
PALMER: improving pathway annotation 
based on the biomedical literature mining 
with a constrained latent block model
Jin Hyun Nam1,2, Daniel Couch1, Willian A. da Silveira3, Zhenning Yu1 and Dongjun Chung4* 

Abstract 

Background: In systems biology, it is of great interest to identify previously unre-
ported associations between genes. Recently, biomedical literature has been consid-
ered as a valuable resource for this purpose. While classical clustering algorithms have 
popularly been used to investigate associations among genes, they are not tuned for 
the literature mining data and are also based on strong assumptions, which are often 
violated in this type of data. For example, these approaches often assume homogene-
ity and independence among observations. However, these assumptions are often 
violated due to both redundancies in functional descriptions and biological functions 
shared among genes. Latent block models can be alternatives in this case but they also 
often show suboptimal performances, especially when signals are weak. In addition, 
they do not allow to utilize valuable prior biological knowledge, such as those available 
in existing databases.

Results: In order to address these limitations, here we propose PALMER, a constrained 
latent block model that allows to identify indirect relationships among genes based 
on the biomedical literature mining data. By automatically associating relevant Gene 
Ontology terms, PALMER facilitates biological interpretation of novel findings without 
laborious downstream analyses. PALMER also allows researchers to utilize prior biologi-
cal knowledge about known gene-pathway relationships to guide identification of 
gene–gene associations. We evaluated PALMER with simulation studies and applica-
tions to studies of pathway-modulating genes relevant to cancer signaling pathways, 
while utilizing biological pathway annotations available in the KEGG database as prior 
knowledge.

Conclusions: We showed that PALMER outperforms traditional latent block models 
and it provides reliable identification of novel gene–gene associations by utilizing prior 
biological knowledge, especially when signals are weak in the biomedical literature 
mining dataset. We believe that PALMER and its relevant user-friendly software will be 
powerful tools that can be used to improve existing pathway annotations and identify 
novel pathway-modulating genes.
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Background
Since new pathway-modulating genes provide clues of pathway regulation mechanism 
and novel targets for therapeutics, identification of previously unreported associations 
of genes with various functions is of great interest [1–6]. Recently, biomedical literature 
databases, such as the PubMed database (https ://www.ncbi.nlm.nih.gov/pubme d/), have 
been considered as a valuable resource [7] because it covers a wide range of biologi-
cal aspects and various relationships among genes have been reported in the literature 
throughout the history of biomedical research. Various text mining approaches [8–11] 
have been proposed to mine relationships among genes from this valuable resource. 
Among those, Gene Ontology (GO)-guided mining approaches are considered attrac-
tive because they can provide wider coverage of biomedical literature and allow to iden-
tify indirect relationships among genes, which are mediated by GO terms [8, 11]. Note 
that here we do not refer to utilizing reported gene-GO relationships such as those pro-
vided in the Gene Ontology Annotation (GOA) Database (https ://www.ebi.ac.uk/GOA). 
Instead, in this manuscript, we focus mainly on the GO-guided literature mining, where 
GO terms are rather used as a medium to expand the coverage of biomedical literature 
mining and also to facilitate biological interpretation of novel findings, e.g., please see 
[8] for more in-depth discussion of this approach.

Classical clustering algorithms, such as hierarchical clustering [12] and k-means clus-
tering [13], have been popularly used to investigate associations among genes [14–16]. 
However, these approaches essentially assume homogeneity and independence among 
observations and these assumptions are often significantly violated in the GO-guided lit-
erature mining data, due to redundancy and correlations among GO terms and biologi-
cal functions shared among genes. Co-clustering is an important extension of traditional 
clustering approaches since it allows to simultaneously cluster genes and GO terms 
within a unified framework. From these results, gene clusters enriched by GO term clus-
ters can be inferred and this facilitates interpretation. Various approaches have been 
proposed to solve this co-clustering problem, including spectral method [17], model-
based method [18–21], matrix factorization method [22], information theoretic based 
method [23], and modularity-based method [24–26]. Model-based methods offer strong 
theoretical foundations and can be modified relatively easily because they are based on 
generative modelling approaches. In addition, model-based methods provide confidence 
measures for cluster assignment, which provide useful information for the final decision 
of clusters [27]. Latent block models are the most popularly used approaches in this cat-
egory but their limitations have also been reported in the literature, including estima-
tion and prediction instability due to a large number of parameters and its sensitivity to 
initialization [28, 29]. Furthermore, we also found that these approaches over-estimate 
confidence of cluster assignment and these observations indicate critical needs for fur-
ther improvement of these approaches.

As tremendous amount of biomedical big data becomes publicly available, they 
have been well utilized for diverse genomic studies. For example, Kyoto Encyclopedia 
of Genes and Genomes (KEGG, https ://www.genom e.jp/kegg/) and Reactome (https 
://react ome.org/) provide rich set of pathway annotation information and they have 
been widely used for various downstream analyses of genomic data analysis, e.g., gene 
set enrichment analysis [30]. On the other hand, recently there have been various 
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attempts to integrate this publicly available biological knowledge within the framework 
of genomic data analysis itself, and it has been shown that such integrative analyses 
improve genomic data analyses in meaningful ways. For example, BiC2PAM [31] and 
BicNET [32], and its software implementation BicPAMS [33], proposed pattern-based 
biclustering approaches. These approaches first mine the data with prior knowledge on 
patterns (constant, additive, multiplicative, symmetric, or order-preserving) and then 
incorporate this mined pattern to improve the biclustering (the desirable type of pat-
terns or annotations can also be optionally placed). In the InGRiD framework, pathway 
information was utilized to guide identification of cancer patient subgroups and molecu-
lar features. It was shown that this integration can make identification of cancer patient 
subgroups and molecular features more stable and reproducible [34]. In the graph-GPA 
framework, a disease graph identified from biomedical literature mining was utilized as 
prior knowledge to guide analysis of genome-wide association study (GWAS) data. It 
was shown that this approach improves accuracy and robustness in estimation of a cor-
relation structure among diseases and also boosts statistical power to identify disease-
associated genetic variants [35]. While these works indicate the utility and potential of 
integrative analysis approaches, there is still limited research to integrate literature min-
ing data with available public pathway information for the purpose of identifying novel 
relationships among genes and improving the existing pathway annotations themselves.

