Grabia et al. BMC Bioinformatics

https://doi.org/10.1186/512859-020-03743-8

(2020) 21:425

BMC Bioinformatics

SOFTWARE Open Access

NormiRazor: tool applying
GPU-accelerated computing for

Check for
updates

determination of internal references in
microRNA transcription studies

Szymon Grabia'?T, Urszula Smyczynska' T, Konrad Pagacz'? and Wojciech Fendler'#"

*Correspondence:
wojciech_fendler@dfci.harvard.edu
Szymon Grabia and Urszula
Smyczynska contributed equally to
this work.

Department of Biostatistics and
Translational Medicine, Medical
University of Lodz, 15 Mazowiecka
St,, 92-215 Lodz, Poland
“Dana-Farber Cancer Institute,
Harvard Medical School, Boston,
450 Brookline Av., MA 02215
Boston, USA

Full list of author information is
available at the end of the article

K BMC

Abstract

Background: Multi-gene expression assays are an attractive tool in revealing complex
regulatory mechanisms in living organisms. Normalization is an indispensable step of
data analysis in all those studies, since it removes unwanted, non-biological variability
from data. In targeted gPCR assays it is typically performed with respect to prespecified
reference genes, but the lack of robust strategy of their selection is reported in
literature, especially in studies concerning circulating microRNAs (miRNA).
Unfortunately, this problem impedes translation of scientific discoveries on miRNA
biomarkers into widely available laboratory assays. Previous studies concluded that
averaged expressions of multi-miRNA combinations are more stable references than
single genes. However, due to the number of such combinations the computational
load is considerable and may be hindering for objective reference selection in large
datasets. Existing implementations of normalization algorithms (geNorm, NormFinder
and BestKeeper) have poor performance and may require days to compute stability
values for all potential reference as the evaluation is performed sequentially.

Results: We designed NormiRazor - an integrative tool which implements those
methods in a parallel manner on a graphics processing unit (GPU) using CUDA
platform. We tested our approach on publicly available miRNA expression datasets. As
a result, the times of executions on 8 datasets containing from 50 to 400 miRNAs
(subsets of GSE68314) decreased 18.7£0.6 (mean+SD), 104.74+4.2 and 76.54+2.2 times
for geNorm, BestKeeper and NormFinder with respect to previous Python
implementation. To allow for easy access to normalization pipeline for biomedical
researchers we implemented NormiRazor as an online platform where a user could
normalize their datasets based on the automatically selected references. It is available
at norm.btm.umed.pl, together with instruction manual and exemplary datasets.
(Continued on next page)
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Conclusions: NormiRazor allows for an easy, informed choice of reference genes for
gPCR transcriptomic studies. As such it can improve comparability and repeatability of
experiments and in longer perspective help translate newly discovered biomarkers into
readily available assays.

Keywords: GPU acceleration, CUDA, Reference genes, gPRC, miRNA

Background

Despite the boom of next-generation sequencing techniques, quantitative RT-PCR
(qPCR) assays remain a popular method for evaluating gene expression. Furthermore, due
to recent advances in design of highly specific probes this method is becoming effective
for analysis of short non-coding RNAs [1]. Although such experiments are easy to con-
duct and non-expensive, they are burdened with a problem of unwanted, non-biological
variability in obtained data. Such variability comes mainly from inequality of RNA con-
centrations, slight differences in samples’ handling and devices’ operation and changes
in experimental environment. Since it cannot be avoided at the prelaboratory or lab-
oratory levels, this undesirable component of variation should be removed by a data
pre-processing operation, called normalization [2]. Otherwise, those inaccuracies could
shadow true biologically relevant differences. Many normalization strategies have been
already suggested, but the problem is still considered open to new proposals, especially
in those areas where intensive studies have been started only recently [3, 4]. One of such
fields, that prompted our group to review available normalization algorithms, is research
on circulating microRNAs (miRNAs) as potential biomarkers [5, 6]. In past years, circu-
lating miRNAs were shown as very promising diagnostic tools in cancer research [7, 8],
radiation exposure [9], diabetes [10], cardiology [11] and numerous other areas. Problems
with finding optimal normalization strategy often pose a major obstacle in translating
results of research into clinically applicable diagnostic tools [12, 13]. In such studies, the
first stage usually consists in screening the whole miRNA expression profile in order to
identify those miRNAs, which are expressed differentially in the studied condition in
comparison to the control group. At this stage, normalization is best performed using a
statistical characteristics of samples (e.g. mean expression). It is routinely done when the
data comes from high-throughput qPCR [14] or RNA sequencing [15].

