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Background
The development of next-generation sequencing (NGS), which performs high-through-
put parallel sequencing of short DNA fragments, has greatly facilitated the analysis of 
genetic information [1]. NGS has made an important contribution to cancer research, 
including the understanding of cancer initiation, progression, and treatment [2–4]. 
Single nucleotide variant (SNV) and short insertion or deletion (InDel) are changes in 
genetic information of very small length and occur with very low frequencies. Variant 
calling algorithms for these variants, especially in the somatic cell, have been developed 
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[5], and the close relationship between the somatic variant and the human caner has 
been known [6, 7].

Various methods have been applied to study the effect of somatic variant on the 
human cancer [8–11]. Somatic variants that could affect the selection of treatment 
and response of melanoma were studied based on the case-control study [8]. In [9], the 
driver genes for breast cancer metastasis were discovered by using the synonyms and 
non-synonymous ratio. A new ranking system calculating relative importance of somatic 
variants was proposed considering its effect size [10]. Furthermore, the pattern compari-
son of somatic variants between primary and metastatic tumors was performed for two 
colorectal cancer patients [11].

If the data to be analyzed has a large number of features, a subset of features can effi-
ciently describe the data while reducing unrelated features [12]. Because somatic vari-
ants are high dimensional information and related to various characteristics of the 
individual, it is important to find variants that are closely associated with the cancer [13, 
14]. In general, the feature selection method can be divided into the filter method, wrap-
per method, and embedded method [13, 15]. The filter method measures the impor-
tance of a subset of features according to the predefined criteria. Therefore, the filter 
method has less computational burdensome. On the other hand, the wrapper method 
is computationally expensive because it uses the prediction model with learning process 
to select a subset of features. Then, it usually provides very good performance. Finally, 
the embedded method combines the advantages of previous two methods by selecting a 
subset of features as part of the learning process.

Researchers have developed cancer-related feature selection algorithms for various 
genetic information [16–22]. In case of [16], the genetic algorithm-based feature selec-
tion method was applied to improve the decision-making process considering the tissue 
image of breast cancer patients. To find the set of genes for cancer classification, the 
quantum-behaved binary particle swarm optimization (BPSO) [17], the forward search 
method considering the weight local modularity [18], and the kernel-based clustering 
method for gene selection using double radial basis function kernels [19] were suggested. 
On the other hand, the identification methods of cancer-driving variants were developed 
by considering mutation timing of variants [20] and utilizing the gradient tree boost-
ing and iterative search method [21]. Micro-RNA variants associated with metastasis of 
endometrial cancer were also analyzed using the recursive elimination technique in [22].

To understand the human cancer, it is necessary to comprehensively study the algo-
rithm that selects the small number of variants related to the cancer’s specific character-
istics. Despite previous studies, the extraction of genetic variants that are significantly 
associated with the cancer’s characteristics is still a difficult problem because of enor-
mously high dimensionality of genetic information. Although the filter-based feature 
selection requires a relatively short time compared to other methods, the filter method 
also requires a lot of computations in case of genetic information. At the same time, the 
high performance of selection also needs to analyze complex and delicate functions of 
genetic information. In this paper, we propose a new modified filter-based feature selec-
tion method by improving computational complexity and classification performance for 
the selection of cancer-associated somatic variants. We mainly addressed the following 
issues here:
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•	 The concept of dual correlation filter-based feature selection (DCFS) is proposed to 
extract all the significant features associated with one of the opposing characteristics 
while avoiding redundancy using multiobjective optimization.

•	 The weight value based on DCFS estimates the importance of features and is utilized 
to overcome the computational complexity problem of feature selection in high-
dimensional data.

•	 The proposed DCFS-based method is applied to extract cancer-associated variants 
to identify melanoma metastasis or detailed stages of breast cancer. Then, the clas-
sification performance of proposed method is compared with that of conventional 
single correlation-based feature selection (CFS).

Results
Data sets

The national cancer institute (NCI) shares the genomic data of cancer through the data 
repository called genomic data common (GDC). We obtained annotated somatic vari-
ant files of patients with melanoma (SKCM) or breast cancer (BRCA) from the GDC 
portal (https​://porta​l.gdc.cance​r.gov/). Table 1 summarizes information for two data sets 
analysed in this paper. Regarding the melanoma metastasis, there are a total of 467 files 
in the SKCM set consisting of 104 primary tumors and 363 metastatic tumors. Regard-
ing the stage II breast cancer, there are a total of 537 files for stage IIA (314) or stage 
IIB (223) tumors in the BRCA set. For the SKCM set, melanoma patients with primary 
tumors were defined as the negative class, and melanoma patients with metastatic 
tumors were defined as the positive class. On the other hand, for the BRCA set, we set 
breast cancer patients of stage IIA as the negative class and stage IIB as the positive class.

Somatic variant files in SKCM and BRCA sets contain SNVs and InDels, and they 
were generated according to the DNA-Seq analysis pipeline. This pipeline includes the 
elimination of germline variants, the comparison of allele frequencies between paired 
normal and tumor samples, the quality control of the alignment workflow, and the 

Table 1  Number of samples and variants of two data sets

SKCM

Number of sample Negative class Positive class All

Primary tumor Metastatic tumor

363 104 467

Number of variant All After filtering

Step1 Step2 Step3

1,298,172 414,954 409,389 200,814

BRCA​

Number of sample Negative class Positive class All

Stage IIA Stage IIB

314 223 537

Number of variant All After filtering

Step1 Step2 Step3

424,415 88,514 75,161 37,449

https://portal.gdc.cancer.gov/
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annotation of each variant. VarScan2 [23] was utilized for the somatic variant calling, 
and FREQ value of each somatic variant was calculated. FREQ represents the proportion 
of reads at a particular site that contains the variant. For example, if there are 10 reads 
and only 6 of them have the variant at the particular location, then its FREQ value is 
(6/10)× 100 = 60%.

Classification performance measurements

When there are two classes defined as the positive and negative, there are four classifica-
tion results: true positive (TP), true negative (TN), false positive (FP), and false negative 
(FN). TP means that the data in the positive class is correctly classified as positive. On 
the other hand, TN means that the data in the negative class is correctly classified as 
negative. Conversely, FP and FN indicate that data in the positive and negative classes 
are miss-classified as opposite classes, respectively. The classification accuracy (Acc) rep-
resents the percentage of correctly categorized data as follows

When we consider the unbalanced data, high Acc can be achieved even if all data is 
classified into one class. In this case, F1 score may be a more fair classification perfor-
mance measurement. F1 is the harmonic mean of the precision and recall. The precision 
( Pr = TP

TP+FP ) calculates the number of actual positive data out of the data classified as 
the positive. On the other hand, the recall ( Re = TP

TP+FN  ) calculates the number of data 
that are correctly classified as the positive out of all actual positive data. Then, F1 is rep-
resented as follows

The range of two measurements are [0, 1]. The larger value indicates the better classifica-
tion performance.

Variant filtering results

The 3-step variants filtering was conducted for both SKCM and BRCA sets as follows. 

Step 1 	� Using ANNOVAR [24], we conducted annotations for somatic variants and 
identified the functional role of each variant. Then, only the variant that 
could directly affect protein synthesis were remained. After filtering, there 
were only the non-synonymous variants in coding regions.

Step 2	� To remove somatic variants commonly detected in humans, three public 
databases of gnomAD, ESP6500, and ExAC were investigated, and somatic 
variants reported in these databases were removed. On the other hand, vari-
ants that were reported in COSMIC database [25], which is the global data-
base of somatic variants found in human cancer, were contained in our anal-
ysis even if they were registered in gnomAD, ESP6500, or ExAC.

Step 3	� The reliability of a somatic variant was confirmed by considering FREQ val-
ues of tumor sample and its paired normal sample. Only the variants which 
have FREQ ≥ 10 in the tumor sample and have FREQ = 0 in its paired nor-
mal sample were extracted after filtering. On the other hand, the variants 

(1)Acc =
TP + TN

TP + FP + TN + FN
.

(2)F1 =
2

Pr−1 + Re−1
= 2×

Pr × Re

Pr + Re
=

2× TP

2× TP + FP + FN
.
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having p-value > 0.01 in Fisher’s t-test were removed.

 As a result, we got the variants data matrix ESKCM ∈ R
467×200,814 for SKCM set 

and EBRCA ∈ R
537×37,449 for BRCA set. The number of variants for the two data sets 

according to the filtering steps are shown in Table 1.

Classification using DCFS weighting algorithm with BPSO

We used the proposed DCFS weighting algorithm for cancer-associated somatic vari-
ants selection for the SKCM and BRCA sets. To confirm the performance of the pro-
posed DCFS-based feature selection, we also applied the conventional CFS concept to 
the proposed weighting algorithm instead of DCFS. Pearson’s correlation coefficient 
(PCC), which is a basic measurement of linear correlation between two variables, was 
applied for correlation analysis in this study. After selecting top D1 variants, BPSO 
[17] was applied to the selected D1 variants to find the optimal set of cancer-associ-
ated variants that maximize the classification performance. The utilized parameters 
for the weighting algorithm and BPSO are listed in Table 2. We set F1 score as the fit-
ness function. To measure classification performance, support vector machine (SVM) 
[26] with k-fold cross validation was applied with k = 10.

In Table 3, the number of selected variants (Num), classification accuracy (Acc), and 
F1 score ( F1 ) for selected D1 and D2 variants are compared. CFS-D1 and DCFS-D1 refer 
to the case of using selected D1 features considering CFS-weight and DCFS-weight 
for classification, respectively. On the other hand, CFS-D2 and DCFS-D2 indicate the 
case of using selected D2 features considering CFS-weight and DCFS-weight for clas-
sification, respectively. For the SKCM set, the number of selected cancer-associated 
variants was reduced maintaining classification performance in the case of DCFS-D2 
than DCFS-D1 . At D1 = 400 and D1 = 500 , the classification performance in the case 
of CFS-D2 was improved compared to the case of CFS-D1 . For the BRCA set, the case 
of CFS-D2 could have improved performance than the case of CFS-D1 at D1 = 200 and 
D1 = 300 . However, classification performances at D1 = 400 and D1 = 500 were not 
significantly improved. On the other hand, the case of DCFS-D2 was able to choose a 
feature set with high classification performance in all cases.

Table 2  Parameters for weighting algorithm and BPSO

Parameters for weighting algorithm Value

Size of a random feature subset ( �) {2, 3, . . . , 100}

Iteration time for weighting algorithm ( T1) 106

Parameters for BPSO Value

Iteration time for BPSO ( T2) 100

Control weight (a) 0.5

Acceleration constants ( c1,c2) 2

Minimum velocity ( Vmin) −6

Maximum velocity ( Vmax) 6

Number of particles (P) 100
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Classification using DCFS weighting algorithm with machine learning

Using selected D1 features, we performed classifications of SKCM and BRCA sets by 
applying deep neural network (DNN). The utilized DNN structure consisted of two 
fully-connected hidden layers with 512 and 256 neurons, respectively. ReLU was used as 
the activation function for hidden layers, and softmax was applied to the output layer for 
binary classification. The batch size was 50, and the number of epochs was 100. We cal-
culated the average Acc value when the 30% of the randomly selected test samples were 
classified using the model trained with remained samples. We implemented the model 
using the DNNClassifier class from tensorflow’s tf.estimator module.

Figure 1 provides the classification accuracy in the case of using D1 and D2 variants 
selected based on CFS-weight and DCFS-weight for the SKCM and BRCA sets. In gen-
eral, Acc value of SKCM set was higher than that of BRCA set. When the number of 
selected features were increased, classification performances were also increased. There-
fore, we could confirm that the performance of DNN classifier is affected by the number 
of features used for classification. Also, the classification performances of CFS-weight 
and DCFS-weight were similar when using the D1 or D2 features. For the BRCA set, the 
classification performance when using the D1 features was relatively larger than when 
using the D2 features. This phenomenon was also found for the SKCM set, but the gap 
between two cases using D1 and D2 features was relatively small.

Table 3  Classification results of CFS and DCFS weighting algorithm using BPSO

D1 Case SKCM BRCA​

Num F1 Acc Num F1 Acc

50 CFS-D1 50 0.87 0.78 50 0.72 0.57

CFS-D2 24 0.87 0.78 23 0.74 0.58

DCFS-D1 50 0.87 0.77 50 0.74 0.59

DCFS-D2 17 0.87 0.78 25 0.74 0.59

100 CFS-D1 100 0.87 0.77 100 0.47 0.50

CFS-D2 52 0.87 0.78 43 0.74 0.58

DCFS-D1 100 0.85 0.74 100 0.74 0.59

DCFS-D2 49 0.88 0.78 47 0.74 0.59

200 CFS-D1 200 0.82 0.71 200 0.47 0.58

CFS-D2 88 0.87 0.78 89 0.73 0.58

DCFS-D1 200 0.85 0.74 200 0.73 0.58

DCFS-D2 87 0.88 0.79 84 0.74 0.61

300 CFS-D1 300 0.89 0.66 300 0.42 0.56

CFS-D2 146 0.87 0.78 129 0.69 0.55

DCFS-D1 300 0.85 0.75 300 0.72 0.57

DCFS-D2 144 0.87 0.77 139 0.74 0.60

400 CFS-D1 400 0.69 0.60 400 0.39 0.55

CFS-D2 191 0.87 0.78 200 0.48 0.58

DCFS-D1 400 0.85 0.74 400 0.72 0.57

DCFS-D2 214 0.87 0.78 199 0.74 0.60

500 CFS-D1 500 0.64 0.56 500 0.36 0.54

CFS-D2 256 0.87 0.78 254 0.47 0.57

DCFS-D1 500 0.85 0.74 500 0.51 0.47

DCFS-D2 239 0.87 0.78 251 0.73 0.59
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Discussion
Pathway and phenotype analysis

To ensure the reliability of the selected significant features, variant filtering was con-
ducted before the feature selection. However, there is no guarantee that the selected fea-
tures will actually affect the phenotype of the disease [27]. Thus, in order to conclude 
that the features selected by the proposed method are not accidentally discovered and 
are actually associated with cancer, clinical studies should confirm their role in cancer 
biology. Several cancer-related genes are known to be associated with more than one 
cancer, and pathway analysis can explore biological causes by examining changes in gene 
expression caused by mutations. Therefore, we performed pathway and phenotype anal-
ysis for selected variants to discuss their biological significance related to human disease.

The human phenotype ontology (HPO) provides phenotypic abnormalities encoun-
tered in human disease [28]. The disease association of the gene containing the selected 
variant was confirmed through the HPO database. On the other hand, kyoto encyclope-
dia of genes and genomes (KEGG) provides a collection of pathway maps and a collec-
tion of disease entries focusing only on the perturbants [29]. We investigated HPO and 
KEGG databases to see if a relationship between pathway and disease was reported for 
the gene in which the selected variant was present. We also searched COSMIC database, 
which summarizes the effects of variants on human cancers.

Tables  4 and 5 provide search results for HPO, KEGG, and COSMIC databases 
of the selected variants in the case of using DCFS-D2 at D1 = 50 for the SKCM and 
BRCA data sets, respectively. For the SKCM set, 5 genes and 6 genes were found 
in HPO and KEGG databases, and 6 variants were reported in COSMIC database. 
Among the 17 selected variants, there were 3 variants that were not registered in any 
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Fig. 1  Classification results in case of using machine learning. This figure shows the classification results 
of two data sets using DNN classifier according to the number of selected features. For the SKCM set, DNN 
classifier could perform good classification in cases of using D1 and D2 features regardless of CFS and DCFS. 
For the BRCA set, DNN classifier had similar performance for CFS and DCFS methods, but the gap between 
the cases using D1 and D2 features was relatively large



Page 8 of 19Seo and Cho ﻿BMC Bioinformatics          (2020) 21:486 

of the three databases. For the BRCA set, information about 6 genes and 10 genes 
were collected from HPO and KEGG databases, respectively. In the case of COSMIC 
database, 18 variants among 25 selected variants were reported in association with 
human cancer. On the other hand, there were 3 variants that were not detected in 
three databases.
BRAF, NRAS, and KIT are three well-known genes associated with melanoma, and 

BRCA1 and BRCA2 are two representative genes associated with breast cancer. The 
genes that play a role in inducing or inhibiting metastasis have been actively studied, 
but have not yet been clearly identified. Also, the genes involved in cancer progres-
sion are well known, but the detailed progression of subgroup classification of stage 
II breast cancer has not been addressed. Since we confirmed the relationship between 
cancer and disease for most of the extracted genes, it is worth to study the biologi-
cal function of the extracted genes for melanoma metastasis or subgroup of stage II 
breast cancer through clinical studies.

Effect of correlation analysis method

To compare the impact of correlation analysis method on the proposed DCFS 
method, we considered PCC and Spaerman’s rank correlation coefficient (SCC). PCC 
is a famous measure of the correlation between two data sets. PCC is defined as

Table 4  Selected variants for SKCM in case of using DCFS-D2 at D1 = 50

CHR START​ REF ALT GENE HPO KEGG COSMIC

1 190098828 C T BRINP3 COSM1689444

2 37231652 G A NDUFAF7 ko04714

2 137450953 G A THSD7B

2 178756687 C T TTN OMIM:604145; OMIM:608807; 
ORPHA:169186; OMIM:600334; 
OMIM:611705; OMIM:613765; 
OMIM:603689; ORPHA:324604; 
ORPHA:609

ko05410; ko05414; 
H00292; H00294; 
H00593; H00594; 
H01976

 COSM1482258; 
COSM1482259; 
COSM1482261; 
COSM1482257; 
COSM1482260

4 137531580 G A PCDH18 COSM3428175

5 13753490 G A DNAH5 ORPHA:244; OMIM:608644 COSM1695413

6 56067320 C T COL21A1 COSM1445258; 
COSM1445259

8 76852088 C T ZFHX4 OMIM:178300

9 127937878 C T DPM2 ORPHA:329178; OMIM:615042 ko00510; ko00563; 
ko01100; H00118

11 55367976 G A OR4A15 COSM106310

11 61792641 G A FEN1 ko03030; ko03410; 
ko03450

15 64163030 G A PPIB OMIM:259440 H00506

16 20032148 G A GPR139 COSM967969

19 45691963 C T SNRPD2 ko03040

19 45691983 C T SNRPD2 ko03040

20 35542046 G A ERGIC3

20 42098471 C T PTPRT
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Table 5  Selected variants for BRCA in case of using DCFS-D2 at D1 = 50

CHR START​ REF ALT GENE HPO KEGG COSMIC

1 43305332 G T TIE1 COSM3805284;  
COSM3805283

2 46576099 C G RHOQ ko04910

2 131528196 G C CCDC74A COSM1752030

2 178562952 G C TTN OMIM:604145; OMIM:608807; 
ORPHA:169186; OMIM:600334; 
OMIM:611705; OMIM613765; 
OMIM:603689; ORPHA:324604; 
ORPHA:609

ko05410; ko05414; 
H00292; H00294; 
H00593; H00594; 
H01976

COSM1482258;  
COSM1482259;  
COSM1482261;  
COSM1482257;  
COSM1482260

3 37347240 G A GOLGA4 COSM1044027

5 31401487 C A LVRN

5 36152895 G T SKP2 ko04068; ko04110; 
ko04120; ko04150; 
ko05169; ko05200; 
ko05203; ko05222

5 115983289 C G DROSHA ko03008; ko05205 COSM3827928

6 47682558 G T ADGRF2

6 83168072 A C DOPEY1 COSM3831123;  
COSM3831122

8 19405982 C T CSGALNACT1 ko00532; ko01100 COSM454271

10 50841872 A T A1CF COSM3807316;  
COSM3807318;  
COSM3807317

11 78812245 T C TENM4 OMIM:616736

14 19920797 G A OR4K5 COSM1663253

14 23386104 C A MYH6 OMIM:613251; OMIM:613252; 
OMIM:614089; OMIM:192600; 
ORPHA:154

ko04022; ko04260; 
ko04261 ko04919; 
ko05410; 
ko05414; ko05416; 
H00292; H00294; 
H00546; H00594; 
H00656; H00703; 
H01216; H01977

COSM1477478

14 67725248 C A ZC3H14 ORPHA:88616; OMIM:617125 H00768 COSM1477814

14 76831292 C T RDH12 ORPHA:791; ORPHA:65; 
OMIM:612712

ko00830; ko01100; 
H00837

COSM3815158

14 88572068 G C LRRC74A COSM3815383

15 48168740 C A MYEF2 COSM1373221

17 37274266 G A ACACA​ OMIM:613933 ko00061; ko00254; 
ko00620;ko00640; 
ko01100; ko01110; 
ko01120; ko01130; 
ko01212; ko04152; 
ko04910; ko04922

19 22304762 G A ZNF729 COSM439106

19 37635574 C T ZFP30

19 39390264 C A ZNF575 COSM3823309

19 43534433 G A PAF1 ko04011 COSM3823010

20 44614698 G A PKIG COSM443871
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where µa and µb refer to the mean value of the vector a and b , respectively. The range of 
PCC values is [−1, 1] . The closer to 1, the higher is the positive correlation. Conversely, 
the closer to -1, the higher is the negative correlation, and 0 means no correlation. PCC 
measures linear relationships between two vectors a and b . On the other hand, SCC can 
consider nonlinear relationships where the amount of change is not constant. Instead of 
raw data a and b , SCC is calculated based on ranking values ra and rb:

where µra and µrb refer to the mean value of ra and rb , respectively. The range of SCC 
values is also [−1, 1].

Based on PCC and SCC, DCFS-weighting algorithm selected D1 variants, and BPSO 
was applied to get DCFS-D2 . Figure 2 illustrates the number of selected variants accord-
ing to D1 . In general, PCC and SCC selected similar number of features for both SKCM 
and BRCA data sets. Furthermore, classifications were performed using SVM and k-fold 
cross validation with k = 10 for the SKCM and BRCA data sets. Figure 3 compares the 
classification performances when PCC and SCC are utilized for DCFS-D2 according to 
D1 , respectively. In case of the number of selected variants, it was hard to see any spe-
cial trends according to the selection of correlation analysis method. Also, the classifica-
tion performances were similar for PCC and SCC. As a result, the choice of correlation 
analysis method had little effect on the classification performance of SKCM and BRCA 
data sets. When the correlation between two variables is week, the difference between 

(3)ρP(a, b) =

∑

i(ai − µa)(bi − µb)
√

∑

i(ai − µa)2
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∑
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2
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i(rai − µra)(rbi − µrb)
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Fig. 2  Impact of correlation analysis method on number of selected features. In this figure, the number of 
selected features when PCC and SCC are utilized for the proposed DCFS weighting algorithm with BPSO are 
compared. The number of selected features depended on the data set and D1 , and the influence of PCC and 
SCC was small



Page 11 of 19Seo and Cho ﻿BMC Bioinformatics          (2020) 21:486 	

the PCC and SCC values is small. However, when the correlation is strong, the difference 
between the two values becomes larger depending on whether the correlation is linear. 
In the SKCM and BRCA data sets, there were very few variants with strong correlations, 
and the impact of correlation analysis method seems to be small.

Complexity

CFS is a filter-based feature selection method and has the advantage of very fast compu-
tation. The complexity of the CFS merit maximization of Eq. (5) depends on the use of 
optimization methods. The proposed DCFS merit just needs a modified CFS merit cal-
culation of Eq. (6). Therefore, the increase of computational complexity of DCFS com-
pared to CFS is insignificant. When there are V variants and S samples with V >> S , the 
calculation complexity of DCFS merit follows O(V 2) , which is the same as the conven-
tional CFS merit calculation.

To find the optimal subset of features maximizing the DCFS merit, 2V − 1 calculations 
of the DCFS merit are required, and the complexity becomes O(2VV 2) . The proposed 
DCFS weighting algorithm can reduce the number of the DCFS merit calculation whose 
complexity is denoted as O(T1V

2) with T1 ≤ 2V .

Conclusions
In this study, we proposed the concept of DCFS to analyze cancer-associated 
somatic variants, containing SNVs and InDels. In order to reduce the computa-
tional complexity and to eliminate the effects of errors and biases, non-significant 
variants were removed considering the functional role, previous studies of disease 
association, and the reliability of variant. The DCFS merit was defined based on 
the multiobjective optimization to obtain the cancer-associated variants set related 
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Fig. 3  Impact of correlation analysis method on classification performance. This figure compares 
classification results of two data sets when PCC and SCC are utilized for the proposed DCFS weighting 
algorithm with BPSO. The classification performance was similar when using the two correlation analysis 
methods for both SKCM and BRCA sets
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to activation and deactivation of the cancer’s characteristics without redundancy. 
Because of high dimensionality of genetic information, we suggested DCFS weight-
ing algorithm to reduce the complexity of feature selection procedure. We applied 
our proposed algorithm to identify metastasis of melanoma or the subgroup of stage 
II breast cancer. BPSO was used for DCFS maximization for significant variant 
selection, and a neural network was applied for classification of data. In addition, 
pathway and phenotype analysis were performed to study the effects of the variants 
selected by the proposed algorithm on the cancer phenotype. As a result, we verified 
that proposed DCFS algorithm could select cancer-associated variants resulting in 
high classification performance. We also discussed the impact of the choice of cor-
relation analysis method on the proposed method. In summary, we believe that the 
proposed method can be applied to various analysis of genomic data and various 
feature selection analysis.

Methods
Variant filtering

Somatic variants, containing SNV and InDel, can be detected from NGS data by using 
various variant calling methods such as VarScan2 [23] and SomaticSniper [30]. After 
the variant calling, there are too many variants, and the non-critical variants also can 
be contained. We can remove the non-critical variants considering the functional role 
of variant, previous researches on variant, and the reliability of variant. The 3-step 
filtering procedure is summarized in Fig. 4. 

Step 1 	� The functional role of variant is identified. The variants in non-coding 
regions that affect cancer have been studied [31, 32]. However, the analysis of 
variant in the non-coding region is still more challenging than in the coding 
region, because it is difficult to interpret the functional role of variant. We 
focus on studying variants in coding regions that are directly related to pro-
tein synthesis. Therefore, only the variants in coding regions including exons, 
3 ′ UTR, and 5 ′ UTR are extracted. Even if the variant is in the coding region, 
the amino acid sequence may not be modified and may not cause actual pro-
tein-coding change. This silent variation is called synonymous variant and 
removed with ambiguous variants, which are caused by error in sequencing 
and calling procedures.

Step 2	� The previous researches on variant are investigated. The significant variant 
related to cancer is not commonly detected in humans. Therefore, we exclude 
the variant if it is already registered in public databases. However, the variant 
is re-included in the study if previous studies have reported the effect of the 
variant in the human cancer.

Step 3	� The reliability of variant is confirmed. For the quality control of data, it 
should be confirmed that the variant dose not occur accidentally during the 
process of variant acquisition. Also, it is necessary to take into account the 
association with the cancer. Therefore, the variant is selected when the reads 
having the variant occur frequently in cancer samples and do not occur in 
normal samples.
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DCFS

There are two types of cancer-associated variants that encourage and suppress the 
expression of certain characteristic of cancer. Both types of cancer-associated vari-
ants should be considered. However, if we extract these two types of variants sep-
arately, some of extracted variants can be included in both types. Therefore, we 
propose the concept of DCFS utilizing the multiobjective optimization to eliminate 
these redundant variants and generalize the correlation-based cancer-associated vari-
ants selection.

In [33], a filter-based feature selection method based on the correlation of data 
called CFS was proposed. CFS approach selects the least number of features that are 
closely related to the data class. In other words, CFS selects a set of features that are 
strongly correlated with the class but not each other. The merit criterion of CFS for a 
feature set f  consisting of n features are as follows:

where rf c  is the mean of the correlations between a feature and the class, and rf f  is the 
mean of the correlations between two features. The optimal subset of features with the 
maximum merit is selected.

(5)MCFS =
nrf c

√

n+ n(n− 1)rf f
,

Functional role 
identification

Reliability 
confirmation

Variants

Filtered variants

• The variant is in the coding region.
• The variant affects protein-coding sequence.

Previous research
investigation

• The variant does not occur in humans in common.
• The role of the variant in the cancer has already been known.

• The discovery of variant is not a coincidence.
• The variant is closely related to the cancer samples.

Fig. 4  3-step variant filtering procedure. Three steps of filtering for cancer-associated variants extraction are 
illustrated in this figure. In the first step, we identified the functional role of variant considering whether it 
directly affects protein synthesis. Next, we searched public databases to eliminate non-critical variants, and 
also referred to previous studies to include variants known to be important for the cancer. Finally, the last 
step confirmed that the variant did not occur accidentally during the sequencing or variant calling and was 
deeply related to the cancer samples
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The proposed DCFS extends CFS to find the smallest feature subset associated with 
two conflicting classes of data. The set of significant features in DCFS satisfies the fol-
lowing two conditions:

•	 The selected feature is highly correlated with only one class.
•	 The selected features are not correlated with each other.

The first condition constrains the selected feature to be not correlated to both opposing 
characteristics. The second condition encourages that there is no duplicate information 
in the selected feature set. Let the data can be divided as two classes: positive or nega-
tive. Then, we can define two merit criterion Mp and Mn . In the case of Mp , the selected 
features are the set of significant features specifically associated with the positive class. 
Also, in the case of Mn , the selected features are specifically related to the negative class. 
DCFS maximizes Mp and Mn taking into account the relationship between features and 
the two classes simultaneously.

Let the data matrix be E , where an element esv refers v-th feature of s-th sample for all 
v ∈ {1, 2, . . . ,V } and s ∈ {1, 2, . . . , S} . Then, a column vector ev means values of v-th fea-
ture of all S samples. Also, the column vector cp and cn represent the positive and nega-
tive class index of samples, respectively. If the selection vector is x , where an element 
xv ∈ {0, 1} for all v ∈ {1, 2, ...,V } , xv = 1 means that v-th feature is selected. On the other 
hand, xv = 0 means v-th feature is not selected. To consider both objective functions Mp 
and Mn at the same time, we use the multiobjective optimization problem. Then, x is 
determined by following equation:

where α ∈ [0, 1] is a scalarization parameter, |x| =
∑

v xv is the number of selected fea-
tures, ree(x) is the mean of the correlations between any two features, recp(x) is the mean 
of the correlations between a feature and the class index cp , and recn(x) is the mean of 
the correlations between a feauture and the class index cn . These three mean correlation 
values are defined as

where a · b refers the element-wise multiplication between the vectors a and b of the 
same length, and ρ(a, b) is the correlation coefficient between a and b . In Eq. (6), the 

(6)

argmax
x

MDCFS

= argmax
x

αMp + (1− α)Mn

= argmax
x

α
|x|recp(x)

√

|x| + |x|(|x| − 1)ree(x)
+ (1− α)

|x|recn(x)
√

|x| + |x|(|x| − 1)ree(x)
.

(7)ree(x) =
1

|x|(|x| − 1)
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∀i,j �=i
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scalarization parameter α ∈ [0, 1] adjusts the importance of the two objective functions, 
which are Mp and Mn . For the multiobjective optimization problem, there may not be a 
single solution because multiple objective functions can conflict with each other. In this 
case, there is one or more Pareto optimal solutions. Pareto solutions mean that we need 
to reduce other objective values to improve one objective value. The linear scalarization 
finds the most appropriate Pareto optimal solution using the parameter α . When α = 1 , 
the correlation with the positive class determines the objective function and only the 
positive class related features are extracted. Conversely, if α = 0 , the features associated 
with the negative class are selected considering the correlation with the negative class. If 
let α = 0.5 , the problem fairly considers two objective functions, and significant features 
related to both classes are extracted without duplicating information.