To address these issues, here we propose PALMER, a constrained latent block model 
to identify new pathway-modulating genes based on the GO-guided biomedical litera-
ture mining data. PALMER allows to identify indirect relationships among genes using 
GO terms, and facilitates biological understanding of novel findings without laborious 
downstream analyses. Furthermore, PALMER allows researchers to utilize prior biologi-
cal knowledge about known gene-pathway relationships and this effectively guides iden-
tification of gene–gene relationships, which can be especially powerful for the analysis 
of low signal-to-noise ratio data. We implemented PALMER as an R package ‘palmer’, 
which is currently available at https ://dongj unchu ng.githu b.io/palme r/. In order to fur-
ther facilitate users’ convenience to obtain the literature mining data for the PALMER 
analysis, we also developed LitSelect (https ://www.chung lab.io/LitSe lect/), a web inter-
face that allows researchers to query genes of interest and download relevant literature 
mining dataset that can be used as a direct input for PALMER.

Methods
PAMLER is essentially a latent block model, where conditional mixture models for 
genes and GO terms are fitted iteratively. One of key properties of this approach is 
that clustering structure (i.e., interdependency of GO terms) can be considered for 
the gene clustering and vice versa. It takes a binary matrix consisting of genes (rows) 
and GO terms (columns) as input, where the value one indicates potential gene-
GO term association estimated based on the literature mining (see the “Inference of 
relationships between genes and GO terms using literature mining” section below 
for more details). It is assumed that we also know annotations for a subset of genes 
and this can be used as hard constraints to guide this latent block model (see “Con-
strained EM algorithm” section for more details). Given this, PALMER assigns can-
didate genes (genes without known annotations) to known gene clusters (genes with 

https://dongjunchung.github.io/palmer/
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known annotation; e.g., pathways). In addition, by identifying clusters of GO terms 
and associating them to gene clusters, PALMER facilitates interpretation of identi-
fied gene clusters without laborious downstream analyses. Finally, confidence of these 
identifications is estimated using a block-specific bootstrap procedure (see “Estima-
tion of gene clustering confidence” section for more details).

Conditional mixture model

PALMER uses a “divide-and-conquer” approach to implement co-clustering of genes 
and GO terms with information sharing. It takes a binary data with p GO terms and n 
genes as input, which can be summarized as a matrix of size n× p , 
X =

{(

xij
)

; i = 1, . . . , n, j = 1, . . . , p
}

 , where xij represents the indicator that j th GO 
term is associated with i th gene, and xi =

(

xi1, . . . , xip
)

 and xj =
(

x1j , . . . , xnj
)′ repre-

sent indicator vectors for i th gene and j th GO term, respectively. We assume that 
genes consist of K  marginal clusters and GO terms consist of L marginal clusters, 
where each of genes and GO terms can have only one unique membership. In addi-
tion, we assume that (1) X  consists of K × L number of disjoint co-clusters which are 
intersections of two marginal clusters, and (2) xij belonging to the same co-cluster fol-
lows identical distribution. Let wi be a categorical latent variable indicating member-
ship of ith gene, taking values k = 1, . . . ,K  with prior probabilities P(wi = k) = αk , 
where αk > 0 and 

∑K
k=1 αk = 1 . Similarly, let zj be a categorical latent variable indicat-

ing membership of jth GO term, taking values l = 1, . . . , L with prior probabilities 
P
(

zj = l
)

= βl , where βl > 0 and 
∑L

l=1 βl = 1 . For the notational convenience, we 
denote wik = 1

{

wi = k
}

 and zjl = 1
{

zj = l
}

 . Based on the rationale described above, 
we assume the emission distribution as 

(

xij|wi, zj
)

∼ Bernoulli
(

θwiZj

)

 , where 

θwiZj = P
(

xij = 1
)

when wi = k and zj = l . Given the GO term cluster assignment, the 
conditional mixture distribution of ith gene, xi , is given as

where yil =
∑p

j=1 xijzjl and nl =
∑p

j=1 zjl , l = 1, . . . ,L . The complete log likelihood 
[36] for the genes is given as

Similarly, given the gene cluster assignment, the conditional mixture distribution 
for jth GO term, xj , is given as

where ujk =
∑n

i=1 xijwik and pk =
∑n

i=1 wik , k = 1, . . . ,K  . The complete log likeli-
hood for the GO terms is given as

(1)f
(

xi|z1, . . . , zp
)

=

K
∑

k=1

αk

L
∏

l=1

θ
yil
kl (1− θkl)

nl−yil , i = 1, . . . , n,

(2)lC
(

θ |z1, . . . , zp
)

=

n
∑

i=1

K
∑

k=1

wik

(

lnαk +

L
∑

l=1

yil lnθkl +
(

nl − yil
)

ln (1− θkl)

)

.

(3)f
(

xj|w1, . . . ,wn

)

=

L
∑

l=1

βl

K
∏

k=1

θ
ujk
kl (1− θkl)

pk−ujk , j = 1, . . . , p,
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Note that in this framework, GO term assignments ( zjl ) determine conditional mix-
ture distributions for genes (Eq. 1) while gene assignments ( wik ) also determine condi-
tional mixture distributions for GO terms (Eq. 3). In addition, the co-cluster structure, 
θkl , is shared between these two conditional mixture distributions.

