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Background
Type 2 diabetes (i.e. non-insulin-dependent, T2D) is a chronic, multifactorial, metabolic 
disorder typical of late adulthood characterised by less effective hormone insulin effi-
ciency at lowering blood sugar. The World Health Organization reports that type 2 dia-
betes accounts for 85–90% of all cases of diabetes in the World [1].

There are many different mechanisms that contribute to the onset of T2D [2], there-
fore research is focusing on the simultaneous observation of several factors such as 
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metabolic, immunological, genetic, and nutritional drivers. A recent study had pointed 
out a specific state of inflammation, unique for its characteristics and distinct from the 
classic inflammatory state, which manifests itself in the presence of a high-calorie diet 
and “susceptible” lifestyles [3]. The term metaflammation well describes this kind of 
inflammation caused by a high caloric and sugar-rich diet which mainly originates in the 
visceral adipose tissue [4]. This inflammatory-eliciting insult triggers a cellular response 
consisting of the release of several intracellular signals and a low levels of cytokines such 
as Tumour Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6) [5]. Moreover, experi-
ments have shown a correlation of these triggers with the inhibition of the insulin signal 
by phosphorylation of a serine in the Insulin Receptor Substrate-1 (IRS-1) [6]. The result 
is a malfunctioning receptor unable to bind insulin, turning the cells as insulin-resistant. 
Summarising, the prolonged condition of a pro-inflammatory response alters the meta-
bolic functions of the adipocytes [7] and, in the long term, causes hyperglycemia and 
eventually full-blown type 2 diabetes [8].

The scenario just depicted calls for a predictive approach aimed at identifying the meta-
bolic and inflammatory “driving factors”, possibly amenable to being implemented on self-
monitoring devices. This has been the main aim of the EU-funded project “Multi-scale 
Immune System Simulator for the Onset of Type 2 Diabetes” (MISSION-T2D) [9] which 
has led to the development of a validated multi-level patient-specific model able to integrate 
metabolic, nutritional and lifestyle data for the prediction of the metabolic and inflamma-
tory processes underlying the development of type 2 diabetes in the absence of familiarity.

Approach
The mentioned computational model (herein referred to as M-T2D) has been imple-
mented to take into account a set of user input data and to subsequently provide an esti-
mation of the risk to develop a T2D clinical picture.

Setting a definition for the risk of T2D has not been a trivial task. After a few 
attempts, we decided to combine the level of insulin resistance, the level of inflamma-
tory cytokines, and the pro-inflammatory cell counts. These observables are, among oth-
ers, used in the introduced mathematical description of the complex interdependencies 
among metabolites and pancreatic control as well as among adipose tissue components 
and inflammation.

Upon setting anthropometric parameters such as age, sex, body weight, height, and 
providing nutritional habits, fitness status and physical activity patterns by the user, the 
M-T2D calculates the risk of progressing toward a T2D-related state in a predefined 
time horizon.

Due to the high level of sophistication, M-T2D is quite computationally expensive 
(a 6-month simulated period takes many hours to run on a current high-performance 
computing server) and is therefore not a viable solution to perform self-monitoring and 
assessment on mobile devices. Because of this limitation, we constructed an approxima-
tion, namely a surrogate model being able to forecast the output of the model M-T2D 
with a reduced computational effort. The need for reducing the computational burden of 
a simulation tool occurs in many research fields. For instance, [10] proposed a statistical 
model for computer output being interested in the assessment of the computer code and 
the identification of the most significant predictors to efficiently design experiments. 
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The authors in [11] investigated the same issues considering a Bayesian approach based 
on Gaussian processes. The study in [12] proposed a spatio-temporal neural network as 
a surrogate model for a particular type of chemical process, namely the polymerization 
reactor. The Gaussian process has been applied in [13] to approximate spatio-tempo-
ral processes while [14] used a Gaussian process with a modified before approximate 
dynamic processes in hydrology. For an up to date review regarding approximated mod-
els and techniques for complex processes, the interested reader can refer to [15].

The aim of this work is two-fold: (1) to provide an approximation of the final state of 
M-T2D via surrogate model at initial conditions out of the experimental design, and, 
(2) to analyze simulated data to assess the parameters’ value of the simulator used to 
carry on simulations. To this end, we apply Random Forest, a powerful Machine Learn-
ing (ML) algorithm, with finest fitting performances when dealing with complex data-
generating processes.

