. Then, the Euclidean distance distributions of those biomarkers detected

by our method and of the biomarkers undetected were fitted by gamma distributions,

respectively (Fig. 6). It can be seen that the two distributions are very similar, which in-

dicates that the detection did not affected by image pixel distributions.

Some possible reasons that might underestimate the distinguishing ability of our

model are listed as follows. First, some of the translocations of biomarkers in the litera-

ture biomarker dataset may only go for some subtypes of colon cancer. This is also the

reason of the accuracy gap between normal and cancer conditions. Second, not all of

the HPA biomarkers are sensitive for colon cancer. Even for those biomarkers of colon

cancer, some of them would only change expression level in cancerous cells, which are

not subcellular location biomarkers. This suggests us to consider both the protein ex-

pression level and subcellular location for biomarker detection in future works. Third,

although the HPA database is a valuable source of protein spatial distribution, its man-

ual subcellular locations may have errors and omissions because of biological variety

and or human factors. This also would cause underestimate of our method.

Conclusions
In this work, we established a bioimage-based classifier for protein subcellular

localization, and used the classifier to reveal protein biomarkers. The classification re-

sults demonstrated that the image patches with proper parameters can achieve better

performance than using the whole IHC images, and combining the traditional machine

learning features with the neural network features is beneficial to the model

Fig. 6 Comparison of intensity distance distribution between detected and undetected biomarkers in the
HPA biomarker dataset
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performance. Besides, the application of the classifier to biomarker datasets indicates

that our method can achieve satisfactory performance in location biomarker detection.

There is still room to improve for our method in future works. Firstly, the number of

extracted patches from each image could be adaptive to the protein expression situ-

ation. The area of stained region is variable among images depending on the antibody

binding and staining effect, so using a single optimal number fitting for all the images

is difficult. We will attempt to use an adaptive patch number in future works, which is

expected to lead to better performance.

Secondly, detection of cancer biomarker proteins should consider not only subcellu-

lar translocation, but also the change of expression level. Lots of proteins marked as

cancer biomarkers in the HPA have unchanged subcellular location annotation in nor-

mal and cancerous tissues. These proteins may stay at normal locations and have ab-

normal expression level in cancerous cells. Therefore, in future studies we would use

both protein expression levels and subcellular locations of proteins to analyze bio-

markers, where the changes of protein staining and quantification in images can be

additional information sources of cancer biomarkers.

Methods
Datasets

In this study, our image datasets were selected from the HPA (https://proteinatlas.

org/) database, which is a public online database storing millions of IHC images of

approximately 17,000 human proteins across various healthy and cancerous tissues

[32]. Each IHC image in the database is a colored RGB image and has approxi-

mately 3000*3000 pixels. To ensure quality of data, we selected IHC images of pro-

teins in colon tissue that fulfill three criteria: (a) the staining annotation was high

or medium, (b) the intensity was annotated as strong or moderate, and (c) the

quantity filed was annotated as greater than 25% [18]. According to annotations in

the HPA, we put these images into three subcellular location classes, i.e., (i) nu-

cleus, (ii) cytoplasm and plasma membrane, and (iii) nucleus and cytoplasm and

plasma membrane (Fig. 4).

Three datasets were collected, i.e., modeling dataset, literature biomarker dataset, and

HPA biomarker dataset, where the first was to build classifier models and the second

and third were to validate the performance of the models on screening location bio-

markers. The proteins in the literature biomarker dataset were collected for that they

have been reported to transfer from one subcellular pattern to another in cancerous

colon tissue (Table S-6), while the HPA biomarker dataset was composed of proteins

that are marked as cancer biomarkers in the HPA. It is noted that the two validation

datasets have no overlap with the modeling dataset. Details of the datasets can be seen

in Table 2.

Unmixing image channels

Since the distribution of proteins is a key factor in the classification, deriving protein

channels from IHC images is a crucial step. Each IHC image in the HPA shows an

immunohistochemically stained slide, where regions of a specific protein are stained

brown by a monospecific antibody labeled with diaminobenzidine, and DNA in cell
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nuclei is stained purple by hematoxylin. We applied two color separation methods, i.e.,

LIN and NMF, to separate the protein and DNA channel. LIN uses one empirical

color-base matrix to separate all the IHC images, while NMF calculated a unique

color-base matrix for each image [17]. Both of the two methods can generate unmixed

protein and DNA channels.