Constrained EM algorithm

In PALMER, the Expectation–Maximization (EM) algorithm [36] is used to estimate 
parameters for each of the conditional mixture models described in the previous section 
and identify clusters of genes and GO terms. In order to consider the GO term group 
structure in the gene clustering and vice versa, we use an iterative approach such that 
the co-cluster structure, θkl , is shared between genes and GO terms. Specifically, in tth 
iteration, after we update the parameter θkl using the EM algorithm for genes, its final 
estimates, θ(t)kl  , are used as initial values for the EM algorithm for GO terms. For the 
complete log likelihood for GO terms (Eq.  4), we calculate u(t)jk =

∑n
i=1 xijw

(t)
ik  and 

p
(t)
k =

∑n
i=1 w

(t)
ik , k = 1, . . . ,K  by setting w(t)

ik = argmaxkPr
(

wi = k|x, θ (t)
)

 , where 

θ
(t) is the final estimates from the EM algorithm for genes. Likewise, these updated esti-

mates of parameters θkl and the GO term membership assignment in t-th iteration are 
used to update the estimates of parameters θkl and the gene membership assignment in 
(t + 1) th iteration. These two steps are iterated until there are no more changes in the 
gene and GO term assignments. For the first iteration, GO term clusters are initialized 
using a hierarchical clustering algorithm with Ward linkage and Euclidean distance and 
cutting the dendrogram to have L clusters. Note that here Euclidean distance can be 
interpreted as a measure of mismatches between two binary vectors (i.e., the number of 
elements corresponding to (1, 0) or (0, 1) in these two vectors).

One of the key components of PALMER is the utilization of prior biological knowledge 
about known gene-pathway relationships. In PALMER, the prior biological knowledge is 
used as hard constraints for the membership of genes in the EM algorithm for genes. 
Specifically, we “force in” gene memberships [35], i.e., letting w(t)

ik = 1 throughout itera-
tions if the prior knowledge provides evidence that ith gene belongs to kth cluster. Note 
that this force-in approach, i.e., fixing w(t)

ik = 1 , impacts estimation of the distribution for 
kth cluster and ultimately affects assignment of other genes. In summary, in the tth outer 
iteration of the algorithm, the E and M steps of the EM algorithm for genes (which cor-
responds to Eq. 2) in the vth inner iteration are given as:

E step
If the prior knowledge provides evidence that ith gene belongs to kth cluster, w(t,v)

ik = 1.

Otherwise, w(t,v)
ik =

α
(t,v)
k

∏L
l=1

(

θ
(t,v)
kl

)y
(t)
il

(

1−θ
(t,v)
kl

)n
(t)
l

−y
(t)
il

∑K
k′=1

α
(t,v)

k′

∏L
l=1

(

θ
(t,v)

k′ l

)y
(t)
il

(

1−θ
(t,v)

k′ l

)n
(t)
l

−y
(t)
il

,

where y(t)il =
p
∑

j=1

xijz
(t−1)
jl  and n(t)l =

p
∑

j=1

z
(t−1)
jl , l = 1, . . . , L.

(4)lC(θ |w1, . . . ,wn) =

p
∑

j=1

L
∑

l=1

zjl

(

lnβl +

K
∑

k=1

ujk lnθkl +
(

pk − ujk
)

ln (1− θkl)

)

.
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M step

θ
(t,v+1)
kl = 1

n
(t)
l

∑n
i=1 w

(t,v)
ik

n
∑

i=1

yilw
(t,v)
ik ,

α
(t,v+1)
k =

n
∑

i=1

w
(t,v)
ik /n.

Similarly, the vth inner iteration of the EM algorithm for GO terms (which corre-
sponds to Eq. 4) in the tth outer iteration is given as.

E step

z
(t,v)
jl =

β
(t,v)
l

∏K
k=1

(

θ
(t,v)
kl

)u
(t)
il

(

1−θ
(t,v)
kl

)p
(t)
k

−u
(t)
il

∑L
l′=1 β

(t,v)

l′

∏K
k=1

(

θ
(t,v)

kl′

)u
(t)
il

(

1−θ
(t,v)

kl′

)p
(t)
k

−u
(t)
il

,

where u(t)jk =
n
∑

i=1

xijw
(t)
ik  and p(t)k =

n
∑

i=1

w
(t)
ik , k = 1, . . . ,K .

M step

θ
(t,v+1)
kl = 1

p
(t)
k

∑p
j=1 z

(t,v)
jl

p
∑

j=1

yjkz
(t,v)
jl ,

β
(t,v+1)
k =

p
∑

j=1

z
(t,v)
jl /p.

Estimation of gene clustering confidence

In order to estimate degree of confidence for gene clustering, we use a bootstrap 
approach [37]. However, because GO terms are not independent, the standard boot-
strap approach can distort the clustering structure of GO terms. The standard bootstrap 
approach can even break down when small GO term clusters are totally eliminated by 
resampling of GO terms. In order to address this issue, we implement a within-group 
bootstrap approach. Specifically, for each GO term cluster, we resample GO terms with 
the same size of the corresponding cluster with replacement. Note that while this resa-
mpled data keeps the clustering structure of GO terms, it also introduces random varia-
tions in GO term clustering structure, which allows us to estimate the confidence of gene 
cluster assignment. Then, using this GO term-resampled data, we re-run the EM algo-
rithm for genes. This process is repeated B times and the final gene cluster membership 
is decided based on the majority voting while the assignment probability for each gene is 
calculated as the proportion that a gene is assigned to its cluster among the B times. As 
B determines precision level of estimated confidence scores, it is recommended to use a 
sufficiently large value for this parameter as long as it is computationally not too burden-
some. In our software, the default value of B is set to 1000 and we also used B = 1000 in 
our simulation studies and real data analyses illustrated below.