ML is becoming a popular and efficient approach to evaluate multidimensional longi-
tudinal health data in different fields of medical research. Examples of this kind of studies 
include the diagnosis of asymptomatic liver disease [16], the prediction of opioid depend-
ence [17], the evaluation of sociodemographic determinants of health status in aging [18], 
the prediction of the mobility of medical rescue-vehicles [19], forecasting adverse periop-
erative outcomes [20], the measure of caloric intake at the population level [21], the per-
sonalisation of oncological treatment in radiogenomics [22], the determination of features 
of systolic blood pressure variability [23], the identification of clinical variables in bipolar 
disorder [24] and, interestingly, a specific interest in uncovering potential predictors of dia-
betes (type 1 and 2) using large set of data [25–32]. ML can also support global efforts in 
various fields of epidemic outbreaks of infectious diseases, developing up-to-date text and 
data-mining techniques to assist COVID-19-related research, especially by developing 
drugs faster (screening and detecting antibody virus interactions and detect viral antigens), 
understanding viruses better, mapping where viruses come from, and hopefully predict-
ing the next pandemic [33, 34]. ML may offer accurate results with fewer requirements if 
compared with traditional mathematical modeling and it is often used to extract harder-
to-detect knowledge from unstructured data. ML models are particularly useful in settings 
where the input is represented by the enormous amount of diagnostic data whereas the out-
put consists in predictive therapeutic options. At variance with the classical application of 
ML methods, in the present work which deals with the prediction of the risk of T2D, we use 
Random Forest to “approximate” M-T2D. For this purpose, the training set consisted of a 
large number of virtual (i.e. simulated) subjects experiencing different lifestyle conditions. 
The ML-derived surrogate model can recapitulate the simulated outcomes, thus computing 
the risk index with a significantly smaller computational effort, therefore allowing, as antici-
pated, to be computed in real-time on mobile devices.

Advances in wearable devices, computational power, and safe communications are 
permitting the evolution of precision medicine that could facilitate the development 
of personalized treatment of diabetes risk of each patient on an individual basis [35]. 
The accomplishments presented here are thus better valued looking at the great devel-
opment of self-monitoring systems nowadays embedded in portable communication 
devices which open up to the application of predictive tools in health care [35]. Such 
predictive tools integrated with wearable devices, could feed their model-predictive 
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alarm set and control systems with monitored signal data to adapt to the in vivo changes 
of the metabolic state of the user. The computational cheapness of the surrogate model 
proposed would then allow using data coming from wearable devices, as soon as they are 
measured [36], providing, therefore, a real-time calculation of health indicators, whose 
evaluation would otherwise be unfeasible.

Methods
In this section we first describe the computational model M-T2D and then we detail the 
experimental design used to generate the data. Such description is necessary to under-
stand the data analysis that is carried on in the next section.

The computational model

The whole-body multi-scale computational model for fuel homeostasis M-T2D [37] 
describes the metabolic, hormonal and inflammatory changes due to exercise sessions 
and food ingestion [38]. It consists of the combination of many ordinary differential 
equations and an agent-based model unified into a multi-scale simulation tool.

The metabolic physiology-based sub-model of M-T2D consists of an extended formu-
lation of [39] to describe fuel homeostasis in response to a session of physical exercise. 
It incorporates the hormonal model inspired by [40] in which both glucagon and insu-
lin are represented and glucose regulation is achieved by altering the balance between 
the two. Concerning the original model in [39] and with the aim of achieving greater 
generalization and user-customization, M-T2D provides an enhanced description of the 
physical exercise similar to that in [41] and [42]. In particular, we used a “relative” (rather 
than fixed) exercise intensity as well as the estimation of functional capacity in rela-
tion to age, sex, anthropometric characteristics, and current fitness status [37]. Moreo-
ver, M-T2D includes oxygen consumption and the dynamics of epinephrine as directly 
dependent on the relative exercise intensity to modulate hormones and metabolites 
responses to different exercise modalities (e.g. cycling, walking, running, stepping). For 
what concerns the description of the physiological changes due to food ingestion, stom-
ach emptying, and absorption of macronutrients monomers in the gut [38] we follow the 
work in [43] and [44]. The description of the dynamics of alanine and triglycerides from 
proteins and fats ingestion, respectively, needed the settings of proper parameters, since 
the model in [43] is limited to the description of glucose dynamics. Insulin resistance or 
insulin-deficient states leads to a reduced response of tissues, such as the skeletal mus-
cle, liver, and adipose tissue, to insulin, therefore M-T2D also implements the effects of 
insulin resistance on the glucose uptake by peripheral organs [45]. Besides that, in mod-
eling fasting plasma glucose concentration we took into consideration factors depending 
on dietary habits, physical activity, and inflammation. These factors contribute in dif-
ferent ways to increase or diminish the blood sugar level. The glycemia (i.e. presence of 
glucose in the blood) rises due to unhealthy eating habits, leading to inflammation. Also, 
it decreases if the patient does physical exercises.

