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Background
Every cell of an organism carries the same genome. However, each cell type shows a 
specific expression pattern. Epigenetic modifications were found to regulate the gene 
expression. Prominent examples are the trimethylations of the lysines of histone H3 at 
position 4 (H3K4me3) and at position 27 (H3K27me3) located near the transcription 
start sites of genes. While H3K4me3 correlates positively with the expression of genes 
and euchromatin formation, H3K27me3 induces heterochromatin formation and 
repression of transcription. Promoters associated with both marks are in the so-called 
poised chromatin state, i.e., transcription is repressed but can easily be switched on 
when needed [1–3].

Early research showed, that changes in the combination of marks occur frequently 
during development. Thus, they shape the cell type identity. Often, changes at the pro-
moters are tracked and correlated with cell expression. However, some modifications do 
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not show an immediate effect or are not primarily localized at promotors. For example, 
trimethylation at lysine 36 on histone H3 is associated with splicing [4]. Consequently, it 
is usually found at exon-intron boundaries. Changes in the methylation patterns during 
development would thus be missed with a promoter-centric approach. The exploration 
of genome-wide chromatin patterns and their changes should therefore be based on the 
genomic position rather than centered on promoters, genes, or other genomic entities.

We propose the tool “Masakari” for a data-driven segmentation of the genome: the 
segments are calculated based on the peaks describing chromatin modifications of 
genomic regions obtained using a peak caller like Sierra Platinum [5, 6]. Masakari imple-
ments the segmentation proposed by Steiner et al.  [7]. They furthermore describe the 
transformation of raw data into the data used for segmentation and demonstrate the vis-
ual exploration of the chromatin changes using self-organizing maps. Further visualiza-
tions using 2D and 3D tiled binned scatterplots assuming the same segmentation data is 
presented by Zeckzer et al. [8–10], respectively.

However, one problem remained unsolved so far: the appropriate selection of refer-
ence and additional data sets. Appropriate selection of these data sets by the analyst 
ought to be supported by additional information about the resulting segmentation. 
At the same time, the analyst should be enabled judging whether or not to change the 
selected data sets. This leads to the additional requirements, (1) that the information can 
be computed without any additional knowledge besides the data provided, (2) that (re-)
computing the information should be fast enough enabling a rapid exploration of the 
resulting segmentations, and (3) that the analysis of the additional information is sup-
ported by interactive visualizations.

Thus, besides providing an implementation of the aforementioned segmentation pro-
cess, Masakari provides (1) several simple and fast analysis methods of the segmenta-
tion obtained and of the additional data sets together with (2) interactive visualizations 
allowing to judge whether the selected combination of data sets exhibits patterns by 
means of systematic changes in the chromatin modifications. Masakari fosters the analy-
sis of the modification state. Furthermore, plots of the distribution of peak lengths and 
of segment lengths support the analysis of these distributions. Additional data, such as 
further modifications, can be compared to the modifications used as reference by means 
of coverage. Moreover, analyzing exact sequence patterns and motifs in the segments are 
supported by our tool. While designed for being used for chromatin modifications, i.e., 
peaks from a peak caller, the data format requires genomic position in BED format, only. 
Thus, Masakari allows for segmenting other data types, too.

As Masakari aims at an early stage of analysis, we refrained from providing more com-
plex analysis methods. Those are available in the form of more informative visualizations 
[8–10] supporting testing sets of histone marks in different cell types for correlations 
within a cell type and coherent switching into other combination of marks in other cell 
types. Furthermore, we do not restrict analysis to specific regions with known function, 
while annotation of functional regions can be provided as additional data allowing test-
ing their association with combinations of marks.

Instead of using visualization for interactively analyzing the resulting segmented 
data, machine learning techniques could be employed for automatic analysis. Moreo-
ver, machine learning techniques such as hidden Markov Models (see Ernst et al. [11] 
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for example), could be used for generating the segmentation. As those require prior 
knowledge about functional regions and the potential combination of marks asso-
ciated with them and both—functional regions and the set of histone marks—have 
to be carefully chosen before applying such an automated analysis, our approach 
requires less knowledge and is more general than the former. In fact, the analyst may 
choose examining the chromatin states of a subset of the data set as well as freely 
choose the machine learning technique (e.g., hidden Markov models) to be applied.