Inference of relationships between genes and go terms using literature mining

The text mining of the PubMed literature was used to extract relationships between 
genes and GO terms as previously described [8, 11, 38]. This approach allows us to iden-
tify indirect associations between genes mediated by GO terms. Using this approach, 
we can obtain p values indicating degree of association between a gene and a GO term. 
In addition, we also calculated cosine similarity scores based on these p values to infer 
degree of associations between genes. The reference [8] provides more details about this 
literature mining approach and in-depth investigation of these measures. By taking a set 
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of genes of interest as input, a literature mining dataset for the PALMER analysis is gen-
erated in three main steps: (1) GO term selection, (2) candidate gene selection, and (3) 
binarization. First, to select GO terms that are relevant to the genes of interest, we first 
calculate average p values of each GO term across the input genes. Then, we select GO 
terms with the smallest average p values because the smaller p value for a pair of GO 
term and a gene indicates the stronger association between them. Second, we identify 
candidate genes that might be potentially most relevant to the input genes by using aver-
age cosine similarity score between each gene and the input genes as a criterion. This is 
based on the rationale that the larger cosine similarity value indicates the closer distance 
between two genes because cosine similarity between two genes evaluates the cosine 
of the angle between these two genes in the GO term space. When we compute cosine 
similarity score between two genes, we use all the GO terms in our literature mining 
data for comprehensive characterization of each gene. Then, we select genes with the 
largest average cosine similarity scores as candidate genes. From these two steps, we can 
obtain an association p value matrix with the key GO terms as columns and (the input 
genes + the candidate genes) as rows. Finally, we transform this p value matrix into a 
binary matrix using a pre-specified cut-off value, i.e., set the value to one if association 
p value is less than the cut-off value and zero otherwise. Note that although this dis-
cretization step can result in loss of some information, in the case of our data, it rather 
improves computational efficiency by simplifying the data structure and reduce the 
number of parameters. To guide user’s decision on the cut-off value for binarization, we 
investigated the distribution of association p values in our literature mining data. Based 
on our exploratory analysis of its empirical distribution (Additional File 1: Figure S1), 
we recommend to use the binarization cut-off value of 0.1 (which corresponds to 37.5th 
percentile in our literature mining data that can be obtained from LitSelect described 
below) because it allows us to avoid an overly sparse matrix while capturing key signals.

Software implementation

The PALMER approach, including the EM algorithm and the confidence estimation 
procedure described above, is implemented as an R package ‘palmer’ and it is publicly 
available in our GitHub webpage (https ://dongj unchu ng.githu b.io/palme r/). To facilitate 
user’s convenience for the access to the literature mining data described above, we devel-
oped the web interface LitSelect, which is publicly available at our lab website (https ://
chung lab.io/LitSe lect). We designed LitSelect so that it takes two lists of genes as input, 
in order to encourage study of various aspects of pathways by considering different pairs 
of gene sets. LitSelect then selects candidate genes and key GO terms for each of these 
two gene lists and returns a binary matrix with key GO terms as columns and (the input 
genes + the candidate genes) as rows, as described in the previous section. This output 
can be used as a direct input for the R package ‘palmer’. Users can also modify tuning 
parameters of LitSelect, including the number of candidate genes, the number of GO 
terms, and the binarization cut-off value. First, users can change the binarization cut-off 
value (range from 0 to 1), where the default cut-off value is set to 0.1. Second, users can 
change the number of GO terms associated with the input genes and this number can be 
specified as a proportion to the number of input genes (the default value is set to 1). For 
example, if the user sets this value to 2 and provides 100 genes as the input genes, then 

https://dongjunchung.github.io/palmer/
https://chunglab.io/LitSelect
https://chunglab.io/LitSelect
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200 GO terms associated with the input genes will be identified. Third, users can change 
the number of candidate genes and this number can again be specified as a proportion 
to the number of input genes (the default value is set to 2). For example, if the user sets 
this value to 2 and provides 100 genes as the input genes, then 200 candidate genes will 
be identified. Finally, although LitSelect requires HGNC IDs as input, users can easily 
map other gene symbols and synonyms to HGNC IDs using the ID Mapper functionality 
of GAIL (https ://chung lab.io/GAIL/) [8]. In addition, for more convenient access to the 
database, we also developed an application programming interface (API) and it can be 
accessed from the R package ‘palmer’ as well.

Results
Simulation study

We first performed simulation studies to evaluate performances of the proposed 
PALMER approach, where the simulation setting considered here was designed to 
mimic the real literature mining data. Specifically, we considered 100 genes and 100 
GO terms, where these 100 genes consist of two gene clusters. We further assumed 
that the 100 GO terms consist of three GO term clusters, where each of the two gene 
clusters has its own GO term cluster and the third GO term cluster is shared between 
two gene clusters. Sizes of gene clusters and GO term clusters were generated from 
Multinomial(100, (0.5, 0.5)) and Multinomial(100, (0.4, 0.4, 0.2)) , respectively. Then, 
gene-GO term association p values ( pij) were generated from Beta(αi, 1), 0 < αi < 1, 
if ith gene is associated with jth GO term (i.e., signal) while pij were generated from 
U(0, 1) otherwise (i.e., background). Here, we considered two scenarios, including (1) 
strong signal-to-noise ratio (SNR): αi ∼ U(0.2, 0.5) , and (2) weak SNR: αi ∼ U(0.4, 0.8) . 
In both cases, αi ∼ U(0, 1) was assumed for the GO term cluster shared between two 
gene clusters. Finally, these simulated p values were binarized using 0.1 as a cut-off value, 
i.e., xij = 1 if pij < 0.1 and xij = 0 otherwise. In addition, 50% of genes were randomly 
selected within each gene cluster and used as a constraint. We used error rates to meas-
ure the performance of PALMER, where error rate is defined as (# of misclustered genes 
(GO terms))/(# of all genes (GO terms)).

First, in order to assess benefits of using constraints, we compared the gene and GO 
term clustering performances between PALMER models with and without the con-
straints, in both strong and weak SNR cases. Figure 1 shows the gene and GO term clus-
tering results. In the case of strong SNR (Fig.  1a, b), true gene clusters and GO term 
clusters could be recovered perfectly regardless whether we use the constraints or not. 
In the case of weak SNR without using the constraints (Fig. 1c), the gene clustering per-
formance was degraded significantly and most genes belonging to the first gene cluster 
were incorrectly assigned to the second gene cluster (error rate = 0.39). Similarly, GO 
terms belonging to the first GO term cluster were also incorrectly assigned to the sec-
ond GO term cluster as well (error rate = 0.24). However, when the constraints were 
used (Fig. 1d), most genes were assigned to their true clusters (error rate = 0.08) and all 
the GO terms were also perfectly assigned to their true clusters (error rate = 0). These 
results show benefits of the constrained co-clustering approach used by PALMER.