Selecting patches from images

To extract informative patches, we performed a low-pass filter on the separated protein

channels to select square patches of interest [18]. These patches generally have high

level of protein expression, and are assumed to be able to represent the subcellular pat-

terns of the whole images.

Feature engineering classifiers

Feature extraction and selection

We extracted DNA features, Haralick texture features, and LBP features to describe

the subcellular location of proteins [33]. Sixteen dimensional DNA features related

to the protein and nuclear overlap and distance were extracted. Haralick texture

features were extracted from the gray level co-occurrence matrices of images. In

this study, we extracted the Haralick features using 10 Daubechies filters with van-

ishing moment from 1 to 10, each of which had 576-dimensional features. DNA

and Haralick features are a subset of global SLFs identified by Murphy group. In

addition, we also extracted 256 dimensional LBP features, which can describe the

spatial structure of local patterns and can detect microscopic textures in images. In

total, there are 848 features for each patch, including 592 global SLFs and 256 LBP

features.

Considering high-dimensional features may cause overfitting and lead to poor

generalization of classifiers, we used a feature selection method, stepwise discriminant

analysis, to reduce dimensionality, as it has been proven to be superior to other feature

selection methods in subcellular image classification [34].

Classifier design

We used SVM from LIBSVM-3.23 toolbox (https://csie.ntu.edu.tw/~cjlin/libsvm) with

radial basis function kernel to train classifier models [35], and the parameter g and c

were determined by grid search. 10-fold cross validation was employed here to evaluate

the model performance.

Table 2 Summary of the three datasets used in this study

Dataset Number of
proteins

Number of images Number of patches Number of images
in each class

Normal Cancer Normal Cancer i ii iii

Modeling dataset 154 763 0 26,705 0 134 501 128

Literature biomarker dataset 22 111 659 3885 23,065 217 357 196

HPA biomarker dataset 795 2365 8351 82,775 298,585 1783 7683 1250
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Deep convolutional neural network models

Pre-trained networks

Seven pre-trained networks were used in the study. The first six networks are

GoogLeNet [26], ResNet18 [27], ResNet50 [27], ResNet101 [27], Inception v3

[28], and DenseNet201 [29], all of which were trained by a massive amount of

natural images in the ImageNet database [36]. These architectures have robust

performance in image feature representation and have been widely used in many

transfer learning works [37, 38]. The last one is GapNet-PL, which was a network

architecture designed to process high-throughput fluorescence microscopy images

and predict protein subcellular location patterns [30]. The network consists of 8

convolutional layers, 5 pooling layers, and 3 fully-convolutional layers. The out-

standing characteristic of this structure is that feature maps of three different

layers are reshaped to a size of one pixel by global average pooling, and then the

concatenated feature vector is passed to a fully connected layer for prediction.

The pooling operation can connect feature information from different levels and

greatly reduce the number of parameters. In addition, the network replaces ReLU

and batch normalization with SELU activation function, which significantly re-

duces the training time of the model and lower memory consumption. Compared

with other models using ReLU and batch normalization, the F1-score was im-

proved by 2–6% [30].

Transfer learning from the pre-trained networks

We operated two methods of transfer learning, i.e., extracting feature map from pre-

trained networks and fine-tuning method. Firstly, the penultimate layers of the seven

networks were extracted as patch features, where the GapNet-PL outputs 256 features,

while the other six networks output 1000 features. Besides, fine-tuning was used on the

pre-trained networks to adapt the classification models to our task. For each network,

we replaced the last layer with our classification outputs, and fine-tuned the parameters

of all the layers.

Distinguishing protein biomarkers

In this work, we used two biomarker datasets, i.e., literature biomarker dataset and

HPA biomarker dataset, to verify whether the machine learning models can detect

protein translocations in colon cancer. Independent sample t-test was used to

evaluate the significance of location changes. In particular, suppose one protein has

m images of normal tissue and n images of cancer tissue. First, we used the aver-

aged classification score vectors to determine the predictions of subcellular location

in normal and cancer tissues, respectively. Then for each protein, an independent

sample t-test was conducted under a null hypothesis that the mean vectors are the

same between the m weight vectors of the normal tissue images and the n weight

vectors of the cancer tissue images. The t-test would output a P value vector,

where each value indicated the significance of change of subcellular location from

normal to cancer status. Protein was considered to be identified as location bio-

markers only if the P value is less than 0.05.
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