Implementation
Here, we describe the architecture of the software and the main elements of the 
methodology proposed. In the subsequent section ‘Results’, we describe a use case 
showing how to apply the methodology to obtain insights about chromatin changes 
during embryonic development.

Architecture

Masakari is completely written in JAVA 11 and uses JavaFX as API for the GUI. It is 
deployed as runtime image for Windows, Linux, and MacOS. Masakari is implemented 
as a server client model to support a variety of usage scenarios. While the server holds 
the data and performs the calculations, the client uses the calculated data to generate 
the corresponding visualizations and handles the user interactions. It is possible to run 
server and client on the same machine. Even more, a server on the same machine can be 
started using the graphical user interface of the client. In this case, the client automati-
cally connects to the server instance. Likewise, it is possible to start server and client on 
different machines and to connect them using TCP/IP connections. Furthermore, it is 
possible to execute Masakari in common batch environments using a job configuration 
file. This job configuration file can be created using the client by first setting all param-
eters and then exporting the selected parameters to a configuration file.

Methodology overview

The complete methodology—including visualizations and interaction facilities for 
quality assessment and preliminary analyses, the interface of the tool, as well as tech-
nical details—is described in the Additional file 1.

Here, we focus on describing the algorithms for computing the segmentation and 
additional information, and the visualizations provided for analyzing this information 
as well as how to interpret these visualizations. Please note, that any of the statis-
tics computed is purely descriptive. Neither counts nor logarithmic counts allow to 
judge whether any of the computed statistics is significant or not. Consequently, it 
can not be assessed whether any noticeable effect occurs due to an underlying mecha-
nism or purely due to chance. This especially holds for overlaps found with Masa-
kari that can be tested for statistical significance using an appropriate method such as 
GINOM [12]. Due to GINOM’s large runtime, we suggest to test only combinations 
showing a strong overlap in Masakari using such a method.
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Segmentation

The segmentation in general has been described before [7–9]. The input for the segmen-
tation consists of a reference genome and the peaks obtained for the marks H3K4me3, 
H3K9me3, and H3K27me3 of the H1 embryonic stem cells. Each peak of each mark rep-
resents a range of nucleotides on the reference genome. Computing the intersection of 
the ranges of different marks results in maximal ranges where either no mark is present, 
only one mark is present, two marks are present, or all three marks are present (Addi-
tional file 1: Figure 1.2). These maximal ranges are the segments generated. Two adjacent 
segments thus always differ in the combination of marks overlapping these segments 
or the complete absence of any mark overlapping a segment. The information associ-
ated with each segment is its combination of marks and its length. Each combination of 
marks defines a category and is mapped to its code (Additional file 1: Section 1.3).

The analysis of the segments computed is supported by several visualizations. In the 
code frequency plot, a bar chart is used mapping each code to a bar and each code’s fre-
quency to the height of the bar (see Fig. 1).

The distribution of the segments lengths is also shown using bar charts (Fig. 2). In this 
case, a bar shows how often a specific length or a range of lengths occurs. Drawing two 
bars for each length or range of lengths enables to compare two distributions. Each dis-
tribution is drawn using its own color.

To support the analysis of adjacent segment pairs, three heatmaps showing different 
information are used (Fig. 3a). The first heatmap (left) relates the code of the 5′-seg-
ment (row) to the distance of the 3′-segment’s code (column). The second heatmap 
(middle) relates the code of the 5′-segment (row) directly to the code of the 3′-seg-
ment (column). In both cases, a pink color is used for showing the amount of such 
relations qualitatively. The higher the amount of segments with the respective prop-
erty, the more saturated (colorful) the cells are. The third heatmap (right) relates the 