Second, as PALMER can be considered as one type of latent block models, we 
compared the performance of PALMER with its unconstrained version and other 

https://chunglab.io/GAIL/
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Fig. 1 Performance evaluation of PALMER using synthetic data, where a–d show the two scenarios we 
considered in our simulation studies. Each heatmap shows the binary matrix, where a black cell indicates 
value of one. In each heatmap, the color bars on the left show the true [left: “Gene (true)”] and the predicted 
gene clusters [right: “Gene (pred.)”], respectively. The color bar on the top indicates the predicted GO term 
clusters [“GO (pred.)”]. Error rates for gene and GO term assignments are provided

Table 1 Performance comparison of  PALMER and  competing algorithms, 
including  PALMER without  constraints (“Unconstrained”), block EM (“BEM”), block 
classification EM (“BCEM”), block stochastic EM algorithms (“BSEM”), and  block Gibbs 
sampler (“BGibbs”)

Average and SD (within parenthesis) of error rates calculated over 100 simulated datasets are reported

Strong SNR Weak SNR

Gene GO term Gene GO term

PALMER 0.00 (0.00) 0.01 (0.01) 0.05 (0.03) 0.02 (0.02)

Unconstrained 0.01 (0.05) 0.01 (0.03) 0.42 (0.11) 0.31 (0.11)

BEM 0.13 (0.21) 0.10 (0.15) 0.45 (0.04) 0.34 (0.06)

BCEM 0.10 (0.19) 0.08 (0.14) 0.45 (005) 0.36 (0.05)

BSEM 0.03 (0.11) 0.03 (0.09) 0.45 (0.08) 0.54 (0.08)

BGibbs 0.33 (0.18) 0.46 (0.20) 0.47 (0.03) 0.46 (0.05)
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popular latent block models, including block EM (BEM) [19, 39], block classification 
EM (BCEM) [18], block stochastic EM (BSEM) algorithms [28], and block Gibbs sam-
pler (BGibbs) [29], all of which are implemented in the R package ‘blockcluster’ [28]. 
Table 1 shows error rates of PALMER and these four latent block models for gene and 
GO term clustering in each simulation setting (Additional File 1: Figure S2 shows co-
clustering results for one simulated data as an example). For the case of weak SNR, 
PALMER significantly outperformed its unconstrained version and all the other com-
peting algorithms. In the case of strong SNR, PALMER and its unconstrained version 
show comparable performances as observed in Fig.  1 while even the unconstrained 
version of PALMER significantly outperformed BEM, BCEM, and BGibbs. These 
results again indicate strengths of PALMER over its competing algorithms.

Third, by considering that the performance of PALMER can be potentially affected 
by the binarization method, we evaluated the gene clustering performance for vari-
ous binarization cut-off values by using the error rate as a performance measure. We 
assumed that αi ∼ U(0.3, 0.7) . Figure  2a shows that the constrained model outper-
forms the unconstrained model across all the considered cut-off values. The perfor-
mance of the unconstrained model was especially degraded for small ( ≤ 0.1 ) or large 
cutoff-values ( ≥ 0.7 ) mainly because of dominance of zeros or ones. In contrast, the 
constrained model performs robustly across the binarization cut-off values, with 
exception of very high cut-off values that are unlikely to be considered in practice 
( ≥ 0.7 ). In order to further understand robust performances of the constrained model 
across wide range of the binarization cut-off values, we checked heatmaps for binari-
zation cut-off values between 0.1 and 0.5 (Additional File 1: Figure S3). The heatmaps 
show that there is a trade-off due to binarization cut-off values. Specifically, when we 
use the smaller binarization cut-off value, the data becomes sparser overall and this 
makes background less noisy. On the other hand, when we use the larger binarization 
cut-off value, the data becomes denser overall and this makes signal stronger. Hence, 

Fig. 2 Error rate plots according to the binarization cut-off values (a) and the percentage of genes used as 
constraints when the cut-off values are set to 0.1, 0.4 and 0.8 (b). The vertical bars indicate 95% confidence 
intervals
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as long as the binarization cut-off value stays within the reasonable range (between 
0.1 and 0.5 in this case), PALMER could identify true gene and GO term clusters 
accurately in spite of diversity in signal patterns. In practice, we recommend to use 
0.1 as the binarization cut-off value by default based on our experience of analyzing 
various synthetic and real datasets.

Finally, in order to evaluate effects of the size of constraints, we compared predic-
tion accuracies of the constrained model for various proportions of genes used as con-
straints, between 0 (not constrained) and 100 (fully specified). Again, we assumed that 
αi ∼ U(0.3, 0.7) . In addition, in order to consider potential interaction between con-
straint sizes and binarization cut-off values, we also considered three different bina-
rization cut-off values (0.1, 0.4, and 0.8). Figure  2b shows that the constrained model 
performs consistently across a wide range of constraint sizes and across different bina-
rization cut-off values. The constrained model showed worse performance only for very 
small sizes of constraints ( ≤ 0.15 ) because these constraints are too weak to guide the 
clustering. Overall, these results show that PALMER performs consistently and accu-
rately for a wide range of tuning parameter values considered in practice, which implies 
less need of intensive parameter tuning to use PALMER.

Reconstruction of known pathways

In this section, we first utilized PALMER to recover known members of pathways given 
known subsets of these pathways (i.e., using these genes as constraints). Specifically, we 
considered the KEGG pathway annotations, which are available from the Molecular Sig-
natures database (MSigDB; https ://softw are.broad insti tute.org/gsea/msigd b/). We chose 
the KEGG pathway annotations because they are human-curated, conservatively anno-
tated, and of high quality. Here we analyzed the mTOR signaling pathway (containing 52 
genes) and NOTCH signaling pathway (containing 47 genes) as an example. The mTOR 
signaling pathway (KEGG pathway hsa04150) is a critical pathway in multiple cellu-
lar processes including metabolism, immune responses, cell division, and cell growth 
[40]. The NOTCH signaling pathway is vital to cell–cell communication and through 
this action it is involved in cellular differentiation and embryonic development [41]. 
We assumed that randomly selected 50% of genes are known for each pathway, i.e., 26 
genes for the mTOR signaling pathway and 23 genes for the NOTCH signaling pathway 
were used as constraints for PALMER. Then, LitSelect identified 26 GO terms with the 
smallest average association p values for the selected 26 genes in mTOR signaling path-
way. Similarly, LitSelect also identified 23 GO terms with the smallest average associa-
tion p values for the selected 23 genes in NOTCH signaling pathway. After this step, we 
obtained 47 GO terms total (instead of 49 GO terms because 2 GO terms were shared 
between two groups). Finally, we binarized association p values for these 99 genes and 47 
GO terms using a cut-off value of 0.1, i.e., set to one if p value is less or equal to 0.1 and 
zero otherwise.