However, the approach described above is impossible to apply when the qPCR assay
targets only few differentially expressed miRNAs (or genes). The mean expression cannot
be used as reference in this scenario as the miRNAs are chosen on the basis of between-
group differences. Therefore, in such situations, normalization must be performed with
respect to endo- or exogenous control genes or total input RNA [16]. Exogenous controls
are the RNAs (synthetic or coming from other species) that are artificially introduced to
the sample in known amounts for the purpose of quality control of consecutive cycles
of PCR reaction and normalization procedures. In contrast, endogenous reference genes
originate from a tissue sample itself and are selected for their known and experimentally
validated, stable expression, in most cases unchanged by pathological conditions or other
clinical factors. In miRNA expression experiments either some stably expressed miRNAs
or other small RNAs are chosen as those references. However, there is still no consensus
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on choosing proper internal references for qPCR miRNA studies, especially in biofluids
(17, 18].

Literature review [3, 4, 19, 20] revealed that the most commonly used method of select-
ing reference miRNAs is the application of algorithms that were previously designed for
identification of housekeeping genes for RNA tissue expression studies: geNorm [21],
NormFinder [22] and BestKeeper [23]. GeNorm is an iterative procedure that finds
optimal normalizers on the basis of pairwise variation of candidate reference genes. In
each iteration a stability score is calculated for all candidates and the one scoring the
worst is removed. Then, the procedure is repeated until only 2 genes remain. Best-
Keeper is based on the assumption that the geometric mean of all stably expressed
genes in particular experiment (called Best Keeper Index, BKI) provides good or even
optimal reference for this experiment. Thus, if there is a reason to choose only one
or few reference genes they should be the ones that correlate the strongest with BKI.
NormFinder is based on the mathematical model of intra- and intergroup variability
and aims at finding such reference genes that are characterized by no or limited vari-
ation. In multi-group experimental designs (eg. patients affected by particular disease
and healthy controls), that are typical for biomedical sciences, NormFinder treats the
variability within groups and between groups as two distinct and equally important
constituents of overall variation. Therefore, the final stability measure takes both into
account.

In these methods potential reference genes are ranked according to their respec-
tive stability scores and the most stable one is applied as a normalization factor.
Stability, in this context, is understood as the invariability of expression of genes
or microRNAs between experiments that are subject to changing technical aspects
and whose samples may represent different pathological conditions or clinical fac-
tors. Although this approach is commonly used (if any systematic procedure of
finding reference genes is applied at all), it has recently been questioned by mem-
bers of our research team [24] as an inadequate method of selecting normalization
factors.

A new algorithm was therefore proposed that instead of analyzing only single miRNAs,
also calculates stability scores for all of their 2- and 3-element combinations in geNorm
(GN), NormFinder (NF or NFG when samples’ groups are provided) and BestKeeper
(BK). It was proven that combination-based normalizers are statistically better than sin-
gle reference genes in terms of stability [4]. Moreover, it was showed that in many cases
the most stable reference is formed by averaging expression of 2 or 3 miRNAs that do
not necessarily score the highest when analyzed separately [24]. While the gain in finding
more stable references is evident, the major obstacle in practical application of this pro-
cedure is its computational cost that grows with the number of miRNAs in a dataset and
the number of elements in a combination. Initial multi-thread implementation in Python
[24] revealed the problem of long execution times for larger datasets which could not be
solved in a fully satisfactory way by CPU parallelization. Following the observation that
computations for each combination are independent from one another, we decided to
reimplement the proposed algorithm to run on graphical processing units (GPUs). With
this idea in mind, we designed a high-speed parallel processing software platform for
unbiased combinatorial reference gene selection for normalization of expression data -

NormiRazor.
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Implementation
Implementation for combination-based references
Following [24], we redesigned the three most popular normalization algorithms in the
transcriptomic community, geNorm, BestKeeper and NormFinder, to facilitate calcula-
tions of rankings for combination-based references. At the same time, we reimplemented
them in Compute Unified Device Architecture (CUDA) model and encapsulated in a
self-contained web application called NormiRazor.

The comprehensive combination-based method of identifying reference circulating
miRNAs, described in the “Background” section, consists of several operations in the
following order:

Reading and preprocessing input data.