Fig. 1  Code frequency: each code is mapped to a bar, while each code’s frequency is mapped to the height 
of the bar. Most segments are not modified (code 0; leftmost bar), or are only modified by one mark (codes 1, 
2, 4), while only few segments carry two (codes 3, 5, 6) or three (code 7) marks
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Fig. 2  Distribution of segment lengths. Top panel: Distribution of the lengths of modified segments (violet) 
and of unmodified segments (green). Three bottom panels: Distribution of the lengths of peaks having the 
respective mark (violet) and of segments having the respective mark (green), only. All frequency axes are 
scaled logarithmically
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code of the 5′-segment (row) directly to the code of the 3′-segment (column), too. 
However, the color mapping now describes quantitatively if the observed frequency 
of two adjacent marks is higher or lower than the expected frequency. If the observed 
frequency is higher than the expected frequency, then the cell is colored blue. If the 
observed frequency is lower than the expected frequency, then the cell is colored 
red. Again more colorful cells point to a large difference of the observed frequency 
to the expected frequency. White cells represent observed frequencies that match the 
expected frequency. Cells are colored black, if there are no pairs expected (diagonal) 
or observed. Thus, they are distinguishable from both colored or (near to) white cells.

a

b

Fig. 3  Adjacent segment analysis. a Adjacent segment pairs. Row: code of the 5′-segment, one row per 
code. Left: Distance in number of modification differences of the epigenetic code on H1. Columns represent 
the distances (0–3) between the code of the 3′-segment (column) and the code of the 5′-segment (row). 
Middle: Frequency of adjacent segments with specific code combinations. Columns represent the code 
of the 3′-segment. Right: Observed-vs-expected frequencies of mark combinations of adjacent segments. 
Expected frequencies are calculated based on the code frequencies in the data sets. Columns represent 
the code of the 3′-segment. Blue colors indicate combinations that are observed less often than expected 
while red colors indicate combinations that are observed more often than expected. Stronger saturation 
implies larger distance from equality. Black indicates combinations not observed at all. b Over-represented 
peak arrangements: (Case 1) More often than expected by chance, H3K4me3 peaks are located within an 
H3K27me3 domain. Less frequent but still more often than expected by chance, H3K27me3 peaks are located 
within an H3K4me3 peak. (Case 2) We also observe Case 1 being located within a large H3K9me3 domain 
more often than we would expect by chance
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Segment–short segment–segment triplets

Masakari allows to analyze the modification changes of segment–short segment–seg-
ment triplets. If there would be many combinations of two segments, which are adja-
cent to the same short segment and which carry the same combination of marks, then 
this would indicate a problematic segmentation. This situation occurs only, if the two 
segments are separated by short peaks that partially overlap. Analyzing these triplets 
is supported by heatmaps similar to those used for the analysis of segment pairs. The 
only difference is, that each row represents a distinct combination of modifications of 
the two enclosing segments, while each column represents either a distinct distance 
of the combination of modifications of the short segments or a specific combination 
of modifications of the short segments. Moreover, the length distribution of the short 
segments of such triplets can be analyzed using bar charts similarly to the length 
analysis of segments (see Additional file 1: Figure 1.17).

Fate‑of‑code computation

Peaks of the marks of other cell types can be mapped onto the segments generated 
using the peaks of the marks of the reference cell type (Additional file 1: Section 1.5 
and Figure  1.2). These marks can be the same or different ones. Therefore, the files 
containing those peaks are selected and the coverage of the segments by the respec-
tive peaks (regions on the genome) are computed. This coverage value lies between 0 
and 1.

For the fate-of-code computation, it is determined for each segment, if the mark is 
present for the reference and for the additional cell line. Therefore, the marks selected 
for the additional cell line have to be the same as those of the reference cell line. As 
the coverage value might differ from both 0 and 1, a threshold is selected by the ana-
lyst. This threshold determines whether the segment is supposed having the mark 
(coverage above the threshold) or not (coverage below the threshold). Then, a code for 
the additional cell line is computed in the same way as for the reference cell line.

The analysis of fate-of-code is supported by heatmaps as well (Fig. 4). The encoding 
is similar to the heatmaps for the pairs analysis: one row per code of the reference cell 
type (here: H1) and one column per code of the additional cell type (here from top 
to bottom: TRO, MES, and NPC). A cell represents the number of segments (counts) 
having the code of the reference cell type (row) and having the code of the additional 
cell type (column). Small variations might be missed when using a linear scale for 
the counts (left column, raw counts). Therefore, a logarithmic transformation can be 
applied to the counts before mapping them to color (right column). As before, the 
(logarithmically transformed) values are mapped to the saturation of the color.