After this preprocessing step, we obtained a binary matrix of 47 GO terms and 99 
genes (Fig. 3; Additional File 2: Table S1 provides detailed descriptions of these 47 GO 
terms and 99 genes). We found that the GO terms associated with the mTOR signal-
ing pathway reconstruct the expected kinase activity of the mTOR protein and signaling 
pathway members. Among the 24 GO terms in Cluster 1, 12 GO terms are directly linked 

https://software.broadinstitute.org/gsea/msigdb/
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to kinase activity (GO:0016303, GO:0043491, GO:0004707, GO:0004740, GO:0016301, 
GO:0014065, GO:0047322, GO:0050405, GO:0004691, GO:0033673, GO:0004708, 
GO:0016310). The remaining 12 GO terms are related to mTOR pathway protein com-
plex (GO:0031931, GO:1990455, GO:0038201, GO:0031932, GO:0000165, GO:0033596), 
regulation of cell growth (GO:0016049, GO:0001558, GO:0005159), and regulation of 
apoptosis (GO:0016049, GO:0001558, GO:0005159). Cell growth is the principal biolog-
ical process related to mTOR signaling and its involvement in the regulation of apoptosis 
is well known [42]. For the NOTCH signaling pathway, among the 20 selected GO terms, 
three are directly linked to the pathway itself (GO:0007219, GO:0005112, GO:0070765), 
while two are related to WNT signaling pathway (GO:0016055, GO:0060070), a pathway 
closely related to the NOTCH and its functions [43]. 13 GO terms are related to cell dif-
ferentiation and/or embryonic development (GO:0001709, GO:0048468, GO:0001756, 
GO:0030154, GO:0030217, GO:0030183, GO:0001894, GO:0001708, GO:0007154, 
GO:0009792, GO:0009793, GO:0001822, GO:0046331), the principal biological pro-
cess related to NOTCH signaling, while two are related to changes in gene expression 
(GO:0010467, GO:0000982).

Figure 3 shows that PALMER analysis results and it shows that PALMER could recover 
both pathways highly accurately, with only 3 misclassifications among the 99 genes. Spe-
cifically, ULK3, EIF4E1B and EIF4E2 in the mTOR signaling pathway were misclassi-
fied to the NOTCH signaling pathway. Note that these three misclassifications occurred 
mainly due to the lack of information for these genes in literature mining data (mostly 
zeros across the 47 GO terms).

Fig. 3 Reconstruction of known pathways. The heatmap shows the binary matrix, where a black cell 
indicates value of one. The color bars on the left show the true [left: “Gene (true)”] and the predicted gene 
clusters [right: “Gene (pred.)”], respectively. In the color bar “Gene (true)”, values 1 (red) and 2 (green) indicate 
the mTOR signaling pathway genes and the NOTCH signaling pathway genes. The color bar on the top 
indicates the predicted GO term clusters [“GO (pred.)”]
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Disjoint gene assignment between pathways

It is well known that there are significant overlaps among gene set annotations. For 
example, in the case of KEGG pathway annotations, 42% of genes in non-meta-
bolic pathways are members of multiple pathways [34]. While some pathway-based 
approaches are robust to such overlaps (e.g., gene set enrichment analyses [30]), this 
can be a serious issue for some approaches (e.g., group variable selection approaches 
based on pathway annotations [34]) because such overlaps can generate inter-corre-
lation among pathways and lead to instability in estimation and prediction results. In 
addition, it can also make it challenging to interpret data analysis results because it 
could be unclear which pathways are truly involved [34]. Hence, it might be desirable 
to have pathway annotations that are defined in a disjoint way when statistical and 
computational approaches prone to this issue are considered.

In this section, we utilized PALMER to make two overlapped pathways disjoint by 
assigning the overlapped genes uniquely to a more appropriate pathway. Here we con-
sidered the JAK-STAT signaling pathway (containing 155 genes) and the apoptosis 
pathway (containing 87 genes) from KEGG, and 15 genes are shared between these 
two pathways. Similar to the aforementioned mTOR signaling pathway, the JAK-
STAT pathway (KEGG pathway hsa04630) is involved in diverse cellular processes 
such as cell proliferation and differentiation [44]. The apoptosis pathway (KEGG path-
way hsa04210) consists of the genes involved in programmed cell death [45]. Many of 
these genes also participate in other pathways including the JAK-STAT pathway, cor-
responding to the 15 shared genes mentioned above. We used 140 and 72 genes that 
are uniquely assigned to each of the JAK-STAT signaling pathway and the apoptosis 
pathway, respectively, as constraints for PALMER, while treating the shared 15 genes 
as candidate genes. As in the previous section, we used LitSelect to identify 140 and 
72 GO terms with the smallest association p values for the JAK-STAT signaling path-
way and the apoptosis pathway, respectively.

After this step, 196 GO terms were obtained (instead of 212 GO terms because of 
16 GO terms shared between two pathways). Hence, after this preprocessing step, we 
obtained a binary matrix (using binarization cut-off = 0.1) with 196 GO terms and 227 
genes (Fig. 4; Additional File 3: Table S2 provides detailed descriptions of these 196 
GO terms and 227 genes). Among those, 73 GO terms are linked directly to cytokines 
and growth factor production. Among the remaining 123 GO terms, 25, 8 and 2 GO 
terms are related to the immune response, the cell proliferation and differentiation, 
and the JAK-STAT cascades, respectively (See Additional File 1: Table S3 for the full 
list of these GO terms).

Figure  4 shows disjoint assignment results of the 15 candidate genes using 
PALMER. Among the 15 genes shared between the JAK-STAT signaling pathway and 
the apoptosis pathway, 3 genes (CSF2RB, IL3RA, and IL3) were assigned to the JAK-
STAT signaling pathway and the remaining 12 genes (AKT1, AKT2, AKT3, PIK3R5, 
BCL2L1, PIK3R3, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1, and PIK3R2) were 
assigned to the apoptosis pathway. Interleukin-3 (IL3), Interleukin 3 Receptor Subu-
nit Alpha (IL3RA), and Colony Stimulating Factor 2 Receptor Beta Common Subunit 
(CSF2RB) are all involved in the IL3 cytokine activity [46, 47]. IL3 is involved in JAK-
STAT activation and progenitor blood cells maintenance and development [7, 48], 



Page 14 of 20Nam et al. BMC Bioinformatics          (2020) 21:432 

being related to apoptosis by its absence and not by direct activation [49]. PI3K/AKT 
pathway and BCL2 protein family are involved in apoptosis, cell growth and cell sur-
vival [50]. Most of the 12 genes assigned to the apoptosis pathway (except BCL2L1) 
are a part of the PI3K/AKT pathway. Interestingly, IL-3 pathway also stimulates the 
PI3K/AKT pathway [51], which puts IL3/PI3K/AKT as a bridge between the mainly 
immune-related effects of JAK-STAT and the induction of apoptosis.

Identification of new pathway‑modulating genes

Motivated by the promising results in the previous two sections, we now utilized 
PALMER to identify novel genes that might be potentially associated with known path-
ways. Here PALMER allows us to utilize both the knowledge from prior scientific investi-
gations (biomedical literature mining data) and the pathway annotations in the databases 
for identification of novel pathway-modulating genes. Here, we chose the mTOR signal-
ing pathway and the JAK-STAT signaling pathway from KEGG as an example. To simply 
interpretation of analysis results, we excluded 11 genes shared between these two path-
ways and considered the remaining 41 and 144 genes for each of the mTOR signaling 
pathway and the JAK-STAT signaling pathway, respectively. We also obtained 172 GO 
terms using the same preprocessing steps based on LitSelect as in the two previous sec-
tions. Again, using LitSelect, we identified 82 genes (double the number of the mTOR 
signaling pathways genes) with the largest average cosine similarities with the mTOR 
signaling pathway genes. Similarly, we obtained 288 genes (double the number of the 
JAK-STAT signaling pathways genes) with the largest average cosine similarities with the 
JAK-STAT signaling pathway genes. Hence, we analyzed the total 537 genes, including 

Fig. 4 Disjoint gene assignment between pathways. The heatmap shows the binary matrix, where a black 
cell indicates value of one. The color bars on the left show the true [left: “Gene (true)”] and the predicted 
gene clusters [right: “Gene (pred.)”], respectively. In the color bar “Gene (true)”, values 1 (red), 2 (green) and 3 
(blue) indicate genes unique to the JAK-STAT signaling pathway, genes unique to the apoptosis pathway, and 
the genes shared between these two pathways. The color bar on the top indicates the predicted GO term 
clusters [“GO (pred.)”]
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the 185 known genes and the 352 candidate genes (18 genes were shared between the 
two candidate gene sets).

Based on the preprocessing described above, a binary matrix (using binarization 
cut-off = 0.1) of 172 GO terms and 537 genes (Fig.  5) were used for the PALMER 
analysis, where the 185 known genes were used as constraints. Additional File 4: 
Table S4 provides detailed descriptions of these 172 GO terms and 537 genes. Among 
the GO terms associated with the mTOR signaling pathway, we found 4 GO terms 
related to mTOR pathway protein complex (GO:0031931, GO:0031932, GO:0038201, 
GO:0033596), three related to regulation of cell growth (GO:0005159, GO:0016049, 
GO:0001558), and 4 related to regulation of apoptosis (GO:0043066, GO:0006914, 
GO:0016236). In addition, we also recognized 19 GO terms related to kinase-
related activity, including MAPK, PI3K and PTEN (a phosphatase) (GO:0047322, 
GO:0050405, GO:0004691, GO:0004740, GO:0016311, GO:0016538, GO:0033868, 
GO:0000187, GO:0016303, GO:1990455, GO:0004707, GO:0016301, GO:0016310, 
GO:0043491, GO:0014065, GO:0004708, GO:0000165, GO:0033673, GO:0050115), 
along with 4 GO terms that are directly linked to cell cycle (GO:0,008,283, 
GO:0051726, GO:0007050, GO:0007049), and 8 GO terms related to translation 
(GO:0008190, GO:0003735, GO:0016246, GO:0006413, GO:0006412, GO:0004686, 
GO:0031386, GO:0007165).

Among the GO terms associated with the JAK-STAT pathway, we found that 136 of 
these GO terms are linked directly to cytokines and growth factor production/activity, 
while 30, 8 and 2 GO terms are related to the immune response, cell proliferation and 
differentiation, and JAK-STAT cascades, respectively (See Additional File 1: Table S5 for 

Fig. 5 Identification of new pathway-modulating genes. Disjoint gene assignment between pathways. The 
heatmap shows the binary matrix, where a black cell indicates value of one. The color bars on the left show 
the true [left: “Gene (true)”] and the predicted gene clusters [right: “Gene (pred.)”], respectively. In the color bar 
“Gene (true)”, values 1 (red), 2 (green) and 3 (blue) indicate the mTOR signaling pathway genes, the JAK-STAT 
signaling pathway genes, and candidate genes. The color bar on the top indicates the predicted GO term 
clusters [“GO (pred.)”]
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the full list of these GO terms). In addition, we found 3 GO terms related to gene expres-
sion, and interestingly 5 GO terms related to luciferin monooxygenase, a family of genes 
that are not encountered in humans but involved in oxidation and reduction reactions. 
This might indicate that the genes related to these GO terms are in humans and related 
to transfer of electrons in the mitochondrion [52]. This might also imply that PALMER 
could be useful to the study of non-model organisms as well.