All together, M-T2D includes several models: (1) a model of energy balance and 
weight gain/loss is added in [45], based on the equations provided by [46] and [47]; (2) 
the emergence of the inflammation is described as the result of adipose mass increase 
which, in turn, is a direct consequence of a prolonged excess of high-calorie intake [48]; 
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(3) to better describe lifestyle, we include a previously published model of physical exer-
cise [37]; (4) to counteract the inflammatory scenario, the presence of anti-inflammatory 
mechanisms promoted during exercise by skeletal muscle has been considered, based 
on a previous published study [49]; (5) finally, to describe the inflammatory status of 
the subject, M-T2D merges the metabolic model with a general-purpose simulator of 
the immune system [50], a modeling framework used to study different human patholo-
gies [51–53], specific aspects of the immune response [54, 55] and also aspects of non-
human immunity [56].

The generation of synthetic data

Simulated trajectories of the dynamic metabolic model M-T2D starting from different 
initial conditions (i.e. anthropometric features, physical activity patterns and dietary 
habits) corresponding to different virtual subjects have been generated by varying the 
parameters in Table 1. The total number m = 46,170 is thus the product of the following 
terms ( | · | indicates the cardinality of the set):

Low/medium/high quantities of carbohydrates, proteins, and fats are computed taking 
into account the balance of calories between the meal and the total daily energy expendi-
ture (TDEE) [45]. In details, TDEE is the result of the sum of Resting Energy Expendi-
ture (REE), Activity Energy Expenditure (AEE) [57] and Thermic Effect of Food (TEF) 
[58]. We implemented the equations by Mifflin and coworkers in [46] to estimate the 
REE considering weight, height, age, and sex. We determine the AEE based on the inten-
sity, duration, volume of oxygen consumed, and the number of sessions of the exercise 
as in [45]. Finally, the TEF is the amount of energy expenditure that occurs after eating, 
due to the cost of digesting and processing food and represents about 10% of the calories 
due to meal ingestion [58]. The resulting TDEE represents the number of calories that 
have to be ingested to have a balance among energy intake and expenditure. In our cal-
culation, these calories are somehow arbitrarily yet realistically split between breakfast 
(25%TDEE), lunch (45%TDEE) and dinner (30%TDEE). Furthermore, for each meal, we 

(1)m = |S| · |A| · |W | · |H | · (1+ NPA · |DPA| · |IPA|) · |CME| · |PME| · |FME|.

Table 1  The different virtual subjects have been generated by  varying the  parameters 
in this table and corresponding to 46,170 different initial conditions

Anthropometric measures

 Sex S ∈ {female,male}

 Age A ∈ {28, 38, 48, 58, 68}

 Weight W ∈ {underweight , normal, overweight}

 Height H ∈ {short , average, tall}

Physical activity

 Number of sessions per week NPA ∈ {0, 1, 2, 3}

 Duration (mins) DPA ∈ {low = 30,medium = 60, high = 90}

 Intensity (% of VO2max ) IPA ∈ {low = 40, high = 60}

Food intake (3 meals per day, breakfast, lunch, dinner)

 Carbohydrates (grams) CME ∈ {low ,med, high}

 Proteins (grams) PME ∈ {low ,med, high}

 Fats (grams) FME ∈ {low ,med, high}
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divided the caloric content of the meal in calories from carbohydrates, proteins, and fats 
equal to 50%, 20%, and 30%, respectively. Finally, to convert calories to grams we used 
the Atwater general factor system [59]. These “standards” or average values of grams for 
carbohydrates, proteins, and fats are used as reference values (median or ’med’ value). 
Simple multiplications to the constants 0.8 and 1.5 are used to fix ’low’ and ’high’ quanti-
ties of the food intake description given above. The complete patient specification of the 
initial condition of the simulation is thus given as a string vector. For instance, the initial 
condition specified by the string female 28 obese tall 2 60/40 low/high/
low corresponds to a 28 years old female subject, tall and obese, who exercises twice a 
week (sixty minutes each time with an intensity of 40%VO2max ) and who follows a diet 
consisting in a low amount of carbohydrates and fats but rich in proteins. So in general 
we indicate the vector corresponding to the initial condition as follows:

Simulations’ outputs were analyzed based on the following variables which are deemed 
the most significant to calculate the risk of developing T2D: Glucose BaseLine (GBL, 
namely the fasting glucose concentration), Body Mass Index (BMI), and Tumor Necro-
sis Factor-α (TNF) as measured in the adipose tissue compartment. The execution of 
M-T2D starting from the initial condition x generated a complete trajectory of these var-
iables with a time resolution of ten seconds. However, since we are interested in analys-
ing the condition of the virtual subject only at the end of a specified period of 6 months, 
these measures are taken after 6 months of routinely and uninterrupted physical activity 
and diet patterns as specified (among the other things) in x . Formally,

where t is 6 months. The set {(x(k), y(k)) : k = 1, . . . ,m} is used as a training set for the 
development of a statistical model able to recapitulate, given x , the dynamics of the 
computational model and to predict the risk of developing T2D over a time horizon of 6 
months. In other words, our goal was to find a statistical/ML model (which should not 
be confused with the computational model M-T2D) able to predict the dependent varia-
bles, namely y given a set of regressors/predictors x , that is, the initial conditions defining 
the virtual subject and her/his lifestyle. The new statistical model is, therefore, a surro-
gate model of M-T2D whose role is only to forecast the T2D risk after 6 months for given 
initial conditions that were not considered for the construction of the synthetic data. 
The main reason for finding such ML model is that the complexity of M-T2D requires 
a significant computational effort to run, whereas a statistical model, once trained, pro-
vides a real time solution of computing y(i) given x(i) allowing a fast generalisation to 
cases other than those in the training set 

{

x(k), y(k)
}

k=1,...,m
.

Results
In order to be a viable solution to the given time and computational restriction, the 
model should have the following characteristics: good fitting performance in predict-
ing the expected behaviour at time t of the output variables given the input varia-
bles at time t0 < t , where t − t0 = 6 months; usability of the results in analysing the 
impact of each regressor on the output; computational inexpensiveness in order to 

(2)x = [S,A,W ,H , (NPA,DPA, IPA), (CME,PME, FME)].

(3)y = [BMI(t),GBL(t),TNF(t)]
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be implemented on wearable devices. To this end, we adopted a data driven approach 
over the simulated patterns, in particular, using the notation introduced in the previ-
ous section, the ML model has been constructed and validated by using the initial 
conditions x of the regressors as input variables and the dependent variables y as out-
put variables.

In this section, we first carry on a preliminary analysis to understand the quantita-
tive characteristics of the data and the need to choose Random Forest as ML algo-
rithm among many others.

Preliminary analysis

Figure 1 shows the correlations among variables. In particular, the dots in the boxes 
represent the sample Pearson Correlation Coefficients ρij between xi and xj , namely,

where si, sj are the standard deviations and µi,µj are the mean of variables xi and xj 
respectively. Their significance is indicated by both the size of the dot (larger means 
higher significance) and the color (the actual value).

In Fig.  2 we report the scatter plots of the regressors and the dependent variables 
together with the fit (in orange; note: a poor fit, that is, a lack of dependence between the 
two variables appears as a horizontal or vertical orange line).

ρij =
[

(m− 1)sisj
]−1

·

m
∑

k

[(

x
(k)
i − µi

)(

x
(k)
j − µj

)]

,

Fig. 1  The dots represent the correlations between each couple of variables: the bigger the dots the higher 
the correlation in absolute value. Numerical value follows the color code in the bar.
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Fig. 2  Scatter plots of the independent versus the dependent variables, together with a polynomial fit in 
orange
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Figures 1 and 2 allow identifying critical key features of the dataset. We noticed that 
there are non-linear dependencies between the output variables and the regressors (e.g. 
scatter plot of BMI0 = W0/H

2 in the third row). This observation was expected and, 
given the high level of complexity of the process generating the data, it suggests that 
a non-linear ML model should be considered rather than a linear one. Moreover, the 
variables related to the diet ( CME,PME, FME , cfr. correlation plot in the middleboxes next 
to diagonal) do appear strongly correlated. However, these correlations are “spurious” 
because the corresponding variables depend linearly on another variable indicating the 
amount of calorie intake (already discussed in the previous section and [45]). Lastly, the 
correlation plot shows that the output variables BMI, GBL and TNF are correlated, see 
for instance the dot in position TNF − BMI.