Correlation

The correlation between all pairs of attributes available for a segment—code, segment 
marks (H1), additional marks (TRO, MDD, MES, NPC), CTCF motifs, CpG density, 
and experimental CTCF data—can be computed. The correlation coefficient com-
puted is Spearman’s rank correlation coefficient adjusted for ties. The latter is very 
important, as the data might contain a huge amount of ties.
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A heatmap fosters analyzing these correlations qualitatively and quantitatively 
(Fig. 5 and Additional file 1: Section 1.8 including Figure 1.29 therein). Each attrib-
ute is assigned to one row and to one column in the heatmap. The heatmap cells 
show the correlation value between the attributes of the corresponding row and col-
umn and are colored accordingly. If the observed correlation is positive, then the cell 

Fig. 4  Fate-of-code: for each segment of the H1 segmentation, the corresponding code for the three cell 
types TRO, MES, and NPC with threshold 0.8 is calculated. Changes and conservation of the H1 code (0–7, 
rows) in these cell types are shown in the heatmaps for TRO (top panel), MES (middle panel), and NPC 
(bottom panel). The heatmaps are colored by the raw counts (left panel) and by the logarithm of the counts 
(right panel). Rows: code for H1, columns: code for TRO, MES, and NPC, respectively. High correlation: strong 
saturation; low correlation: low saturation
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is colored red. If the observed frequency is negative, then the cell is colored blue. 
Again more colorful cells represent larger correlation coefficients (absolute value). 
White cells represent correlation values that are 0; whitish cells correlation values 
that are close to 0.

Thus, the correlation analysis plot (Fig. 5) allows investigating the whole data set 
as one unit. Strongly correlating data sets indicate, that the data is very similar and 
differs only in a small fraction of the segments. Low correlations or even anti-corre-
lations provide evidence for unrelated data sets (attributes). In such a case, one may 
rethink the choice of the cell types and features.

Results
We show how using Masakari supports analyzing chromatin changes during embry-
onic development.

Fig. 5  Correlation analysis: correlation between each pair of data sets as well as the code (first row and 
column) and the CpG-density (last row and column). Horizontal and vertical lines indicate blocks of 
modifications of the same cell types. Blocks of cell types are labeled before and above the blocks. Red: 
positive correlation, blue: negative correlation. High saturation: strong correlation; low saturation: weak 
correlation
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Data

From the NIH Roadmap Epigenomics projects, we downloaded data for 5 cell types: 
H1 embryonic stem cells (H1), trophoblast cells (TRO), mesendodermal cells (MDD), 
mesenchymal stem cells (MES), and neuronal progenitor cells (NPC). We selected the 
modifications H3K4me3, H3K27me3, and H3K9me3 since they are reported to play an 
important role in the cell development. Only for MDD, there is no H3K9me3 data set 
available. For TRO, MDD, and MES we also downloaded H3K4me1 and H3K4me2 as 
well as H3K26me3. Details on the data preparation can be found in the Additional file 1.

We used Masakari to segment the human genome hg19 based on the peaks from 
all three H1 data sets. As additional data, we added the peaks for the modifications of 
TRO, MDD, and MES as well as peaks for CTCF binding sites in H1 from Encode [13]. 
Furthermore, we calculated the CpG-density. Finally, the position weight matrix for 
the CTCF binding sites from Kim et al. [14] was used to calculate count and density of 
potential binding sites of CTCF within the segments.

Segmentation analysis

The segmentation results in 117,774 segments covering about 3.1Gbases. During seg-
mentation 6297 short segments whose length is smaller than 200nt were discarded. This 
amounts to 567Mbases that were discarded. As a result 190 peaks were lost. Discarded 
segments are either 50, 100, or 150 nucleotides long showing the uncertainty of the true 
start and stop of modified peaks resulting from peak calling. Furthermore, mostly only 
single short segments can be found between segments that are at least 200nt long. There 
are less than 400 cases where several short segments build a chain and most chains are 
shorter than 300 nucleotides, the longest chain of discarded segments being 600 nucleo-
tides long. In summary, a large part of the data is retained, discarded segments do not 
enrich at specific positions, and a further analysis of the segmentation is useful. The cor-
responding plots showing this result can be found in the Additional file 1: Figure 3.1 and 
Figure 3.2, respectively.