2 Calculation of stability indices for single genes by geNorm, BestKeeper and
NormFinder.

3 Determination of all possible 2- and 3-element combinations of input miRNAs.

4 Calculation of stability indices for combinations by the same algorithms and
creating rankings of combinations according to their stability.

5  Aggregation of results from all normalization algorithms and choice of
recommended references among combinations.

6  Normalization of input dataset with respect to selected reference (on user request).

Step 1 consists of reading data (gene expression and samples’ group designation), check-
ing format correctness and handling missing values. For further analysis we only consider
the miRNA detected in all samples, as they are most likely to not produce missing val-
ues in the next targeted experiment. In step 2 single genes are ranked from the most to
the least stable one. Additionally, to reduce computation times for larger datasets (e.g.
from NGS), we limit the analysis to 250 genes with the highest stability. From the remain-
ing genes, step 3 creates the list of all combinations of given length that serves later as a
queue of tasks distributed for parallel processing on a GPU. Step 4 assesses stability of all
combinations and, as the most computationally expensive one, is executed on a GPU. The
exact number of combinations (N) generated for a given set is dependent on the number
of elements (miRNAs) in that set and can be calculated using the formula:

n!

N=—— 1
rl(nm—r)! @)
where 7 is the number of elements in a set and r is the length of a combination. Finally,
steps 5-6 summarize the results and allow the user to normalize their data to one of the
recommended references. This whole process is also illustrated in Fig. 1a.

Performance optimization
Firstly, the algorithm generates a list of all potential combination-based references. The
only optimization for this part with respect to previous Python implementation was
rewriting it as a C++ recursive function. Similarly, the aggregation of all previously gen-
erated results does not perform very intensive computations, so it is also executed on
CPU.

Calculation of stability indices for combinations presented the greatest area of opti-
mization in the form of:
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Fig. 1 Flow diagram of normalization application execution. a The whole algorithm; b A detailed view of
operations executed for each batch of input data in CUDA implementation; ¢ Subdivision of execution time
for Python and CUDA implementation for the purpose of benchmark. Colors: gray — operations on CPU,
green - operations on GPU, blue - steps involving both GPU and CPU, orange — operations running on
multiple CPU threads

1 Reducing redundant parts of calculations to a single execution (mathematical
optimization).

2 Parallel implementation on CUDA-enabled GPU.

3 Limitation of miRNAs set size by the exclusion of those that are the least probable

to form stable combinations.

Mathematical optimization consisted mainly in limiting operations repeated in every
iteration to only one execution. Formal algebraic description of the algorithms and some
minor modifications introduced by us is presented in detail in Additional File 1. It was
also applicable to Python implementation, but it still have not resulted in achievement
of reasonably short execution times that researchers looking for reference miRNA would
accept. Thus, observing that calculation for each combination are relatively simple, totally
independent from one another and identical in terms of computations and differ only by
data, we decided to utilize GPU with its SIMD (single instruction, multiple data) process-
ing paradigm. CUDA technology was chosen due to its established position in research

Page 5 of 16
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applications, especially in bioinformatics and widespread availability of CUDA-enabled
GPUs. The final part of the optimization is the previously described limiting of the num-
ber of potential miRNAs to 250. This number is sufficient for a typical dataset containing
150-250 miRNA, detectable in a majority of samples and as such suitable to serve as ref-
erence genes. Still, the dataset of such size generates from 551,300 to 2,573,000 unique
3-miRNA combination to analyze.

We divided the main part of the application into three separate paths, each of them cor-
responding to one of proposed normalization algorithms. We then implemented them
as CUDA C kernels embedded into a C++ application (scheme in Fig. 1b), as to achieve
maximal performance improvement. In order to further optimize the application, we
decided to implement most of the components of the entire procedure on our own with
parameters tailored to our needs rather than using more general third-party solutions.

Results generation in NormiRazor

At the beginning the stability values for single miRNAs are calculated by three nor-
malization algorithms. Since the outputs of those methods are not comparable, for the
purpose of selection of the best individual microRNAs, they are normalized to the range
[0, 1]. Then, the program calculates their average across the algorithms and on this basis
identifies the list of up to 250 most stable candidates that are later used to form the
combination-based references.