All of above observations strongly suggest that a multivariate model is the appropriate 
choice in the attempt to construct a ML model recapitulating the data. Specifically, we 
are looking for a statistical model defined as

where x and y are the vectors of regressors and dependent variables respectively, N3 
is a Gaussian in R3 with zero mean and covariance matrix � , and ψ(·) is a function to 
be determined. We tested several statistical models and compared their forecasting 
performance. We started from the simplest, namely, the linear regression model. Even 
though preliminary results already prove its unfit, it is interesting to quantify the error 
made by the linear model. Successively, we tested a few non-linear models, specifically, 

(4)y = ψ(x)+ ǫ, ǫ ∼ N3(0,�),

Fig. 2  continued
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polynomial regression models of orders 2, 3, and 4. Finally, we tested the random forest 
algorithm [60]. To investigate the performances of each of the above models, we divided 
the dataset into a train set consisting of 2m/3 data points used to estimate the param-
eters of the models and the remaining m/3 data points in the test set used to assess the 
predictive performance of the model.

Results are shown in Fig. 3. Each row, corresponding to one of the models considered 
shows the out-of-sample (i.e. computed on the test set) scatter plot of the true versus 
the predicted values. The linear regression model obtained by defining ψ in Eq. (4) as a 
linear combination of the regressors, was not able to describe the behavior of none of 
the dependent variables. Indeed, all scatter plots in Fig. 3a are far from the y = x line. 
Interestingly, the scatter plots of BMI (leftmost panel) and of the TNF (rightmost panel) 
suggests that the linear model does partially capture these variables’ dynamics, indeed 
despite an unwanted very large variability in the predicted value, a positive correlation 
between predicted and true values is observed. Conversely, results shown in the middle 
panel in Fig. 3a pertaining the GBL suggest that the linear regression model fails in this 
case because there is no evident correlation between the true and the fitted values. The 
result confirms that there is a non-linear structure among x and y and hints to the use 
of non-linear models. Figure  3b–d are related to the polynomial regression models of 
degree d = 2 , 3 and 4 respectively, obtained by defining ψ in Eq. (4) as a polynomial of 
order d. From the plots, it is clear that BMI (leftmost panel) and TNF (rightmost panel) 
are only partially described by these models because the scatter plots show large varia-
tion in the predicted value hence the use of polynomial models does not improve signifi-
cantly when increasing d. Likewise the linear model, the middle panels in Fig. 3b–d of 
true versus predicted GBL fails to show a clear correlation hence leading to the conclu-
sion that the polynomial structure is also not appropriate.

We then decided to assess other ML approaches, namely decision trees and random 
forest, based on a tradeoff among forecasting performance, the usability of the results 
and computational effort required.

Decision trees and random forest

In statistics/ML, decision trees are powerful tools when dealing with data coming 
from a complex process with a large number of degrees of freedom, both for regres-
sion and classification purposes. The main idea of such tools is to find binary splits, 
of the form Xi ≤ c and Xi > c , called splitting rules, to divide the dataset into hyper-
rectangles being as homogeneous as possible in terms of dependent variables. Homo-
geneity is measured as the mean square error in the case of regression trees or as Gini 
index in the case of classification trees. The first node of a decision tree is called root, 
the internal nodes generated by splits are simply called nodes and the terminal unsplit 
are called leaves. Each node k including the root, is associated to the splitting rule 
parameters θk = (Xi, c) where Xi is the splitting predictor and c is the splitting value; 
each leaf l is instead associated to dependent variables’ data points µl as their mean 
values in case of regression trees and the most observed value in the case of classifica-
tion trees [61]. The structure of the tree T  is intended to be the whole set of param-
eters θk and µl , for k = 1, . . . ,K  and l = 1, . . . , L where K and L are the total numbers 
of nodes and leaves respectively.
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The major drawback of this regression/classification tool is the high variability charac-
terizing the output, meaning that several trees constructed over the same dataset could 
produce significantly different outputs. Research has addressed this issue by consider-
ing ensemble methods. These are methods that generate multiple outputs using the same 
algorithm but starting from different random initializations.