DCFS weighting algorithm

If the data dimension is very large, selecting the optimal subset of features based on the 
filter method is also complex. Therefore, we define the DCFS-weight to indicate the 
expected importance of each feature. Then, we can pre-select candidate critical features 
to alleviate the computational complexity problem.

To calculate the DCFS-weight for each feature, the proposed DCFS weighting algo-
rithm iteratively performs DCFS calculation on a randomly selected subset of features. 
Let the number of iteration be T1 . The sum of DCFS values of each feature is defined 
as the vector wval = (wval

1 ,wval
2 , . . . ,wval

V ) . Similarly, wnum = (wnum
1 ,wnum

2 , . . . ,wnum
V ) is 

defined to count the number of times that each feature is selected during T1 iterations. 
Both wval and wnum are initialized with a zero vector and updated through T1 iterations. 
At a t-th iteration, a size of feature subset φt ∈ � is randomly determined, and φt fea-
tures are randomly selected among V features. Then, DCFS value, which is MDCFS(E

t) , is 
calculated from Et , which is the data matrix only for selected feature subset I t , and wval

i  
and wnum

i  for all i ∈ I t are updated. MDCFS(E
t) is added to wval

i  for all i ∈ I t , and wnum
i  is 

increased by 1 for all i ∈ I t . After T1 iterations, we can calculate the DCFS-weight vector 
as follows

By using the DCFS weighting algorithm, we can calculate the DCFS-weight w , and top 
D1 features are extracted as the candidate significant features.

After using the DCFS weighting algorithm, we can get the data matrix E′ only for the 
selected D1 features. By considering D1 << V  features, the DCFS merit optimization 
based on Eq. (6) requires lower computational complexity compared to the case consid-
ering all V features. BPSO [17] is applied to find the optimal set of features by maximiz-
ing MDCFS(E

′) . Particle swarm optimization (PSO) is an optimization method inspired 
by the social behavior of bird or fish groups [34, 35]. BPSO was developed for the dis-
crete search space by modifying PSO and can be applied to the feature selection [17, 36]. 
A feature selection is defined as a particle and is represented by a position vector that 
indicates whether each feature is selected or not. Each particle moves in the search space 
with the dimension D1 and updates its position information repeatedly to maximize 

(9)w = (w1,w2, . . . ,wV ) =

(

wval
1

wnum
1

,
wval
2

wnum
2

, . . . ,
wval
V

wnum
V

)

.
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the fitness function. The position vector of a particle at t-th iteration is represented as 
xtp = (xtp1, x

t
p2, . . . , x

t
pD1

) , and its movement velocity is vtp = (vtp1, v
t
p2, . . . , v

t
pD1

) for all 
paticles p ∈ {1, 2, . . . ,P} . At the (t + 1)-th iteration, the velocity and position vectors are 
updated as follows

where a is a weight value that controls the effect of the previous velocity, c1 and c2 are 
acceleration constants, r1 and r2 are random values in [0, 1] that follow the uniform dis-
tribution. Also, pbtp = (pbtp1, pb

t
p2, . . . , pb

t
pD1

) refers the best position of particle p 
known during t iterations, and gbt = (gbt1, gb

t
2, . . . , gb

t
D1
) refers the global best position 

among all the particles found during t iterations. The range of vt+1
pd  is restricted to 

[Vmin,Vmax] . For the feature selection, the element of position vector is restricted to 
{0, 1} using the sigmoid function. After updating xt+1

p  and vt+1
p  for all p ∈ {1, 2, . . . ,P} , 

the fitness function MDCFS(E
′) for all particles are calculated, and pbt+1

p  and gbt+1 are 
defined for the next iteration. After T2 iterations, the global best position gbT2 indicate 
the optimal feature subset consisting of D2 =

∑D1
d=1 gb

T2

d  features. Then, the features 
with gbT2

d = 1 for all d ∈ {1, 2, . . . ,D1} are selected. The pseudo-code of the proposed 
DCFS-based feature selection containing the DCFS weighting algorithm is shown in 
Algorithm 1.

(10)

vt+1
pd = avtpd + c1r1(pb

t
pd − xtpd)+ c2r2(gb

t
d − xtpd)

xt+1
pd =

{

1 if rand < 1

1+e
−vt+1

pd

0 otherwise.
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