Combination stability calculation is performed on a GPU and starts with generation of
combination-based reference by averaging expression of 2 or 3 miRNAs from the above
mentioned list. When stability of each newly formed potential reference is calculated, this
combination is treated as an additional gene, appended to the original expression dataset.
Resulting stability of a combination and its ranking in the dataset is saved for the compari-
son with all other combinations of miRNAs. The combinations are sorted by their ranking
and then their stability values, in result of which a separate list is generated for each nor-
malization algorithm. New standardized rankings from value range [0,1] are assigned to
the combinations based on their position in sorted list, generated by particular algorithm.
The results of all algorithms are aggregated by averaging the rankings from all normal-
ization algorithms applied and the list of the best normalizers based on the outcome of
this procedure is generated. We decided to present 10 recommended combinations (top
5 for 2-element combinations and top 5 for 3-element combinations) to the user and then
allow them to normalize their dataset with one of these reference sets. The output file is
kept in the same format as for the input file to allow for easy inclusion of our normaliza-
tion strategy into existing pipelines. The complete stability rankings for all combinations
are also available for download.

Finally, having identified the need for a readily available tool for users with limited expe-
rience in programming, we designed graphical user interface (GUI) for our algorithm that
is available on our institution’s server at norm.btm.umed.pl.

Benchmark

We decided that the main measure of efficiency and user-friendliness of our application
would simply be total execution time, since it is the most discernible for the end user
and ultimately affects their experience the most. As a way of providing an insight into the
particular parts of operation of the application, we also measured the execution times of
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some distinct parts of the algorithm, including purely computational one, named “kernel”
in the “Results” section. We performed time of execution tests on datasets either with
varying number of miRNAs (test 1) or samples (test 2). In the first set of tests, we used
subsets of expression set GSE68314, available in Gene Expression Omnibus (GEO), and
we adjusted the number of miRNAs from 50 to 400 with a step of 50, while we always
included all 8 available samples. Benchmark with a varying number of samples (10 to 50,
step of 10) was based on another GEO dataset - GSE90828. In this second benchmark we
included 156 miRNAs without missing data. For both tests, separate experiments were
performed for 2- and 3-element references (mean expression of 2 or 3 miRNAs, respec-
tively). Each measurement was repeated 5 times and the result is presented as mean with
standard deviation.

For the purpose of testing the performance improvement of the proposed comput-
ing method, we employed two benchmarking platforms. The system specifications of
both platforms are presented in Suppl. Table 1 (Additional File 2). We used the Python
algorithms implementations from [24] as a baseline for our comparisons.

Finally, an example of NormiRazor practical application is presented where we
attempted a biologically-oriented validation of references found by our application. It is
based on the experiment described in [25]. Dataset GSE121513, which contains miRNA
expression profiles obtained by qPCR of 95 neuroblastoma samples with and without
amplification of MYCN gene, was used. MYCN is a transcription factor that binds to
miR-17-92 promoter and is known to affect expression of a few miRNAs. According to
TransmiR v2.0 [26], experimentally validated targets of MYCN are: mir-106a, mir-17,
mir-18a, mir-19a, mir-19b, mir-20a and mir-92a. Thus, we can expect that their expres-
sion should differ between MYCN-amplified and MYCN-non-amplified samples and
observing such difference indicates that correct normalization was applied. We tested
this assumption with data normalized to different references, including the ones found by
NormiRazor.

All datasets used in tests are publicly available and were generated by qPCR panel
assays. Thus, the data were expressed as qPCR quantification cycles C; that reflect num-
ber of replication cycles after which each miRNA becomes detectable; thus, lower values

of C; indicates higher miRNA expression [2].

Results

Comparison of total execution time between CUDA and Python implementation for 3-
miRNA references is shown in Fig. 2. We observed that the total execution time for 3-
miRNA references and kernel execution time can be accurately modeled by following

relations (for both implementations):

e geNorm:

Lc+2
t—a (INOO) @

e BestKeeper and NormFinder:

Lc
i= g (11(\)[0) 3)
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Fig. 2 Comparison of total execution time of Python and CUDA implementations. Analysis of 3-element
normalizers on dataset with varying number of miRNAs. Points represent mean and SD of 5 repeated
experiments (SD is usually almost negligible), curves are model predictions. Benchmark on platform 1

with N being the number of miRNAs in a dataset, Lc the number of miRNAs in a
combination-based reference and a regression coefficient. Division by 100 was included to
limit the range of values produced after exponentiation. Curves generated in accordance
to the above models are shown in Fig. 2.