Random forest introduced in [60] is one of the most well-known and powerful regres-
sion/classification ensemble method. The general idea of this algorithm is to construct a 
forest of decision trees and to define the output to be either the mean of all the outputs 

Fig. 3  Each row shows the out-of-sample (i.e. in the test set) scatter plots of the true and fitted (i.e. predicted) 
values of the variables specified in each panel’s caption (from left to right, BMI, GBL and TNF). Inset plots show 
the histogram of the out-of-sample residues’ (i.e. the prediction error). The last row shows that multivariate 
random forest performs better predictions when compared to the linear or polynomial regression
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in the case of regression trees or the result of a majority rule on the output in the case of 
classification trees.

In detail, the application of the random forest algorithm to predict y from x with 
respect to Eq. (4), provides the following formula

where N is the number of decision trees that have been build up and Ti is the struc-
ture of the i-th tree that is the whole set of parameters θk ,i for k = 1, . . . ,K  and µl,i for 
l = 1, . . . , L as detailed above.

Learning the parameters of the random forest from synthetic data to predict the risk of T2D

The random forest algorithm has been trained and tested using the scheme adopted 
for the previous models; the obtained results are shown in Fig.  3e. As clearly 
shown by the three panels, the multivariate random forest outperforms the previ-
ous ones in predicting y . Indeed the scatter plots of all three variables are aligned 
on the y = x line indicating a fairly good correlation. Just, a bit of variability is still 
observed for small values of GBL and TNF. Looking more in detail, the virtual indi-
viduals showing unfit for small values of GBL are those having extreme features. An 
example is given by the virtual individual defined by the following initial conditions 
x = [male, 28, tall, underweight, 1, 60/60, low/low/low] that cor-
responds to a 28 years old male subject, tall (1.91 m) and underweight (65.66 kg), who 
exercises once a week (sixty minutes each time with an intensity of 60%VO2max ) and 
who follows a diet consisting in a low amount of carbohydrates, fats and proteins, this 
subject is bordering on anorexia. The lack of knowledge regarding metabolic processes 
in case of anorexia generates higher variability in simulation’s output that is reflected 
into a higher unfit of the machine learning algorithm. We focused on the core distribu-
tion of the simulation output that is clearly caught up by the random forest algorithm, 
however, if the interest is toward extreme events quantile regression forest could be a 
valuable algorithm to analyse the tails of the distribution.

In Table 2 we quantify the error produced by each model as the mean square error 
(MSE) in measuring the goodness of the fit, in particular, MSEIn has been computed over 
the train set (i.e. in sample) while the MSEOut has been computed over the test set (i.e. 

ψ(x) =
1

N

N
∑

i=1

Ti(x),

Fig. 3  continued
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out of sample). As expected, the highest error corresponds to the linear model and it 
slightly decreases in polynomial regression models when using a higher degree polyno-
mials. Finally, the multivariate random forest regression shows to outperform all other 
regression methods bringing down the MSE to more than one order of magnitude com-
pared to the polynomial regression. Also to note that the small increase of the MSEOut 
compared to the MSEIn denotes the absence of overfitting of data.

Discussion
Random forest algorithm showed good fitting performance and it provided a relatively 
easy interpretation of the data analysis’ results allowing for interesting clinical hints. As 
first results, we looked at the variables’ importance using a method already described in 
[62]. In a few words, we measured the impact of each variable on the predictive power 
of the model, as the difference between the prediction error computed when some noise 
is added to the predictors and the prediction error computed on the original predictors. 
Such impact is shown in Fig. 4, where the variables’ importance for each of the elements 
of y are plotted. The impact of some variables appears to be the same for the three vari-
ables BMI, GBL, and TNF. Indeed, we observed that the variables related to the physical 
activity (i.e. NPA,DPA , and IPA ) appear as the less important. This fact points out that 

Table 2  In-sample and out-of-sample MSE of all tested models

ML model MSEIn MSEOut

Linear regression 0.6220638 0.6913094

Polynomial degree 2 0.5798217 0.6456507

Polynomial degree 3 0.5016218 0.5675261

Polynomial degree 4 0.4233801 0.493727

Multivariate random forest 0.01991242 0.0276875

Fig. 4  Impact of each input variable x on the output y . Inset plot shows the same data in y-log scale to 
increase readability (y-scale is in arbitrary units). This plot offers a one-sight readout of the impact of subjects 
anthropometric measures and lifestyle patterns on the likelihood to progress toward a state of higher risk of 
development of diabetes
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better accounting for the physical activity on anti-inflammatory factors as well as on the 
reduction of glucose baseline already on time horizons smaller than 6 months is required 
in M-T2D. This is a task that is already ongoing and will be reported in due time [45].

