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Background
Universal approximation capability plays a crucial role in settling regression and clas-
sification problems. Because of this ability, the single hidden layer feedforward neu-
ral network has always been the focus and hotspot of researches [1]. As a method to 
train the SLFNs [2], extreme learning machine (ELM) [3–8] has attracted the attention 
of researchers in recent decades [9]. Different from traditional neural network mod-
els, such as the backpropagation (BP) algorithm [10, 11], the training process of ELM is 
implemented in one step rather than iteratively [12]. In the original ELM, the first step 
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is to randomly initialize an input weight matrix A and remain fixed throughout the pro-
cess. Then, by using a nonlinear piecewise continuous activation function g(x) , the data 
of the input layer is mapped into the feature space of the ELM, and a hidden layer output 
matrix H = [h(x1),h(x2), . . . ,h(xN)]

T is obtained. Finally, by solving a ridge regression 
problem [13], the output weights β = [β1, β2, . . . , βL]

T connecting with the hidden layer 
and the output layer can be determined [14].Since there is no need to iteratively solve 
the output weight matrix, compared with the traditional backpropagation algorithm, 
ELM can achieve better generalization performance at a faster speed [2, 3, 7]. Because 
of the advantages of simple theories, high efficiency, and low manual intervention, ELM 
has been used as a tool for various applications, such as image classification [15, 16], 
label learning [17], image quality assessment [18], traffic sign recognition [19], and so on.

Although it has been widely used, the robustness and sparseness of the ELM algo-
rithm are still the hot topic. Huang et al. proposed RELM in [5] and in their method, 
L2-norm was introduced to simultaneously constrain the loss function and the output 
weight matrix. Their experimental results provided that RELM was better than the origi-
nal ELM. However, the square loss based on L2-norm will amplify the negative impact 
of noise and outliers, and lead to inaccurate results. In [9], Li et  al. introduced the 
L2,1-norm into ELM as a loss function and the regularization constraint. Hence, a new 
method named LR21ELM is proposed. The classification results showed that the robust-
ness of the L2,1-norm was significantly better than the L2-norm.

As a local similarity measure, correntropy is proposed based on the information the-
ory and the kernel method [20]. Through a nonlinear feature mapping, correntropy can 
project the data from the input space into the feature space. It also computes the L2-
norm distance and defines a correntropy induced metric (CIM) in the feature space [21]. 
The correntropy induced loss [22] is defined as 
C(ti, f(xi)) = 1− exp

(

−(ti − f(xi))
2
/

2σ 2
)

, where ti is the target vector, f(xi) is the pre-

diction matrix and σ is the kernel bandwidth. Figure 1 depicts the correntropy induced 
loss function for different kernel bandwidths within the same error range. We can 
observe that correntropy induced loss is a non-convex, bounded, and robust loss func-
tion [23].

The robustness of correntropy to noise and outliers has been proved theoretically and 
experimentally. Ren et al. [21] integrated the correntropy loss and hinge loss (CH-loss) 
into ELM and proposed a robust extreme learning machine with the CH-loss (CHELM). 
They verified the robustness of the method at different noise levels. The results showed 
that correntropy loss could effectively reduce the influence of noise on classification 
results. In [24], Zhao et al. proposed the C-loss based ELM (CELM) and applied their 
method to estimate the power of small-scale turbojet engines. Chen et  al. [25] intro-
duced the correntropy loss to the multilayer ELM and proposed a robust multilayer 
ELM auto-encoder. The results showed that the feature extraction ability of the method 
was improved with the improvement of robustness.

In this paper, by integrating the correntropy induced loss into the ELM instead of 
the original L2-norm, an integrated model named correntropy induced loss based 
sparse robust graph regularized extreme learning machine (CSRGELM) is proposed. 
Different from the traditional ELM, we use L2,1-norm instead of L2-norm to constrain 
the output weight matrix to reduce the complexity of the neural network model. 
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Moreover, the graph regularization is integrated into our method so that the neu-
ral network model can learn local structural information between data. This paper 
mainly makes the following research:

(1)	 A new correntropy induced loss based sparse robust graph regularized extreme 
learning machine is proposed. Compared with the original ELM, the introduction 
of correntropy induced loss can improve the robustness. And the L2,1-norm is used 
as a sparse constraint to regularize the output weight matrix β , which can reduce 
the complexity of the model. To fully preserve the manifold structure information 
between the original data, the graph regularization is introduced into our method.

(2)	 Based on the theory of [26], we design an iterative optimization method to cope 
with the non-convex problem of CSRGELM. The convergence and the computa-
tional time complexity of the new method are proved, respectively. We also design 
some experiments to prove the robustness of the method. It is observed that the 
robustness and classification ability of CSRGELM is better than that of ELM 
based on the traditional L2-norm loss function. Compared to other robust ELMs, 
CSRGELM can also achieve competitive results.

(3)	 We first perform the classification experiments on five benchmark datasets and 
evaluate the performance of CSRGELM through multiple evaluation measures. The 
results show that in most datasets, the classification results of CSRGELM are supe-
rior to other methods.