Most segments are unmodified in the embryonic stem cells [15] (see Fig. 1). Among 
the modified segments, modifications with only one mark are most frequent and the 
most frequent modification is H3K4me3 (see Fig.  1). Bivalent segments (marked with 
H3K4me3 and H3K27me3) are most frequent among the segments with multiple marks 
(see Fig.  1, bar labeled as bivalent and unlabeled bars). Thus, there are indeed differ-
ent combinations of those three marks which can be investigated further using the 
segmentation.

As expected, short segments are more frequent than long segments. There is, how-
ever, a slight enrichment of segments with a length between 4500 and 5000 nucleotides. 
This enrichment is specific for unmodified segments (see Fig. 2 top). H3K27 and H3K9 
trimethylation peaks are usually retained during segmentation (see Fig.  2). Peaks of 
H3K4me3 however are often broken apart into short sub-peaks (see Fig. 2).

Independently of the combination of marks, adjacent segments differ usually by only 
one modification (see Fig. 3a, left). Furthermore, specific patterns can be observed using 
the heatmap of the counts of adjacent segments (Fig. 3a, middle) and the log-odds of the 
observed-expected ratio (Fig.  3a, right). The current data set suggests two symmetric 
patterns (Fig.  3b): (Case 1) An unmodified segment is followed by a segment marked 
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with H3K27me3 only which in turn is followed by a segment marked with H3K27me3 
and H3K4me3. The latter is again followed by a segment marked with H3K27me3 only 
which in turn is followed by an unmodified segment. In other words, an H3K4me3 peak 
is embedded in an H2K27me3 domain. In other cases, this might be the opposite, i.e., 
an H3K27me3 peak being embedded in an H3K4me3 peak. (Case 2) Segments modi-
fied by all three marks are usually surrounded by segments with H3K9me3 and either 
H3K4me3 or H3K27me3. Next to those segments, segments marked with H3K9me3 
only or H3K4me3 (H3K27me3) only are found. The left and the right end of this pattern 
are again unmodified segments. Here, too, peaks are supposedly embedded within each 
other. With respect to the observed/expected ratio, the most likely pattern is a H3K4me3 
peak embedded in an H3K27me3 peak which is itself embedded in a H3K9me3 peak. 
Please note, that the second pattern is the first pattern embedded in an H3K9me3 peak. 
Both pattern consist of combinations of adjacent segments that are much more often 
observed than expected by chance. Thus, they may be based on molecular mechanisms 
such as recruitment of modifiers by sequence motifs.

Fate‑of‑code analysis

For all cell types except mesendodermal cells (due to missing data for H3K9me3), we 
calculated how combinations of modifications change during development (see Fig. 4). It 
is noteworthy, that H3K9me3 marks are the strongest retained modifications in all three 
cell types. Segments carrying H3K9me3 in H1 acquire frequently H3K4me3, H3K27me3, 
or both marks in trophoblast cells and in mesenchymal stem cells. An interesting trend 
in trophoblast cells is furthermore an increase in segments with all three modifications. 
However, the specific biological function of this combination is currently unknown.

Correlation analysis

Analyzing the correlation between all available attributes (Fig.  5) shows, that the data 
sets for segmentation correlate at least in some cases with the additional data. At least 
the same modifications in different cell types mostly correlate. Further analysis will 
therefore provide insights into the fate of such a modification during embryogenesis.

Moreover, correlations with CpG-density show interesting patterns: CpG-density cor-
relates with H3K4me3 in all cell types except MDD and with H3K27me3 in H1. This 
provides evidence for a CpG-dependent recruitment. H3K9me3 in MES anti-correlates 
with the CpG-density which can result from a recruitment mechanism avoiding CpGs.