The most important variable for both the BMI (grey bar in Fig. 4) and the GBL (black 
bar) is the initial value of the body mass index ( BMI0 ). This means that weight plays 
an important role in determining the glucose baseline thus in the determination of the 
risk of T2D. As for the remaining variables, we observed that they have a comparable 
impact on the BMI. This is not the same for the glucose baseline or GBL index, for which 
the second most important dependence is with the number of carbohydrates in the diet 
( CME ). For what concerns the inflammation represented by the level of TNF-α (i.e. TNF 
index, white bar in Fig. 4) the most important dependence is, as expected, the age (A) 
followed in order of importance by CME and BMI0 . This is interesting as it goes along the 
recently defined concept of Inflammaging [63] which joins immune-metabolic processes 
with age-related diseases in a single, integrated, clinical framework.

To carry on with the analysis of the relative importance of each input variable, we cal-
culated their influence when taken in pairs. Again, we measure the impact of the couple 
(

xi, xj
)

 as the difference between prediction error when to 
(

xi, xj
)

 some noise is added 
versus the prediction error calculated in the unmodified case [62]. Looking at the pair-
wise co-influence on y in Fig. 5, we noted that the most common of them involve BMI0 . 
This is somehow expected since BMI0 is the most or among the most important vari-
ables for all the output variables and both importance analyses are computed using the 
same methodology.

To overcome any bias coming from this procedure, we considered another method to 
investigate the variables’ co-influence on y , namely the maximal subtree method [62, 64, 
65]. This method is based on the idea that variables that split close to the root play an 
important role in prediction error, while variables that split next to the leaves do not 
influence that much the prediction error. To have quantitative method for the idea just 
explained we need to introduce two concepts [62]: the maximal ν-subtrees and the 

Fig. 5  Top twelve pairwise co-influence on y calculated by method in [62]
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minimal depth. Given a tree T  , a ν-subtrees Tν is a subtree of T  whose root is split using 
ν ; a maximal ν-subtrees is a ν-subtrees that is not a subtree of a larger ν-subtrees. The 
minimal depth Dν is the distance from the root of T  to the root of the closest maximal ν
-subtrees, that is Dν measures the distance from the root of the first split on ν . The idea 
explained above can be expressed in terms of the minimal depth as follows: the smaller 
Dν the higher the impact of ν on the prediction error.

We apply this method whose result is shown in Table 3, which reports a matrix where 
the diagonal element (i, i) represents the normalised (to have a number in the interval 
(0, 1) ) minimal depth Di of variable i, and the off-diagonal element 

(

i, j
)

 indicates the nor-
malised minimal depth Di

j of variable j with respect to the maximal i–subtree Ti , that 
is Di

j measures the distance from the root of Ti of the first split on j. Variables having 
smaller values on the diagonal are more predictive. Small value on the diagonal element 
(i, i) together with small value on the off diagonal element 

(

i, j
)

 is a sign of significant 
co-influence on y between variables xi and xj . This method provides similar results to 
the one based on the pairwise importance, indeed smaller values of both diagonal and 
off-diagonal elements correspond to initial BMI0 , CME , A, PME , FME and S while the vari-
ables related to the physical activity shows higher values.

As shown in Table  3, we noted that age and diet, taken together, play a significant 
influence on the outcome y , that is, on the overall risk of progressing to T2D. The same 
can be said for gender and diet. Conclusions on the effect of physical activity can not 
be appreciated at least on a time horizon of 6 months, as we already pointed out when 
discussing the variables’ importance, while the co-influence of either gender or age with 
the number of physical activities performed per week has an impact on the risk of T2D 
larger than the impact of the duration and the intensities of the bouts of exercises.

Conclusions
Effective prevention of type 2 diabetes onset in the population can be helped by close 
and regular checks for early detection of signs of progression into the disease. A tool 
which allows self-assessment based on lifestyle parameters, however approximate, 
remains a very valuable and beneficial means to increase awareness of the risk of T2D. 
Nowadays, tools of this kind are within technological reach thanks to the wide-spread 
use of monitoring devices able to keep track of exercise and dietary patterns and, at 

Table 3  Pairwise co-influence obtained through  maximal subtrees methods. Smaller 
numbers in the matrix (e.g. < 10−1 ) indicate higher influence on y of the corresponding pair 
of variables

BMI0 CME A PME FME S NPA SPA IPA

BMI0 0.04 0.07 0.07 0.09 0.09 0.13 0.13 0.16 0.22

CME 0.06 0.06 0.07 0.08 0.08 0.14 0.12 0.15 0.21

A 0.06 0.07 0.07 0.07 0.07 0.13 0.11 0.14 0.20

PME 0.06 0.07 0.07 0.09 0.08 0.15 0.10 0.13 0.19

FME 0.06 0.07 0.08 0.07 0.10 0.15 0.10 0.13 0.18

S 0.07 0.07 0.07 0.07 0.08 0.11 0.09 0.12 0.18

NPA 0.08 0.08 0.09 0.08 0.08 0.21 0.18 0.14 0.20

DPA 0.10 0.10 0.13 0.11 0.11 0.31 0.13 0.20 0.20

IPA 0.21 0.15 0.22 0.15 0.15 0.68 0.22 0.24 0.26
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the same time, the coming into view of computational methods which estimate the 
risk of progressing from the healthy (i.e. pre-diabetic) to the disease condition.

The present study shows that it is possible to positively exploit these technologies. 
Smartphones, tablets, wristwatches and wearable devices are, and increasingly will be, 
used in everyday life as tools with the potential to foster a proper and healthy life, cre-
ating a positive impact on users with an improved effect on the quality of life. Today, 
the ability to estimate an individual patient’s trajectory risk in real-time remains poor. 
Knowledge of a patient’s dynamic risk profile may allow physicians to modify targeted 
and step by step changes in the T2D care plan that will alter the patient’s outcome tra-
jectory [20]. At present, computational tools which exploit the availability of massive 
data collected by personal assistant devices employing ML techniques are the focus of 
a great deal of research efforts. Considering recent improvements in healthcare deliv-
ery technologies like smartphone applications, device connectivity, artificial intelli-
gence and machine-learning technology there is strong opportunity to reach better 
efficiency in pre-diabetes and diabetes care, and ameliorate patient involvement in 
diabetes self-management, which can decrease the surge of diabetes-related health-
care expenditures, paving the way to the future scenario of patient-driven diabetes 
care in the technology era [66]. Also, this new approach has great potential as a low-
cost monitoring tool for nutritional habits and physical activity of different segments 
of the population, permitting their users to achieve knowledge hardly comprehensible 
by even the best expert.

In this work, we have shown how a computational model running very complex 
simulations of realistic multivariate scenarios can be used to feed a machine learn-
ing method which demonstrated to perform satisfactorily to predict the risk of 
T2D using notably less time and computational resources, making it compliant for 
mobile devices use and for customized and immediate responses to the users. Here 
we focused on the prediction of the final state of the simulator has given some ini-
tial conditions, therefore in the current implementation the ML model provides a 6 
months ahead risk of T2D to the users; this time horizon will be extended to pre-
dict the whole dynamic of the simulator. This extension, that will be presented in due 
time [45], will provide the complete dynamic of the variables related to T2D risk, thus 
becoming a powerful instrument for users as a short- and mid-term assessment tool. 
In perspective, the ability to link the subject’s parameters with measuring devices 
such as those in portable communication systems (smartphones and wristwatches) 
enables the development of health care systems linked in real-time to issue alerts, 
warnings or simple recommendations to the patient [35]. In the near future, the “real-
time” execution of the model, with completely customizable input parameters can be 
envisaged as a dedicated bioinformatics service, able to provide increasingly person-
alized healthcare and facilitating self-monitoring.

We conclude by looking at the near future, where we envision at least two avenues 
of research. A new era of medicine is opening up by combining traditional data from 
randomised clinical trials with new real-world data, collected from registries, elec-
tronic health records, social media, and wearable devices which produce real-world 
evidence, which can both uncover potential predictors of diabetes or challenge several 
RCTs data so far collected [32].
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A final word should be spent to mention how needed is to open a bioethical debate 
(beyond, and in respect to, the EU General Data Protection Regulation or any other 
national regulations) on how to use and secure sensitive health data obtained by wear-
able devices, at stake, there are ethical questions about practices aimed at monetizing 
the patients’ data rather than therapeutic quality improvement [67].
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