For the purpose of quantitative comparison, we defined a speed-up gained by CUDA
implementation as:

_9ry (4)
ACUDA

where apy and acypa are coefficients from models for Python and CUDA implementa-
tions, respectively. Standard deviation (SD) of the speed-up was calculated according to
[27] as:

SP =

\/SD (“12>y) + (azgf)A)ZSD (acupa)*
ACUDA

Obtained speed-ups for 3-miRNA combinations were the highest in case of BestKeeper
with execution of whole algorithm 100 times faster in CUDA than in Python and the low-
est in geNorm with the program still running almost 20 times faster than before (Table
1 and Suppl. Table 2 in Additional File 2). In the cases of BestKeeper and both versions
of NormFinder computational cores (kernels) of algorithms were sped up from about
6000 to almost 22000 times, depending on particular setting, while in the case of geNorm
the kernel speed-up was comparable with the total speed-up (Suppl. Fig. 1 in Additional
File 2). A difference of such magnitude was caused by the distribution of execution time

SD(SP) = (5)
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Table 1 Speed-up (ratio of execution times) gained by the CUDA implementation with respect to
the previous Python version. Benchmark on platform 1

Speed-up £ SD total kernel

Combination length 3 2 3

GN 18.7 £0.6 193+ 18 183+ 06

BK 104.7 £4.2 12887.5£1846.3 219934 +£1479.2
NF 765422 66195.2 £1035.1 11877.1 £ 4335
NFG 84.0+£33 6665.7 £1105.0 131645+ 595.6

between particular operations. From tables in Fig. 3, one can observe that GPU-related
operations still take the majority of the execution time of geNorm, which is not the
case for BestKeeper and NormFinder. Therefore, the speed-up of the two latter methods
affects the whole execution speed-up to a smaller extent than in case of geNorm. The
computational core takes the majority of time of GPU operations only in geNorm, while
in BestKeeper and NormFinder greater fraction of time is needed for memory alloca-
tion and copying data than for actual calculations (Fig. 3). Distribution of execution time
between all (CPU and GPU) operations is presented in Suppl. Fig. 2 and for comparison
similar plot for Python implementation is shown in Suppl. Fig. 3 in Additional File 2.
Analogical analysis was performed with varying number of samples in dataset (test 2)
and the results are shown in Suppl. Fig. 4 and 5 in Additional File 2. We also performed
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Fig. 3 Distribution of execution time between GPU-related operations in CUDA implementations for
3-element normalizers. Tables below the graphs indicate percentage of the total execution time (CPU+GPU)
dedicated to operations on GPU. Test 1 on platform 1. cudaMalloc: memory allocation on GPU, memcpyHtD:
copying data from RAM to GPU memory, memcpyDtH: copying data from GPU memory to RAM
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a comparison of efficiency of GPUs in two benchmark platforms and we obtained very
similar kernel execution times in both of them (Suppl. Fig. 6 in Additional File 2).

Our next goal was to check the validity of identified references when they are applied
to real data. Figure 4 presents the distribution of qPCR C; values (mean-centered) after
different normalization protocols were applied to the data. In panel A, no normaliza-
tion was applied, thus sample means and range of values were clearly different between
samples. The next two panels (B and C) present the effects of normalization to the best 3-
miRNA-based reference (averaged expression of miR-1976, miR-30d-5p and miR-214-3p)
and normalization to the mean of miRNAs detected in all samples, respectively. Those 2
approaches equalized distributions of Cg, such that distributions in all samples became
very similar. Additionally, methods B and C do not produce discernibly different results;
thus, they may be equally useful. In panels D (original reference 1) and E (original ref-
erence 2), references which were proposed in [28] by the authors of the chosen dataset,
were used. Finally, panel F shows detrimental consequences of using a very poor reference
(mean of miR-144-3p, miR-1909-3p, miR-451a, identified as the worst by NormiRazor)
and highlights how a poor choice in this regard may spawn false positive findings.