(4)	 The new method is applied to the cancer sample classification problems of inte-
grated TCGA datasets. Whether on integrated binary datasets or integrated multi-
class classification datasets, the classification performance of CSRGELM is superior 
to other methods. The experimental results prove that CSRGELM can be a power-
ful tool for studying biological omics data.

Fig. 1  Correntropy induced loss with different kernel bandwidths
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Results
Firstly, five benchmark datasets are used to evaluate the classification performance of 
RELM, L2,1-RFELM, LR21ELM, CELM [24], and CSRGELM. And then, CSRGELM is 
applied to the cancer sample classification tasks of the TCGA integrated datasets. In the 
experiments, the sigmoid function is chosen as the activation function. The evaluation 
criteria for testing classification performance are commonly used measures: Accuracy 
(Acc); Precision (Pre); Recall; F-measure (F-mea). Next, we will introduce the content of 
the experiment in detail.

Evaluation criteria

According to the Table 1, the definition of each measure are as follows:

For a multi-class dataset, we use one of the classes as the positive class and the remain-
ing as the negative class to compute the accuracy, precision, recall, and F-measure. 
Finally, the average of every measure for all classes is obtained. All methods are con-
ducted in MATLAB R2016a with 64 GB of memory and 3.60-GHz computer.

Datasets

We use five popular benchmark datasets to test the classification performance, and every 
dataset has been widely applied in supervised problems [13, 27–29].

(a)	 Iris: Taken from the UCI database (https​://archi​ve.ics.uci.edu/ml/index​.php), Iris is 
a multi-class classification dataset with 150 samples and 4 features, which is already 
widely used in unsupervised learning [30, 31] and supervised learning [5].

(b)	 COIL20: As a multi-class classification image dataset, the Columbia object image 
library is often used as a benchmark dataset to test the performance of machine 

(1)Acc =
TP + TN

TP + FN + FP + TN
,

(2)Pre =
TP

TP + FP
,

(3)Recall =
TP

TP + FN
,

(4)F−mea =
2× Pre × Recall

Pre + Recall
.

Table 1  Classification results confusion matrix

The true situation The predicted situation

Positive Negative

Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

https://archive.ics.uci.edu/ml/index.php
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learning methods. With 1024 features, it has 1440 samples, all of which are gray-
scale images of 20 different objects.

(c)	 USPST: As a subset of the popular handwritten digital recognition dataset USPS, 
USPST is the testing set of USPS. And it has 2007 samples and 256 features.

(d)	 g50c: g50c is a binary dataset, and each class is generated by a 50-D multivariate 
Gaussian distribution [13].

(e)	 RNA-seq: It is a multi-class dataset about cancers, which has different types of 
tumors: BRCA, KIRC, COAD, LUAD, and PRAD. It has 801 samples and 20,531 
features, and every attribute is RNA-Seq gene expression levels measured by the 
Illumina HiSeq platform.

To evaluate the performance of CSRGELM in practical applications, we apply 
CSRGELM to the cancer classification. In recent years, cancer has become the big-
gest threat to human health. The most effective way to treat cancers has always 
been to develop different treatments for different types of cancers. Therefore, the 
improvement of cancer classification is crucial to the progress of cancer treatments 
[32]. In this paper, four integrated TCGA datasets are used in the experiments. 
As known as the world’s largest cancer genome database, the TCGA database has 
immeasurable values in the field of cancer research [33]. There are several types of 
cancer data included in the TCGA database. The details of benchmark datasets are 
listed in Table 2.

In the experiments, each integrated dataset is a combination of data from two or 
more cancers. In the integration process, to reduce the sample imbalance rate and 
ensure the credibility of the experimental results, we remove all normal samples 
and integrate only the disease samples of each cancer for classification experiments. 
Tables 3 and 4 list the information about the cancer data used in our experiments.

Table 2  Details of the benchmark datasets

Datasets #Classes #Samples #Training #Testing #Features

Iris 3 150 120 30 4

COIL20 10 1440 1152 288 1024

USPST 20 2007 1605 402 256

g50c 2 550 440 110 50

RNA-seq 5 801 601 200 20,531

Table 3  The full name, abbreviation, and symbol for each cancer

Cancer name Abbreviation Symbol

Colon adenocarcinoma COAD C

Esophageal carcinoma ESCA E

Pancreatic adenocarcinoma PAAD P

Head and Neck squamous cell carcinoma HNSC H

Cholangiocarcinoma CHOL C2



Page 6 of 22Ren et al. BMC Bioinformatics          (2020) 21:445 

Convergence and sensitivity

There are four parameters ( σ , �, C , L ) that need to be turned in the experiments, and 
different combinations of parameters may produce different classification effects. Hence, 
ten  fold cross-validation and grid search are used to find the optimal combination of 
parameters. Besides, the selection range of the parameter σ is 

(

2−4.5, . . . , 24.5
)

, � and 
C are set as 

(

10−4, 10−3, . . . , 105
)

, and L is set as (100, 200, . . . , 2000) . Taking datasets 
COIL20 and CEHP as examples, