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Abstract 

Background:  Identification of genes responsible for anatomical entities is a major 
requirement in many fields including developmental biology, medicine, and agricul-
ture. Current wet lab techniques used for this purpose, such as gene knockout, are 
high in resource and time consumption. Protein–protein interaction (PPI) networks 
are frequently used to predict disease genes for humans and gene candidates for 
molecular functions, but they are rarely used to predict genes for anatomical entities. 
Moreover, PPI networks suffer from network quality issues, which can be a limitation 
for their usage in predicting candidate genes. Therefore, we developed an integrative 
framework to improve the candidate gene prediction accuracy for anatomical enti-
ties by combining existing experimental knowledge about gene-anatomical entity 
relationships with PPI networks using anatomy ontology annotations. We hypothesized 
that this integration improves the quality of the PPI networks by reducing the num-
ber of false positive and false negative interactions and is better optimized to predict 
candidate genes for anatomical entities. We used existing Uberon anatomical entity 
annotations for zebrafish and mouse genes to construct gene networks by calculating 
semantic similarity between the genes. These anatomy-based gene networks were 
semantic networks, as they were constructed based on the anatomy ontology annota-
tions that were obtained from the experimental data in the literature. We integrated 
these anatomy-based gene networks with mouse and zebrafish PPI networks retrieved 
from the STRING database and compared the performance of their network-based can-
didate gene predictions.

Results:  According to evaluations of candidate gene prediction performance tested 
under four different semantic similarity calculation methods (Lin, Resnik, Schlicker, 
and Wang), the integrated networks, which were semantically improved PPI net-
works, showed better performances by having higher area under the curve values for 
receiver operating characteristic and precision-recall curves than PPI networks for both 
zebrafish and mouse.

Conclusion:  Integration of existing experimental knowledge about gene-anatomical 
entity relationships with PPI networks via anatomy ontology improved the candidate 
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gene prediction accuracy and optimized them for predicting candidate genes for 
anatomical entities.

Keywords:  Anatomy ontology, Uberon, Phenotype, Protein–protein interaction 
networks, Big data, Data integration, Candidate gene prediction, Data quality, Semantic 
similarity

Background
Unraveling the molecular function and associated phenotypes of proteins is a corner-
stone in molecular biology. In particular, understanding the genes associated with the 
formation of anatomical structures, also termed ‘anatomical entities’, is essential in 
developmental biology [1–4]. The majority of genes associated with anatomical entities 
are obtained using wet lab methods, such as gene knockout [5, 6], gene knockdown [7], 
and overexpression [8, 9]. These methods, however, are time-consuming and require sig-
nificant resources; thus only a few genes may be associated with the development of a 
particular anatomical entity, though there are likely more genes involved.

Alternatively, computational prediction methods for discovering gene-anatomical 
entity associations are employed because of their higher speed and low resource con-
sumption [10, 11]. Sequence similarity-based function prediction is such an example, 
which is widely used to predict the molecular functions of proteins [12, 13]. However, 
using this method to predict the anatomical associations of genes is questionable, 
because anatomical entities develop from a combination of several biological path-
ways that include proteins with diverse molecular functions and sequences [14]. On the 
other hand, protein–protein interaction (PPI) networks can be used to predict candi-
date genes for anatomical entities, based on the assumption that proteins that regulate 
the same anatomical entity or function are more likely to physically interact with each 
other [15–17]. PPI networks represent such interactions as graphs where proteins are 
represented by nodes and their interactions are represented by edges. PPI networks have 
been widely used in predicting candidate genes for human disease phenotypes [18–20], 
but rarely used for predicting candidate genes associated with anatomical entities [17]. 
The main challenge with PPI network-based candidate gene prediction is to improve the 
accuracy of the predictions [15, 21–24], which are low because of the poor quality of 
large-scale PPI network data sets [16, 24–26]. PPI networks are generated by experimen-
tal methods, such as yeast two-hybrid assay and high-throughput mass-spectrometric 
protein complex identification, which can generate false positive interactions [22]. Fur-
thermore, PPI networks for model organisms are still incomplete and the quality of data 
varies depending on the model [21, 27]. For instance, well studied organisms such as 
human and mouse contain more complete PPI network data sets compared to Xenopus 
or zebrafish [16, 23].

The STRING database is the most widely used PPI database, and it currently contains 
PPI networks for 5090 (05/15/2020) organisms [21, 28]. To improve the quality of PPI 
network data, the STRING database also computationally predicts the strength of an 
interaction between two proteins based on properties such as co-expression in addi-
tion to experimental evidence. This results in additional quality-controlled PPI network 
datasets. However, the STRING database does not incorporate experimental evidence 
regarding proteins that are regulating similar anatomical entities, which motivated us to 
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integrate such experimental evidence based on the assumption that two proteins regu-
lating similar anatomical entities are more likely to interact with each other.

The information regarding gene-anatomical entity associations that are discovered via 
wet lab techniques, such as gene knockout, is recorded in literature, annotated to model 
organism databases using anatomy ontologies and is available through databases and 
integrated repositories such as the Monarch Initiative [29, 30]. The anatomical entity 
associations of genes in the Monarch Initiative repository are annotated using Uberon 
anatomy ontology entities [31–33]. Such ontology annotations enable the calculation of 
the functional similarity between any two genes using computational methods [34–37]. 
By calculating the pairwise similarity for all the gene pairs using the anatomical anno-
tations for each gene, a semantic gene network can be constructed. Such a network is 
referred to as an ‘anatomy-based gene network’.

The concept of constructing gene networks using ontology information such as the 
Gene Ontology (GO) has been previously presented [20, 38–40]. For example, Jiang, 
et  al. [39] constructed a gene network using the Gene Ontology-Biological Process 
(GO-BP) entities to infer disease genes in humans. This gene network, however, was not 
integrated with an existing PPI network; instead, it was used directly for disease gene 
prediction, and the results were compared with a human PPI network. They discovered 
that the semantic gene network outperformed the PPI network for predicting disease 
genes [39]. Zeng et al. [38] performed gene function prediction using both PPI data and 
GO annotations, where the semantic similarity between GO terms was used to derive 
semantic similarity between genes, which was then used to evaluate the quality of PPI 
data [38]. This was based on the assumption that semantic similarity between genes 
serves as a metric of support for PPI data [41], which further could be used to predict 
linkages between genes to generate a functional gene network and reduce the false posi-
tive and false negative interactions in the PPI networks to improve their network qual-
ity [42]. On the other hand, PPI networks were rarely used to predict candidate genes 
for anatomical entities in the literature. One rare example was the work by Wang, et al. 
[17], in which they assessed the PPI network-based candidate gene prediction perfor-
mance for phenotypes, some of which were associated with anatomical entities for six 
organisms, including mouse and zebrafish. They successfully demonstrated the usage of 
PPI networks for predicting anatomical phenotypes of proteins by predicting Zebrafish 
Anatomy Ontology [43] entities for zebrafish proteins and Mammalian Phenotype 
Ontology [44] entities for mouse proteins. However, more research was essential to 
accurately predict candidate genes for anatomical entities.