Effect of normalization methods on variability of miRNA expression between sam-
ples was presented in Fig. 5. We observed that normalization to mean expression (gray
curve) and normalization to a reference identified by our algorithm (blue curve) pro-
duced very similar distributions of expression variances. Moreover, both of them as well
as normalization to the original reference 1 (solid green line) were significantly differ-
ent than lack of normalization plotted in red (p<0.0001 in Kolmogorov-Smirnov test for
all comparisons). Standard deviation of expression was on average lowered after of those

A B C
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4 44 41
24 24 24
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-6 -6 -6
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Fig. 4 Effect of different normalization schemes on miRNA expression in GSE68314. No normalization a
normalization: to 3-miRNA reference selected by NormiRazor b to mean expression of miRNAs expressed in
all samples ¢ to references from original article: mean expression of miR-142-3p and miR-320a-3p d, mean
expression of miR-766 and miR-3909 e to the worst reference found by NormiRazor f. Included are only
miRNA present in at least 75% of samples; boxes show interquartile range, central line is median, whiskers
indicate 5. and 95. percentile




Grabia et al. BMC Bioinformatics (2020) 21:425 Page 11 of 16

cumulative distribution

0.0 - . . :
0.0 0.5 1.0 1.5 2.0 2.5
standard deviation of Cq

Reference
--=-= none (as in Fig. 4A)
—— 3-miRNA reference from NormiRazor (Fig. 4B)
—== mean expression (Fig. 4C)
——— miR-142-3p and miR-320a-3p (Fig. 4D)
—+= miR-766 and miR-3909 (Fig. 4E)
worst reference from NormiRazor (Fig. 4F)

Fig. 5 Cumulative distribution of standard deviations of miRNA expression in samples from GSE68314.
Legend indicates different normalization schemes that were applied

normalizations, excluding purposefully selected worst reference; thus, we conclude that
all of these approaches effectively reduce variability. Original reference 2, on the contrary,
does not produce distribution different from the one obtained without any normaliza-
tion (p=0.1201). It is also clear that normalization to poor reference introduces additional
amount of variability and is actually worse than lack of normalization (p<0.0001).

Finally, we demonstrated applicability of references found by NormiRazor in differ-
ential expression analysis on the exemplary neuroblastoma dataset (GSE121513). The
results of this biologically-oriented validation are presented in Fig. 6. We calculated the
fold changes (FC) of miRNA expression between MYCN-amplified and non-amplified
neuroblastoma samples after applying different normalization schemes. Figure 6 shows
FC values for miRNAs that are known to be affected by MYCN and thus we expected
that their expression should be different between two types of neuroblastoma. When-
ever statistically significant (FDR-corrected p<0.05) difference was detected, we placed an
asterisk above the respective bar. When no normalization was employed, none of miRNAs
of interest were found differentially expressed. When a poor reference was tested, only
one difference became significant and obtained fold-changes were highly variable. Differ-
ential expression analyses after all proper normalizations detected differential expression
of 7 out of 9 experimentally validated miRNAs (miR-19a, miR-17-5p, miR-18a, miR-18a*,
miR-19b, miR-20a, miR-92). Thus, it must be stated that a proper normalization (either
to mean expression or the internal reference) is essential for conclusions of the study.
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MYCN-amplfied neuroblastoma vs non-amplified

11 A

10 1

FC

mir-106a  mir-19a  mir-17-3p mir-17-5p mir-18a  mir-18a*  mir-19b mir-20a mir-92

Reference
No normalization
3-miRNA reference from NormiRazor (let-7d, miR-30a-5p, miR-425-5p)
mean expression
reference from original article (miR-425, miR-191, miR-125a)
poor 3-miRNA reference from NormiRazor (miR-432, miR-433, miR-539)

Fig. 6 Results of biologically oriented validation on data from GSE121513. Fold-change of miRNA expression
between MYCN-amplified and non-amplified neuroblastoma cells is shown with confidence interval when
different normalization approaches are applied. Confidence interval is calculated on the assumption that Cg
values from gPCR are normally distributed

Discussion

In the present study we proposed a new GPU-based computational approach to the
recently published [24] extensive algorithm searching for reference miRNAs. Since the
algorithm is based on an analysis of averaged expression of 2 or 3 miRNA as potential ref-
erence, it is highly computationally demanding. We identified that majority of calculations
are easily parallelizable and can be implemented on a GPU. In our testing environment
we observed that the GPU version runs from 20 up to more than 100 times faster than a
previous multicore Python implementation. Speed-ups in such a range seem to be typi-
cal for GPU reimplementations of bioinformatics algorithms that previously run on CPU.
For instance, GBOOST - the tool for a gene-gene interaction analysis — achieved a 40-
fold speed-up with respect to its CPU predecessor BOOST [29]. Even better results were
reported by the authors of CUDA-miRanda that is described as 166-times faster than
miRanda [30]. Obviously, interpreting such results, one must take into account charac-
teristics of a particular testing platform (model of CPU and GPU), however, it is still clear
that in many applications GPU computing is beneficial.

In the case of searching for reference genes/miRNA, the execution time of an algo-
rithm is an essential part of the user experience. Since finding the reference is only a
small, although important part of gene expression experiment, upon which following
actions depend, no researcher would accept waiting for the results for an extended period.
The longest computational section in our application, namely calculating stabilities for
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3-element references by geNorm, takes about 100 seconds with a list of 250 candidate
miRNAs, which was set as a technical limit in the final web application. Thus, taking into
account the queuing of tasks and aggregation of results, reference miRNAs could be found
in about 15 min, which we believe to be an acceptable waiting period.

Another important aspect to consider is the quality of identified references. Previous
work of our team showed that averaged expression of 2 or 3 miRNA is a more stable refer-
ence than any single miRNA with the measure of stability defined as a score from BK, GN
and NF [24]. In this study, we additionally showed that references found by NormiRazor
effectively reduce variation of miRNA expression. The comparison with the normaliza-
tion with respect to the mean of all miRNA (considered sometimes as the most reliable
one [31]) did not show significant differences in the variability reduction capability.

Many studies stress that normalization strongly affects interpretation of experimen-
tal results [3, 18, 32]. Considering the last stage of our validation, we fully agree with
this statement. Differential miRNA expression, that was expected to be observed due to
MYCN amplification, was detected when normalization was performed by our algorithm
and by the method proposed in the article, upon which this part of validation analysis was
based [25]. When our approach is applied those differences are even more pronounced,
so actually a careful, statistical choice of reference miRNA may be even better than the
normalization to the mean expression. It seems contradictory to the results reported by
Mestdagh et al. [25] who argued that the normalization to mean is the most effective
method. This may be caused by them comparing their solution only with some limited
set of candidate small non-coding RNA (in majority not belonging to the miRNA fam-
ily), while we scanned all miRNAs expressed in all samples together with their 2- and
3-element combinations.

The entire computing suite is available as a web application. Distributed in this form it
is independent of users’ computer hardware and software and it does not require the pos-
session of any CUDA-enabled GPU. Compared with previous solutions, it definitely has
several advantages. Initial implementations of geNorm, BestKeeper and NormFinder are
already about 15 years old and are not directly compatible with new software. First ver-
sion of geNorm as VBA applet for Microsoft Excel is no longer available, since according
to its website it is “no longer compatible with latest versions of Excel, slow, buggy, diffi-
cult to use” (https://genorm.cmgg.be/). Currently geNorm is implemented in commercial
gbase+ software, which however is not freely available to the research community. Sim-
ilarly, BestKeeper cannot be downloaded from its original source. Besides, BestKeeper
analysis was originally limited to at most 10 candidate genes that with currently avail-
able computational resources is no longer a reasonable limitation. NormFinder macro for
Microsoft Excel is the only one that is still available and working even with newest ver-
sion of Microsoft Office suite. Although it would not be effective for extensive search
in combination-based approach, we must acknowledge its stability, that is relatively
uncommon in case of bioinformatics tools [33]. Some newer implementations have been
developed for all the above-mentioned algorithms. NormFinder was rewritten in R and
became part of some packages including NormqPCR and SIqPCR. GeNorm and Best-
Keeper are included in ctrlGene R package. GeNorm belongs also to NormqPCR. They
are all in use, but they require R programming skills from their users, who often are biol-
ogists or medical doctors rather than data scientists. RefFinder [34] is the only freely
available GUI tool that combines all 3 algorithms together. A broad review of software
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packages for identification of reference genes states that all implementations produce con-
sistent results [35], however they are still capable of analyzing only single genes and not
their combinations.

Conclusions

Our tool provides researchers working with gene expression data with an easy to use, fast
resource for reference miRNAs/genes selection. Its intended and tested field of applica-
tion are quantitative RT-PCR studies of miRNA expression, however, we are convinced
that it can be applied in other omic studies that need to account for technical variability
between the samples, similarly to original geNorm, BestKeeper and NormFinder.

Availability and requirements

Project name: NormiRazor

Project home page: https://norm.btm.umed.pl
Operating system(s): Platform independent
Programming language: C++, CUDA, Python, PHP
License: GNU GPL

Source code: https://git.btm.umed.pl/zbimt/normirazor
Any restrictions to use by non-academics: None
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Additional file 1: Mathematical formulation of implemented algorithms. Mathematical formulation of implemented
algorithms with our changes with respect to original versions.
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