Figure  5 shows assignment results of the 352 candidate genes to the mTOR signal-
ing pathway and the JAK-STAT signaling pathway. Specifically, among the 352 candi-
date genes, 50 genes were assigned to the mTOR signaling pathway while 118 genes were 
assigned to the JAK-STAT pathway (Additional File 4: Table S4). PALMER did not assign 
the remaining 184 genes to any of the mTOR signaling pathway or the JAK-STAT path-
way because there was not sufficient evidence to assign these 184 genes to any of these 
two pathways. The assigned 168 genes might be potentially associated with the mTOR 
signaling pathway or the JAK-STAT pathway and it will be of great interest to further 
investigate functions of these novel genes and validate them.

Investigation of multiple gene clusters

In our evaluations discussed so far, we assumed that there are two gene clusters. In order 
to confirm the generalizability of PALMER, we performed additional simulation study 
and real data application for the case that we have multiple gene clusters. First, we 
implemented a simulation study where we have 3 gene clusters and 4 GO term clusters. 
For this simulation study, we considered 200 genes and 100 GO terms, where these 200 
genes consist of three gene clusters. We further assumed that the 100 GO terms consist 
of four GO term clusters, where each of the three gene clusters has its own GO term 
cluster while the fourth GO term cluster is shared between at least two gene clusters. 
Sizes of gene clusters and GO term clusters were generated from 
Multinomial

(

100,
(

1
3 ,

1
3 ,

1
3

))

 and Multinomial
(

100,
(

1
4 ,

1
4 ,

1
4 ,

1
4

))

 , respectively. Then, 

gene-GO term association p values (pij) were generated from Beta(αi, 1), 0 < αi < 1, if 
ith gene is associated with jth GO term (i.e., signal). pij were generated from U(0, 1) oth-
erwise (i.e., background). Here, we considered two scenarios, including (1) strong signal-
to-noise ratio (SNR): αi ∼ U(0.2, 0.5) , and (2) weak SNR: αi ∼ U(0.4, 0.8) . In both cases, 
αi ∼ U(0, 1) was assumed for the GO term cluster shared between at least two gene 
clusters. Finally, these simulated p values were binarized using 0.1 as a cut-off value, i.e., 
xij = 1 if pij < 0.1 and xij = 0 otherwise. In addition, 50% of genes were randomly 
selected within each gene cluster and used as a constraint. The results (Additional File 1: 
Table  S6) are similar to the case of 2 gene clusters (“Simulation study” section) and 
PALMER still significantly outperformed the competing approaches as expected.

Next, we considered a new real dataset consisting of the mTOR signaling pathway 
(41 genes), the NOTCH signaling pathway (45 genes), the JAK-STAT signaling path-
way (140 genes), and the apoptosis pathway (87 genes). Then, we assumed that ran-
domly selected 50% of genes are known for each pathway. Given this setting, LitSelect 
identified 20 GO terms with the smallest average association p values for the selected 
20 genes in the mTOR signaling pathway. Similarly, LitSelect also identified 22, 70, 
and 43 GO terms with the smallest average association p values for the selected 22, 
70, and 43 genes in the NOTCH signaling, the JAK-STAT signaling, and the apoptosis 
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pathway, respectively. After this step, we obtained 134 GO terms total (instead of 155 
GO terms because 14 GO terms were shared between more than one gene group). 
Finally, we binarized association p values for these 313 genes and 134 GO terms using 
a cut-off value of 0.1, i.e., set to one if p value is less or equal to 0.1 and zero other-
wise. Additional File 1: Figure S4 shows this final binary data, along with the gene 
and GO term clustering results generated by PALMER. Here the gene clustering 
error rate was 0.16 for PALMER, while the error rates were 0.53, 0.53, 0.53, 0.54, and 
0.49 for unconstrained, BEM, BCEM, BSEM, and BGibbs, respectively. Again these 
results are consistent with those reported in “Reconstruction of known pathways”–
“Identification of new pathway-modulating genes” sections and PALMER significantly 
outperformed the competing approaches.

Conclusion
In this paper, we proposed PALMER, a constrained latent block model approach to iden-
tify new pathway-modulating genes using a binarized data obtained from biomedical 
literature mining. Our simulation studies and real data analyses showed that PALMER 
has the following advantages. First, PALMER is a model-based approach that users do 
not need to implement intensive parameter tuning, other than specifying the numbers 
of genes and GO terms. Second, PALMER significantly outperforms popularly used 
model-based co-clustering algorithms. Third, PALMER provides confidence estimates 
for identified clusters and this will help guide researchers who want to find potential 
novel pathway-modulating genes using PALMER. Fourth, PALMER allows researchers 
to utilize prior biological knowledge about known gene-pathway relationships to guide 
the gene clustering. Our simulation studies showed that this prior-knowledge-guided 
approach can result in more reliable identification of novel genes. Finally, our real data 
analyses indicate that PALMER can be a powerful tool to improve assignment of genes 
to pathways and to identify novel pathway-modulating genes.

We consider potential future improvements of PALMER as follows. First, currently 
PALMER assumes a co-clustering structure and highly reliable prior biological knowl-
edge about known gene-pathway relationships because PALMER is based on a mixture 
model with disjoint class assignment and uses the prior biological knowledge as hard 
constraints. Relaxation of these assumptions might further improve the performance 
of PALMER. Second, currently PALMER assumes that a gene can belong to a unique 
pathway, i.e., exclusive membership. However, it is possible that a gene can participate in 
more than one pathway. Hence, relaxation of this assumption will significantly improve 
utility of PALMER and we will address this in the future version of PALMER. Third, we 
plan to improve the LitSelect website in the future so that different numbers of gene sets 
can be provided (currently only two gene sets are allowed as input) and more flexible 
input is also allowed. Upon this update of LitSelect, we will also tune and test PALMER 
accordingly. Finally, PALMER currently assumes a binary data as input, especially those 
obtained from binarization of hypergeometric test p values provided by LitSelect. How-
ever, directionality (e.g., positive or negative associations between genes and GO terms) 
is not reflected in these p values and consideration of this factor can further improve 
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prediction accuracy and also facilitate biological understanding of novel findings. We 
believe that the current strengths of PALMER combined with our planned future devel-
opments will make it as a powerful tool for bioinformatics researchers.
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