Motivated by the lack of previous attempts to predict candidate genes for anatomi-
cal entities and with the goal to improve the accuracy of such predictions, here, we 
extended the applicability of PPI networks for predicting gene-anatomical entity asso-
ciations by integrating semantic networks constructed using existing associations with 
PPI networks. To our knowledge, this was the first work that used semantic networks 
constructed using an anatomy ontology. We hypothesized that this integration would 
improve the candidate gene prediction accuracy for anatomical entities, such as limbs 
and fins, by improving the quality of the original PPI networks. To test this hypothesis, 
we constructed semantic similarity gene networks based on anatomy ontology anno-
tations (anatomy-based gene networks) using multiple semantic similarity methods 
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(Additional file 1: Fig. S1) and integrated them with the PPI networks retrieved from the 
STRING database. Then, we evaluated the candidate gene prediction performances of 
the networks to confirm whether the integration improved the candidate gene predic-
tion accuracy for anatomical entities.

Results
Data sources

The raw zebrafish STRING PPI network (01/02/2018) contained 23,018 genes and 
12,558,675 interactions and the raw mouse STRING PPI network (01/02/2018) con-
tained 21,052 genes and 6,262,253 interactions. After applying the 0.7 gene similarity 
score cutoff to keep only the high-quality interactions, the filtered zebrafish PPI network 
contained 14,677 genes and 501,704 interactions, and the filtered mouse PPI network 
contained 13,866 genes and 414,667 interactions.

The original zebrafish anatomical profiles retrieved from the Monarch Initiative repos-
itory (01/08/2018) contained 5405 genes annotated to 960 anatomical entities, and the 
mouse profiles contained 14,652 genes annotated to 1537 anatomical entities (Table 1). 
Not all of these genes were found in the STRING PPI networks, owing to differences 
in the data sources (2878 mismatches for zebrafish and 6486 mismatches for mouse; 
Table  1). After implementing the gene reconciliation algorithm that contained three 
rounds (direct name matching, Ensembl ID matching, and gene synonym matching), the 
number of original matches was increased from 2527 (direct name matching) to 3048 for 
the zebrafish and from 8166 (direct name matching) to 8607 for the mouse (Table 1). The 
detailed reconciliation statistics are shown in Table 1.

The extra 521 genes for the zebrafish and 441 genes for the mouse that were matched 
during reconciliation round 2 (using Ensembl IDs) and round 3 (using gene synonyms) 
contained outdated gene names in the PPI networks. Therefore, they were updated to 
the correct names that were used in the anatomical profiles. The final number of gene 
mismatches for zebrafish and mouse were 2357 and 6045, respectively. The majority 
of these mismatched genes had anatomical term annotations in the Monarch Initiative 

Table 1  The statistics for  the  reconciliation of  gene names between  the  anatomical 
profiles from the Monarch, and the PPI networks from STRING for zebrafish and mouse

Zebrafish Mouse

Number of genes in the original anatomical profiles 5405 14,652

Number of anatomical entities in the original anatomical profiles 960 1537

Number of genes directly matched to the PPI network using the gene name (round 1) 2527 8166

Number of genes matched using the Ensembl IDs (round 2) 402 378

Number of genes matched using synonyms in the STRING database (round 3) 119 63

Number of final gene matches to the PPI network (in all 3 rounds)/Number of genes in the 
reconciled anatomical profiles

3048 8607

Number of anatomical entities in the reconciled anatomical profiles 943 1524

Number of final gene mismatches 2357 6045

Number of genes kept in the anatomical profiles after filtering out the entities with fewer 
than 10 gene annotations

3037 8606

Number of anatomical entities kept in the anatomical profiles after filtering out the entities 
with fewer than 10 gene annotations

294 850
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repository, but their proteins were not characterized and investigated in the literature. 
Therefore, there were no protein interaction records in the STRING database. After the 
reconciliation, the original anatomical profiles were filtered to contain only the genes 
that were matched with the PPI networks and to contain only the anatomical entities 
that had at least 10 gene annotations (Table 1). We selected 10 gene annotations because 
it had been proven that evaluation using smaller datasets led to higher error rates [59, 
60]. To further investigate this, we compared the AUC distributions of ROC curves for 
anatomical entities with less than 10 annotations versus anatomical entities with 10–100 
and above 100 annotations generated using the zebrafish PPI network (Additional file 1: 
Fig. S2). According to the results in the violin plots, the anatomical entities with less than 
10 annotations showed a higher variation in AUC values ranging from 0–1 with the peak 
of the distribution at 0.3. In comparison, the AUC distributions for anatomical entities 
with more than 10 annotations were more stable with an AUC peak value around 0.7. 
This showed the instability of the prediction performances when using anatomical enti-
ties with less than 10 annotations, justifying the selection of anatomical entities with at 
least 10 annotations for a reliable evaluation.

These reconciled and filtered anatomical profiles were used during the evaluation 
because it was important to evaluate the networks using the genes that were found in all 
three types of networks (PPI, anatomy-based gene networks, and integrated networks) 
for zebrafish and mouse to enable a valid comparison.

The framework to integrate anatomy ontology data with PPI networks

Construction of the anatomy‑based gene networks

When constructing the anatomy-based gene networks, we used original anatomical pro-
files (before the reconciliation) to retain all of their genes in the networks. We used the 
reconciled anatomical profiles only for the evaluation of the networks. The gene simi-
larity score distributions for the four types of unfiltered anatomy-based gene networks 
(Lin, Resnik, Schlicker, and Wang) for the zebrafish and the mouse are shown in Figs. 1 
and 2, respectively. The gene similarity scores for Lin, Resnik, and Schlicker methods 
were distributed approximately between 0 to 0.40 range. In contrast, the distribution for 
the Wang method was symmetrical around the 0.50 region and spanned approximately 
between 0.2 to 0.8 range.