Discussion
Overall, the collection of cell types and modifications as well as their segmentation 
allows investigating the changes of modifications during embryogenesis. The results 
obtained in the previous section show, that it is possible to analyze more than three 
modifications of the reference cell type and more than the 7 additional data sets (three 
modifications in two cell types each plus CpG) as well as the segment length used in the 
original publication of the segmentation method  [7]. Here, segment length, four addi-
tional cell types with overall 20 modifications as well as CpG-density, CTCF motif, and 
experimental CTCF data were analyzed and compared to three modifications for the ref-
erence cell type H1.
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In principle, even more modifications for more cell types could be analyzed. Here, the 
analytical effort grows linearly with the number of modifications or additional cell types; 
quadratically, if their product (#(modifications) × #(cell types)) is considered. Only the 
heatmap grows quadratically in the number of attributes (modifications, CTCF, CpG, 
and other data). As already outlined in the introduction, more sophisticated methods 
like visualizations targeting the analysis of histone modification data, automatic meth-
ods based on machine learning, and combinations of machine learning and visualization 
can and probably should be used, once an overview over the data is obtained and inter-
esting attributes were selected based on Masakari. Moreover, effects observed using the 
more sophisticated methods should also be tested for statistical significance to reduce 
false discoveries due to data quality. The only parameter that results in an exponential 
growth is the number of modifications of the reference cell type. Here, a maximum of 
four or five modifications (16 and 32 combinations, respectively) appears to be feasible 
for analysis. However, Masakari would allow identifying frequently and less frequently 
occurring combinations of marks (including no and individual marks), which in turn 
would allow selecting those individual marks and combinations of marks of interest to 
the analyst for further examination.

Conclusion
We presented Masakari, a tool for combining histone modification information by 
generating a segmented version of a reference genome, and the results obtained by 
segmenting the human reference genome hg19 based on the H1 embryonic stem cell 
modifications H3K4me3, H3K27me3, and H3K9me3. The method allows to segment the 
genome, to map additional data onto the segments—like modifications from other cell 
types—, compute motif and position weight matrix coverage of the segments, as well as 
compute the correlation among all pairs of data. Analyzing the results of the segmenta-
tion process and the coverage of the segments by modifications of other cell types gave 
new insights into the changes of histone modifications and their combinations during 
embryogenesis.

Availability and requirements

Project name: Masakari.
Project home page: https​://githu​b.com/sierr​aplat​inum/masak​ari for the source 
code and releases or https​://zenod​o.org/badge​/lates​tdoi/99812​760 (https​://doi.
org/10.5281/zenod​o.84085​3) for releases only.
Operating system(s): Platform independent.
Programming language: Java.
Other requirements: Java runtime version 8 for Masakari version 1.0 and none for 
Masakari version 1.0b.
License: Apache License 2.0.
Any restrictions to use by non-academics: None.

https://github.com/sierraplatinum/masakari
https://zenodo.org/badge/latestdoi/99812760
https://doi.org/10.5281/zenodo.840853
https://doi.org/10.5281/zenodo.840853
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Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03761​-6.

Additional file 1. The supplementary information (pdf file) contains a detailed description of the method imple-
mented in Masakari, especially of the input data selection and of the computation, Further, the technical details 
about the system and its graphical user interface are provided. There, the format of the resulting data is described, 
too (Section 2.3.4, ‘Export’). Finally, additional figures for the results described here are provided in the supplemental. 
These comprise the figures about the short segment chains (Section 3.1).
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H1: H1 embryonic stem cells; MDD: Mesendodermal cells; MES: Mesenchymal stem cells; TRO: Trophoblast cells; NPC: 
Neuronal progenitor cells; ChIP-seq: Chromatin immunoprecipitation sequencing; H3: Histone H3; K4: Lysine (one letter 
code K) at position 4; me1: Monomethylation; me2: Dimethylation; me3: Trimethylation; H3K4me1: Monomethylation 
at histone H3 at the lysine at position 4; H3K4me2: Dimethylation at histone H3 at the lysine at position 4; H3K4me3: 
Trimethylation at histone H3 at the lysine at position 4; H3K9me3: Trimethylation at histone H3 at the lysine at position 
9; H3K27me3: Trimethylation at histone H3 at the lysine at position 27; H3K36me3: Trimethylation at histone H3 at the 
lysine at position 36; PCR: Polymerase chain reaction.
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