Obtaining these distributions was critical to determine the gene similarity score cutoff 
applied to each network. For example, applying 0.7 as the cutoff for the Wang anatomy-
based gene network for the zebrafish, generated a filtered network with 5386 genes and 
789,282 interactions; if the same 0.7 cutoff was applied to the zebrafish Resnik network, 
the filtered network only had 30 genes and 31 interactions. If these two networks were 
evaluated, the changes in the number of genes and the number of interactions would 
have a significant effect on their performance. Therefore, a cutoff had to be applied to 
keep the network size relatively constant among different networks. However, it was 
difficult to practically apply cutoffs to keep the exact number of genes and interactions 
among the networks. Therefore, using a trial and error method, we applied different 
cutoffs to anatomy-based gene networks to keep the number of interactions between 
500,000 and 750,000 range. The statistics for the network sizes of filtered and unfiltered 
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Fig. 1  The gene similarity score distributions for the zebrafish unfiltered anatomy-based gene networks. The 
networks were constructed by a Lin method, b Resnik method, c Schlicker method, and d Wang method

Fig. 2  The gene similarity score distributions for the mouse unfiltered anatomy-based gene networks. The 
networks were constructed by a Lin method, b Resnik method, c Schlicker method, and d Wang method
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anatomy-based gene networks and their cutoffs are shown in Tables 2 and 3 for zebrafish 
and mouse, respectively.

Integration of the anatomy‑based gene networks with the STRING PPI networks

During the integration, we combined unfiltered anatomy-based gene networks for 
zebrafish and mouse with the corresponding STRING PPI networks. When selecting 
the gene similarity cutoffs for filtering the integrated networks, we considered their gene 
similarity score distributions, as explained in the previous section. The statistics for the 
filtered and unfiltered network sizes are shown in Table 4 for zebrafish and Table 5 for 
mouse, respectively. The generated integrated networks were larger than the anatomy-
based gene networks in terms of the number of genes and the interactions. For instance, 
the Wang anatomy-based gene network for the zebrafish had 5405 genes and 14,604,258 
interactions (Table 2), whereas the zebrafish integrated network for the Wang method 

Table 2  The statistics for  the  unfiltered and  filtered anatomy-based gene networks 
for zebrafish

Lin method Resnik method Schlicker method Wang method

Number of genes in the unfiltered 
network

5405 5405 5405 5405

Number of interactions in the unfiltered 
network

14,534,897 14,534,897 14,534,897 14,604,258

The gene similarity score cutoff 0.55 0.18 0.24 0.70

Number of genes in the filtered network 5387 4909 5401 5386

Number of interactions in the filtered 
network

700,138 712,286 692,539 789,282

Table 3  The statistics for  the  unfiltered and  filtered anatomy-based gene networks 
for mouse

Lin method Resnik method Schlicker method Wang method

Number of genes in the unfiltered 
network

14,652 14,652 14,652 14,652

Number of interactions in the unfiltered 
network

107,094,117 107,094,117 107,094,117 107,324,905

The gene similarity score cutoff 0.9 0.32 0.41 0.95

Number of genes in the filtered network 9784 10,081 12,755 9126

Number of interactions in the filtered 
network

588,359 536,602 522,183 510,139

Table 4  The statistics for the unfiltered and filtered integrated networks for zebrafish

Lin method Resnik method Schlicker method Wang method

Number of genes in the unfiltered 
network

25,375 25,375 25,375 25,375

Number of interactions in the unfiltered 
network

26,753,086 26,753,086 26,753,086 26,821,274

The gene similarity score cutoff 0.33 0.23 0.24 0.4

Number of genes in the filtered network 17,394 20,066 20,929 13,940

Number of interactions in the filtered 
network

730,855 726,589 690,208 744,519
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had 25,375 genes and 26,821,274 interactions (Table 4). During the integration, the 5405 
genes in the anatomy-based gene network were integrated with the 23,018 genes in the 
zebrafish PPI network, which caused an increase in the network size. The common genes 
and interactions were retained according to the integration formula in Eq. (5), and the 
genes and the interactions that were unique to one network were also included in the 
integrated network if the final gene similarity score was above the cutoff. Therefore, the 
integrated networks were more complete in terms of the number of genes and the infor-
mation contained.

The gene similarity score distributions for the integrated networks for zebrafish and 
mouse are shown in Figs. 3 and 4, respectively. When compared to the score distribu-
tions of the corresponding anatomy-based gene networks shown in Figs.  1 and 2, the 
score distributions of the integrated networks were right-skewed. Especially, the gene 
similarity scores of the Wang integrated networks were shifted to 0–0.50 region contrary 
to the symmetrical distribution (around 0.5) observed for the Wang anatomy-based gene 
networks. This was due to the effect of the integration, because only those interactions 
that had high similarity scores in both anatomy-based gene networks and the PPI net-
works received higher scores in the integrated networks. Most of the interactions in the 
anatomy-based gene networks had a low support from the PPI networks, thus the gene 
similarity score distributions of the integrated networks were right-skewed. By apply-
ing the cutoffs shown in Tables 4 and 5, the interactions with high similarity scores that 
received support from both the PPI and the anatomy-based gene networks could be 
selected. Moreover, the integration had increased the number of interactions of individ-
ual proteins (degree) as shown in the comparisons of degree distributions between PPI 
and integrated networks for zebrafish and mouse in Additional file 1: Fig. S3.

Evaluation of the candidate gene predictions

The purpose of integrating anatomy ontology data with PPI networks was to improve 
the accuracy of predicting candidate genes for anatomical entities. The boxplot compari-
sons of the AUC distributions of ROC and precision-recall curves for zebrafish networks 
are given in Figs. 5 and 6, respectively. The boxplot comparisons of the AUC distribu-
tions of ROC and precision-recall curves for mouse networks are given in Figs. 7 and 8, 
respectively. Each figure compares the AUC distributions for three network types: anat-
omy-based gene networks, integrated networks, and PPI networks for the four semantic 
similarity calculation methods.

Table 5  The statistics for the unfiltered and filtered integrated networks for mouse

Lin method Resnik method Schlicker method Wang method

Number of genes in the unfiltered 
network

27,097 27,097 27,097 27,097

Number of interactions in the unfiltered 
network

111,461,010 111,461,010 111,461,010 111,690,355

The gene similarity score cutoff 0.50 0.27 0.30 0.53

Number of genes in the filtered network 13,125 17,898 18,002 12,916

Number of interactions in the filtered 
network

653,848 661,619 613,671 712,720
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Fig. 3  The gene similarity score distributions for the zebrafish unfiltered integrated networks. The networks 
were constructed by a Lin method, b Resnik method, c Schlicker method, and d Wang method

Fig. 4  The gene similarity score distributions for the mouse unfiltered integrated networks. The networks 
were constructed by a Lin method, b Resnik method, c Schlicker method, and d Wang method
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According to the boxplot comparisons, the AUC distributions of ROC and precision-
recall curves for the integrated networks were higher than those of the PPI networks for 
both zebrafish and mouse for all four semantic similarity calculation methods. This con-
firmed that integration of anatomy ontology data improved the candidate gene predic-
tion accuracy for anatomical entities compared to the PPI networks for the two model 
organisms. The differences in the network performances for the four semantic similarity 
methods could have been due to the difference in the way each method captured the 
semantic information and the effect of the network cutoffs used for different networks. 
Although anatomy-based gene networks outperformed integrated networks in the box-
plot comparisons, integrated networks were more suitable for candidate gene predic-
tion for anatomical entities in practice. For instance, anatomy-based gene networks were 
much smaller (incomplete) than integrated networks, thus the genes that could have 
been predicted using anatomy-based gene networks were very limited. Moreover, inte-
grated networks included support from multiple data sources such as anatomical anno-
tations and other molecular interactions, which could have improved their prediction 
power.

Further validation of the prediction results

The further validations of the prediction results were performed using anatomy-based 
and integrated networks constructed using the Wang method. We made this selection 

Fig. 5  The boxplot comparisons of the AUC distributions of ROC curves for zebrafish networks. The 
distributions for filtered PPI networks are compared with filtered anatomy-based gene networks and 
integrated networks constructed by a Lin method, b Resnik method, c Schlicker method, and d Wang 
method. In the boxplots, the red line and the square represent the median and mean, respectively, and the 
name of the best performing network is underlined
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because of the symmetric gene similarity score distributions (Figs. 1 and 2) and annota-
tion-independent characteristics of the Wang anatomy-based gene networks. The score 
distributions of anatomy-based gene networks for the other semantic similarity methods 
were right-skewed (majority of similarity scores were at 0–0.1 region) and annotation-
dependent. Therefore, the Wang semantic similarity calculation method generated the 
best networks for further validation of the prediction results.

The AUC distribution comparisons of ROC and precision-recall curves for non-ran-
domized anatomy-based gene networks and integrated networks for the Wang method 
with their fully randomized and randomized profile counterparts for zebrafish and 
mouse are shown in Fig. 9 and Additional file 1: Fig. S4, respectively. According to the 
comparisons, non-randomized networks showed better performances (higher AUC 
score distributions) compared to the randomized networks in both network types. When 
comparing the two randomization methods, randomized profile networks, which were 
constructed by only randomizing the anatomical profiles, showed higher performances 
than the fully randomized networks. These comparisons with randomized networks 
indicated that the higher candidate gene prediction performances of the anatomy-based 
gene networks and the integrated networks were due to their biological significance.

To test the effect of the circular use of the same anatomical profiles for network con-
struction and evaluation, the AUC distribution comparisons of ROC and precision-recall 
curves for Wang anatomy-based and integrated networks evaluated using 30 anatomical 

Fig. 6  The boxplot comparisons of the AUC distributions of precision-recall curves for zebrafish networks. 
The distributions for filtered PPI networks are compared with filtered anatomy-based gene networks and 
integrated networks constructed by a Lin method, b Resnik method, c Schlicker method, and d Wang 
method. In the boxplots, the red line and the square represent the median and mean, respectively, and the 
name of the best performing network is underlined
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entities that were not used for the construction of the networks for zebrafish and mouse 
are given in Fig. 10 and Additional file 1: Fig. S5, respectively. According to these figures, 
the integrated networks performed better than the PPI networks and the anatomy-based 
gene networks, when evaluated using the 30 anatomical entities that were not used for 
the network construction. Here, the 30 anatomical entities were selected as a representa-
tive number, and we repeated the experiment with 10, 60, 100, and 150 anatomical enti-
ties randomly removed at a time for zebrafish and observed similar results (Additional 
file 1: Figs. S6 and S7). However, the removal of a higher number of anatomical entities 
could have reduced the anatomical information captured by the semantic networks. On 
the other hand, the removal of a low number of anatomical entities could have decreased 
the number of entities used for the evaluation. Therefore, the 30 anatomical entities were 
considered to reduce the limitations of removal of too few or too many entities during 
the evaluation.

The AUC distribution comparisons of ROC and precision-recall curves for the Wang 
anatomy-based and integrated networks and the PPI networks evaluated using GO-BP 
profiles for the zebrafish and mouse are shown in Fig. 11 and Additional file 1: Fig. S8, 
respectively. Because the anatomy-based gene networks and the integrated networks 
were constructed using the zebrafish and mouse anatomy profiles, the GO-BP annota-
tions, which were used for the evaluation, did not have a direct influence on the network 

Fig. 7  The boxplot comparisons of the AUC distributions of ROC curves for mouse networks. The 
distributions for filtered PPI networks are compared with filtered anatomy-based gene networks and 
integrated networks constructed by a Lin method, b Resnik method, c Schlicker method, and d Wang 
method. In the boxplots, the red line and the square represent the median and mean, respectively, and the 
name of the best performing network is underlined
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construction. According to the results, the integrated networks performed better than 
both the PPI and anatomy-based gene networks, when evaluated by the GO-BP profiles.

Discussion
The goal of this work was to test whether the integration of anatomy ontology relation-
ships with PPI networks enhanced the network-based candidate gene prediction accu-
racy when predicting gene candidates associated with anatomical entities. According to 
the network performance evaluations (Figs. 5, 6, 7 and 8), the integrated networks per-
formed better than the PPI networks. Here, we assumed that the increased candidate 
gene prediction accuracy was due to the increased network quality. In the integrated 
networks, the gene interactions that received high interaction scores were the ones that 
received a higher support from both the PPI and anatomy-based gene networks. This 
filtered out false positive interactions (Fig. 12) in the PPI networks if those interactions 
were not supported by the anatomy-based gene networks, that is, if they received low 
scores from the anatomy-based gene networks. On the other hand, gene interactions 
with low scores in the PPI networks were enhanced if the interactions were supported by 
the anatomy-based gene networks, that is, if they had high similarity scores in the anat-
omy-based gene networks. In cases where the gene similarity score was zero in anatomy-
based gene networks due to lack of anatomical term annotations, the support for those 

Fig. 8  The boxplot comparisons of the AUC distributions of precision-recall curves for mouse networks. 
The distributions for filtered PPI networks are compared with filtered anatomy-based gene networks and 
integrated networks constructed by a Lin method, b Resnik method, c Schlicker method, and d Wang 
method. In the boxplots, the red line and the square represent the median and mean, respectively, and the 
name of the best performing network is underlined
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Fig. 9  The network performance comparisons between non-randomized and randomized networks for 
zebrafish. The boxplot comparisons of the AUC distributions for a ROC and b precision–recall curves for the 
filtered non-randomized anatomy-based gene network, randomized profile anatomy-based gene network, 
and fully randomized anatomy-based gene network for the Wang method for the zebrafish. The boxplot 
comparisons of the AUC distributions for c ROC and d precision–recall curves for the filtered non-randomized 
integrated network, randomized profile integrated network, and fully randomized integrated network for the 
Wang method for the zebrafish. In the boxplots, the red line and the square represent the median and mean, 
respectively, and the name of the best performing network is underlined

Fig. 10  The network performance comparisons for zebrafish networks when evaluated by randomly 
removed 30 anatomical entities. The boxplot comparisons of the AUC distributions for a ROC and b 
precision–recall curves for the filtered integrated network, PPI network, and anatomy-based gene network 
for the Wang method for zebrafish. The integrated network and the anatomy-based gene network were 
generated using the zebrafish anatomy profiles after randomly removing 30 anatomical entities, which had 
at least 10 gene annotations. The same 30 entities were used for the evaluation. In the boxplots, the red line 
and the square represent the median and mean, respectively, and the name of the best performing network 
is underlined
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interactions from the PPI networks should have been extremely high for those interac-
tions to be retained in the integrated networks. Similarly, if two proteins were not inter-
acting in a PPI network, they needed a very high support from the anatomy-based gene 
network to be retained in the integrated network. Furthermore, a protein usually inter-
acts with multiple proteins, thus a high quality network should have more proteins with 
large degrees [16]. The integrated networks not only increased the network size, but also 
increased the average degrees of proteins in the network, which improved the complete-
ness and the quality (Additional file 1: Fig. S3). These improved network characteristics 
in the integrated networks, i.e., the improvements in network quality, increased the can-
didate gene prediction performances of the networks.

Fig. 11  The network performance comparisons for zebrafish networks when evaluated by Gene 
Ontology-Biological Process (GO-BP) entities. The boxplot comparisons of the AUC distributions of a ROC and 
b precision–recall curves for the filtered integrated network, PPI network, and anatomy-based gene network 
for the Wang method in zebrafish. The networks were evaluated using the annotation profiles containing 
GO-BP entities for the zebrafish genes. In the boxplots, the red line and the square represent the median and 
mean, respectively, and the name of the best performing network is underlined

Fig. 12  A hypothetical representation showing how the network integration filters false positive interactions. 
This scenario compares candidate gene predictions between a a PPI network and an b anatomy-based 
gene network. The nodes A, B, and C (colored in black) in both networks represent three genes known to 
be associated with a certain anatomical entity denoted as entity 1. In the PPI network (a), genes D and F 
are predicted to be associated with entity 1 because genes D and F interact with genes A, B, and C that are 
known to be associated with the entity 1. In contrast, the anatomy-based gene network (b) only predicts 
D as a potential candidate for entity 1 because the gene F does not have any interaction with other genes 
annotated with entity 1. The absence of interactions of gene F in gene network (b) can be due to two 
reasons: (1) it is not annotated with any anatomical entities, (2) it is not annotated with entities that are 
similar to the anatomy entities associated with genes A, B, or C. The anatomy-based gene network (b) is built 
entirely on anatomy ontology information, thus it provides a different interaction structure. Hypothetically, 
the gene F could have formed false positive interactions in the PPI network, and the integrative use of the 
anatomy-based gene network may reduce the false positives by filtering them



Page 16 of 26Fernando et al. BMC Bioinformatics          (2020) 21:442 

The robustness of the integrated networks for improved candidate gene predictions 
was further demonstrated by performing evaluations under different settings. For exam-
ple, we used both ROC curves and precision-recall curves for the evaluations, because 
they had been extensively used for evaluating network-based candidate gene predictions 
in the literature [16, 19, 40, 61]. In majority of previous candidate gene prediction stud-
ies, only one or few functions were selected at a time and their ROC and precision-recall 
curves were compared directly in graphs during the performance evaluations [16, 19, 
20]. Here, instead of plotting curve comparisons for few anatomical entities, we used 
boxplot distributions of the AUC values of these curves to increase the number of ana-
tomical entities used for network performance evaluations. The proteins responsible for 
regulation of a specific molecular function or an anatomical entity are usually clustered 
together forming functional modules [16, 62]. If only few anatomical entities were used 
for the evaluation by comparing their ROC and precision-recall curves, only the pro-
tein modules responsible for the selected anatomical entities would be evaluated. In this 
work, it was required to evaluate the entire network structure, not limiting to a small 
portion of the network, to completely assess the effect of the network integration. There-
fore, we used the maximum number of possible anatomical entities for the evaluation 
by comparing their AUC values of ROC and precision-recall curves using boxplots. 
Moreover, we used four semantic similarity methods (Lin, Resnik, Schlicker, and Wang), 
which have been widely used to calculate semantic similarity [34, 38, 39] using ontol-
ogy information, to generate semantic networks for the two model organisms (zebrafish 
and mouse). Under all these experimental settings, the integrated networks performed 
better than the PPI networks, strengthening the conclusion that the integration of the 
gene-anatomical entity associations from literature with the PPI networks increased the 
candidate gene prediction accuracy for anatomical entities.

The results from the network predictions compared to those obtained using the ran-
dom networks (Fig. 9 and Additional file 1: Fig. S4) demonstrated that the higher can-
didate gene prediction performance observed in the integrated networks had biological 
significance and were not due to random error/chance. Of the two randomization pro-
cedures used, the randomized profile networks, which were generated by only rand-
omizing the anatomical profiles, performed better than the fully randomized networks 
that were constructed by completely randomizing the entire networks. When only the 
anatomical profiles were randomized, the original number of annotations per gene was 
kept constant even after the randomization, which may have reduced the randomiza-
tion effect by including closely related anatomical entities for the same gene. This may 
explain their better performance compared to the fully randomized networks.

A concern in the analysis was in regard to the potentially circular use of the same ana-
tomical profiles for the construction and the evaluation of the networks (anatomy-based 
gene networks and integrated networks). The results of the two experiments designed 
to investigate the effect of the circular use in zebrafish and mouse: (1) evaluation using 
30 anatomical entities that were removed before the integrated network construc-
tion (Fig. 10 and Additional file 1: Fig. S5) and (2) evaluation using the GO-BP profiles 
(Fig. 11 and Additional file 1: Fig. S8), indicated that integrated networks had better per-
formances than both anatomy-based and PPI networks. In both experiments, the anno-
tations used for the network construction were not used for the evaluation, which meant 



Page 17 of 26Fernando et al. BMC Bioinformatics          (2020) 21:442 	

that the increased performances observed in the integrated networks were not due to 
the circular use of the same anatomical profiles. Previous studies [20, 38, 39] that used 
semantic networks for candidate gene predictions have been using networks that were 
directly based on the ontology. Our results showed the integration of semantic networks 
with PPI networks as a better option to remove the bias of the predictions. Furthermore, 
anatomy-based gene networks contained a limited number of genes because only the 
genes with anatomy ontology annotations were included, thus they were not practical 
for candidate gene prediction as the integrated networks. For example, the zebrafish fil-
tered anatomy-based gene network constructed using the Schlicker method contained 
5401 genes (Table 2), whereas the corresponding integrated network contained 20,929 
genes (Table 4). Integration with PPI network data have added new genes without ana-
tomical annotations to the integrated networks, many of which could be novel candi-
dates for anatomical entities. Moreover, the anatomy-based gene networks represent the 
gene organization in the network using only their anatomical annotations, while the PPI 
networks include many molecular interactions supported by experiments. Integration of 
these two different types of networks combines different biological knowledge; thus, the 
integrated networks are better suited for candidate gene predictions.

In literature, there have been several occasions where semantic networks were inte-
grated with PPI networks for candidate gene prediction [19, 40, 63, 64]. Our results fur-
ther validated that the integrated networks outperform the pure semantic networks. In 
previous studies including the most recent ones [19, 64], semantic networks have been 
mainly used for predicting disease genes or genes associated with GO entities. To our 
knowledge, this is the first work that uses semantic networks for predicting anatomi-
cal entities. There is a pressing need for accurate methods to predict candidate genes 
associated with anatomical entities as only few genes were annotated to the majority of 
anatomical entities, such as the pelvic fin (15 genes in the zebrafish anatomical profiles). 
Discovering new genes associated with anatomical entities leads to a clearer understand-
ing of the molecular mechanisms underlying anatomical development. Moreover, such 
discoveries support the progress of emerging evolutionary developmental biology stud-
ies [2, 65]. Therefore, our work significantly contributes to the progress of developmen-
tal biology.

One of the future directions of this work is to analyze protein module changes asso-
ciated with the fin to limb transition [4, 66] using the integrated networks generated 
in this study. We are interested in identifying protein modules related to pectoral and 
pelvic fin in zebrafish and comparing them with corresponding forelimb and hindlimb 
modules in mouse to study PPI modular changes associated with the fin to limb tran-
sition. The reason for selecting zebrafish and mouse for this study was to support this 
module comparison, which may unravel useful knowledge regarding an important phe-
notypic transition [4, 66] in evolutionary biology. Because the modules are to be identi-
fied computationally, a better network quality is essential. As we confirmed in this study, 
the integrated networks provide more accurate candidate gene predictions than conven-
tional PPI networks, thus can have broader applications in developmental biology.

Another interesting future challenge is to include quality terms using Phenotype 
and Trait Ontology to analyze the genes associated with certain qualities of anatomi-
cal entities, such as the size or the presence and absence of an anatomical term [67]. 
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For this task, a computational framework must be established to include compos-
ite entity-quality terms. Alternatively, phenotype ontologies, which already include 
quality of an anatomical entity, such as the Human Phenotype Ontology [68] and 
the Mammalian Phenotype Ontology [69], can be directly used for the integrative 
framework.

This integrative approach will be extremely useful for studying disease phenotypes 
in humans and other model organisms. Predicting disease genes using biological 
networks is widespread due to the associated medical implications [18, 19, 70, 71], 
and the challenge is to improve the accuracy of the predictions. Using this integra-
tive method, experimental knowledge regarding known gene-disease associations 
can be integrated with human gene/PPI networks. For this purpose, Human Dis-
ease Ontology [72, 73] can be used instead the Uberon to semantically capture the 
gene-disease annotations. Therefore, the integrative framework used in this work is 
adaptable to a broad number of research questions and is a powerful tool for the bio-
informatics community.

The major limitation of our integrative approach is its reliance on current gene-ana-
tomical entity associations in literature. The completeness of these associations varies on 
the model organism. For instance, some model organisms, such as human and mouse, 
contain more associations than others because more studies have been focused on them. 
For instance, as shown in Table 1, mouse anatomical profiles used for this work contain 
a higher number of genes with known annotations (14,652) than zebrafish (5405). More 
complete and accurate associations improve the quality of the anatomy-based gene net-
works. For model organisms with few associations and non-model organisms without 
any associations, this integrative method is inefficient.

There is a lack of bioinformatics tools and code to address large-scale network 
integration problems, and built-in codes and libraries for semantic similarity calcu-
lations are not readily available for the Python programming language [58]. There-
fore, the Python scripts written for this research will be extended to a Python library 
focused on large-scale network integration and construction of semantic networks 
using semantic similarity calculation methods.

Conclusions
This work focused on improving the candidate gene prediction accuracy for ana-
tomical entities using the PPI networks by integrating known gene-anatomical entity 
knowledge via anatomy ontology data. According to candidate gene prediction per-
formances evaluated under different computational settings (four semantic similar-
ity calculation methods: Lin, Resnik, Schlicker, and Wang; two model organisms: 
zebrafish and mouse; two evaluation curve types: ROC and precision-recall curves), 
the integrated networks outperformed PPI networks and were better for predict-
ing candidate genes for anatomical entities. Furthermore, the integrated networks 
proved better than either anatomy-based or PPI networks. Our study showed that 
the integration of the experimental knowledge via anatomy ontology increases can-
didate gene prediction accuracy for anatomical entities and provided a computa-
tional platform to better future developmental biology studies.
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Methods
Data sources

We retrieved the PPI networks for zebrafish and mouse from the STRING database 
(01/05/2018; version 10.5) [45]. The proteins in the PPI networks were represented by 
unique STRING IDs, and we replaced them with corresponding gene names/symbols 
using the STRING ID to gene name mappings from the meta-data retrieved from the 
STRING database (01/05/2018) to facilitate network integration in later stages. Usually, 
raw PPI networks are too large for downstream analyses. Therefore, we filtered the net-
works based on the recommended 0.7 gene interaction/combined score cutoff [21].

To construct anatomy-based gene networks, initially, anatomical profiles had to be 
constructed. An anatomical profile represents the multiple anatomical entity annota-
tions for a gene. We obtained known gene-anatomical entity relationships for zebrafish 
and mouse from the Monarch Initiative repository (01/08/2018) [29, 30]. The Mon-
arch Initiative retrieves genes and their anatomical entity annotations for zebrafish and 
mouse from the zebrafish [46] and mouse [47] model organism databases, respectively 
and associates them with the corresponding Uberon [33] anatomical entities. The anno-
tations available in the Monarch Initiative were pre-processed and cross-checked with 
other model organism annotations to remove uncertain gene-anatomical entity associa-
tions that may result when the expression of multiple genes were simultaneously dis-
rupted to observe the effect on a given phenotype [29]. The Uberon anatomy ontology 
used by the Monarch Initiative is a cross-species ontology, which integrates species-
specific anatomy ontologies, such as Mouse Anatomy Ontology and Zebrafish Anat-
omy Ontology, in a species-neutral way [31–33]. This multi-species integration makes 
Uberon a prime candidate for large-scale computational analyses, involving multiple 
organisms.

The framework to integrate anatomy ontology data with PPI networks

Construction of the anatomy‑based gene networks

To construct anatomy-based gene networks, we arranged the gene-anatomical entity 
associations into the following format where G1 and G2 represent two genes, and (ta1, 
ta2… tam) and (tb1, tb2…tbn) represent their associated anatomical entities (Uberon enti-
ties), respectively:

(As an example, the zebrafish anatomical profiles are available in Additional file  2). 
Then, we calculated semantic similarity scores between anatomical entities annotated 
to gene pairs, and we aggregated these scores to calculate the gene similarity scores 
between all gene pairs (Additional file  1: Fig. S1). We used four methods to calculate 
semantic similarity between Uberon terms: Wang method [48], Resnik method [49], Lin 
method [50], and Schlicker method [51]. These four methods were selected because they 
have been widely used for constructing semantic networks [34, 38, 39]. The equations 
and definitions for these methods are given in Additional file 3. The latter three meth-
ods are based on calculating the information content (IC) of each term in the ontology 

G1 : (ta1, ta2... tam),

G2 : (tb1, tb2...tbn).



Page 20 of 26Fernando et al. BMC Bioinformatics          (2020) 21:442 

hierarchy. The IC measures how specific and informative a specified term is based on its 
probability of occurrence in a given corpus, such as the Uberon ontology [49, 52]. The 
IC of a term increases with its specificity in the corpus. The Wang method does not use 
the IC [48]. It only depends on the ontology structure and the relationships between the 
entities.

After obtaining the semantic similarities between Uberon terms using these four 
methods, we calculated the similarity between gene pairs using the method explained 
below. For instance, if the gene G1 is annotated with the anatomical entities: (ta1, ta2… 
tam), and the gene G2 is annotated with the anatomical entities: (tb1, tb2…tbn), then the 
similarity between the two genes, sim (G1, G2), was calculated using Eq. (1).

The t(G1) = (ta1, ta2… tam) and t(G2) = (tb1, tb2…tbn) represent anatomical profiles 
for gene G1 and gene G2, respectively, and the sim(tai, t(G2)) represents the maximum 
semantic similarity between term tai and any of the entities in t(G2) , which was calcu-
lated using Eq. (2) below.

Using Eq. (1), we calculated a similarity score for each gene pair in the anatomical pro-
files for zebrafish and mouse, which generated a pairwise gene similarity matrix for each 
semantic similarity calculation method. After obtaining a gene similarity matrix, the 
final step of the anatomy-based gene network construction was to connect each pair of 
genes with an edge. We applied a gene similarity cutoff for this purpose. If the pairwise 
gene similarity score between two genes was higher than the cutoff, an edge was placed 
to connect the two genes, otherwise, they were not connected (filtered network). We 
obtained suitable cutoffs for anatomy-based gene networks by analyzing their similarity 
score distributions, which were selected to keep the number of interactions/gene pairs 
approximately similar to that of the STRING PPI networks with the 0.7 cutoff for each 
model organism.

Integration of the anatomy‑based gene networks with the STRING PPI networks

We performed the network integration using an accuracy-based weighting method [53] 
that uses the gene similarity scores for each gene interaction from the STRING PPI net-
works and the anatomy-based gene networks. We expected the integration to improve 
the candidate gene prediction accuracy for anatomical entities by improving the quality 
of the PPI networks. The integration assigned higher weights to the gene interactions 
that were supported by both PPI and anatomy-based gene networks, which improved the 
network quality by reducing the false positive and false negative interactions (Fig. 12).

Initially, we evaluated the PPI and anatomy-based gene networks separately using the 
evaluation workflow described in the next section, which was used to decide the accu-
racy weights for the integration of gene similarity scores. For instance, if the accuracy 
values for the PPI and anatomy-based gene networks were AC1 and AC2 respectively, the 

(1)sim(G1,G2) =

∑

1≤i≤m sim(tai, t(G2))+
∑

1≤j≤n sim
(

tbj , t(G1)
)

m+ n

(2)sim(tai, t(G2)) = max
tb∈t(G2)

sim(tai, tb)
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weights for the PPI network (W1) and the anatomy-based gene network (W2) were calcu-
lated using Eqs. (3) and (4), respectively.

Then, we used the weights to calculate the gene similarity scores for the integrated 
network, based on the gene similarity scores of the original two networks. For instance, 
consider the similarity between the two genes: Ga and Gb. If the similarity scores from 
the PPI network and the anatomy-based gene network for these two genes were given by 
sim1(Ga, Gb) and sim2(Ga, Gb), respectively, the similarity score sim3(Ga, Gb) in the inte-
grated network was calculated by Eq. (5) below.

If an interaction was not found in an original network, the similarity score was zero 
for that interaction; for instance, if Ga and Gb were not interacting in the PPI network, 
sim1(Ga, Gb) was assigned zero. During the calculation of weights, the more accurate 
original network obtained a higher weight and the integrated network was weighted 
towards the more accurate network. We used this method to integrate the zebrafish and 
mouse PPI networks with the four anatomy-based gene networks (Lin, Resnik, Schlicker, 
and Wang), which resulted in four integrated networks for each organism.

Evaluation of the network‑based candidate gene prediction

For the evaluation, gene name/symbol reconciliation was required to align PPI networks 
from STRING to anatomical profiles retrieved from the Monarch Initiative repository. 
The STRING database obtains data from various data sources, such as Entrez Gene 
database [54] and UniProt knowledgebase [55], whereas the Monarch Initiative reposi-
tory obtains data from model organism databases. Occasionally, the gene names do not 
match. Therefore, we computationally reconciled gene names of the two data sources 
using three steps: (1) matching the genes directly using their names/symbols, (2) match-
ing the genes using their Ensembl identifiers, and (3) matching the remaining gene 
names in the anatomical profiles to the synonyms available in the STRING database 
(Ensembl identifier and synonym matching were performed using meta-data retrieved 
from the STRING database; 01/05/2018). Each step attempted to sequentially minimize 
the number of gene mismatches.

Then, we used these reconciled zebrafish and mouse anatomical profiles for the evalu-
ation. We filtered the profiles first to only keep the anatomical entities that contained 
at least 10 gene annotations. We then used leave-one-out cross-validation on one ana-
tomical entity at a time and generated a ROC curve and a precision-recall curve for each 
entity. Here, out of all the genes annotated to the anatomical entity of interest, the asso-
ciation of one gene was assumed to be unknown at a time, and the other genes were used 
to predict the anatomical entity of that unknown gene. This process was repeated until 
all the genes were selected for anatomical entity prediction. Finally, we compared the 

(3)W1 =
AC1

AC1 + AC2

(4)W2 =
AC2

AC1 + AC2

(5)sim3(Ga,Gb) = W1sim1(Ga,Gb)+W2sim2(Ga,Gb)
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distribution of AUC values for all the anatomical entities for the three types of zebrafish 
and mouse networks (integrated networks, anatomy-based gene networks, and PPI net-
works) for each semantic similarity method (Lin, Resnik, Schlicker, and Wang). We used 
the Hishigaki method [16, 56] as the network-based candidate gene prediction algorithm 
for which Eq. (6) is given below.

In Eq. (6), nf(u) denotes the number of genes with the considered anatomical term (f) in 
the neighborhood of the gene of interest (u). Generally, the length of the neighborhood 
can be defined by the user but the immediate neighborhood (a length of one edge from 
the gene u) is shown to yield better results [56]; therefore, we only considered the imme-
diate neighborhood of a gene for predictions. The expected frequency for the anatomical 
entity is given by ef , which was calculated according to Eq. (7) below.

In Eq. (7), totf denotes the total number of genes annotated with the given anatomi-
cal term (f) in the network and totN indicates the total number of genes in the network. 
The total number of genes in the immediate neighborhood of the gene of interest (u) is 
denoted by n(u).

Further validation of the prediction results

It was important to understand the biological significance of the candidate gene pre-
diction results. For instance, if the integrated networks performed better than the PPI 
networks, it needed to be confirmed that the increased performance was due to the 
biological significance of integrating experimental anatomical data via anatomy ontol-
ogy annotations and not due to random error/noise. For this purpose, we generated fully 
randomized networks with the same number of nodes and the same number of edges as 
those in the integrated and anatomy-based gene networks constructed using the Wang 
method for zebrafish and mouse. Furthermore, we generated another type of a rand-
omized network by only randomizing the reconciled anatomical profiles by randomly 
assigning anatomical entities to each gene to match the original number of annotations, 
and then, constructing the anatomy-based gene networks and integrated networks using 
the Wang method. The second method was only a partial randomization because only 
the anatomical profiles were randomized, and the number of interactions were different 
from the original networks. From herein, we call the first randomized network type as 
‘fully randomized networks’, and the second type as ‘randomized profile networks’. We 
compared the candidate gene prediction performances of the anatomy-based gene net-
work and the integrated network constructed using the Wang method with their cor-
responding fully randomized and randomized profile networks for zebrafish and mouse.

A potential concern with the proposed integrative method was the usage of the same 
anatomical profiles for the integrated network constructions and evaluations. Therefore, 
if the integrated networks outperformed the PPI networks, this may have been caused 

(6)prediction score =

(

nf (u) − ef
)2

ef

(7)ef =
totf ∗ n(u)

totN
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by the circular use of the same anatomical profiles for the network construction and 
the evaluation. To further investigate this issue, we conducted two experiments. First, 
we randomly removed 30 anatomical entities with at least 10 gene annotations from 
the reconciled zebrafish and mouse anatomical profiles and constructed the anatomy-
based and integrated networks from the remaining anatomical entities using the Wang 
method. Then, we compared the network-based candidate gene prediction performance 
of these networks with the zebrafish and mouse PPI networks using the removed 30 ana-
tomical entities for the evaluation. If the performance increases in the integrated net-
works were only due to re-using the same anatomical entities for the evaluation, the 
integrated network should have not shown a performance increase compared to the PPI 
networks when those 30 anatomical entities were used for the evaluation because they 
were not involved in the network construction.

For the second experiment, we downloaded zebrafish and mouse GO annotations from 
the GO consortium (01/30/2018) [57] and pre-processed them to keep only the GO-BP 
annotations. Then, we constructed GO-BP profiles for zebrafish and mouse genes and 
reconciled them to only keep the genes that were found in zebrafish and mouse networks 
(PPI, anatomy-based gene networks, and integrated networks). Finally, we evaluated the 
network-based candidate gene prediction performance of the semantic networks (anat-
omy-based and integrated networks) constructed using the Wang method and the PPI 
networks for zebrafish and mouse using the reconciled GO-BP profiles. Here, the evalu-
ation was performed by GO-BP profiles, which were not used for the construction of the 
anatomy-based and integrated networks.

Implementation of the integrative framework

We implemented this integrative framework using the Python 2.7 environment [58]. All 
the scripts that were used for constructing the anatomy-based gene networks, integra-
tion, evaluation and further validation are available at https​://doi.org/10.5281/zenod​
o.34708​75. We generalized the scripts so that they can be used with any PPI network 
retrieved from the STRING database, not only limiting to mouse and zebrafish.
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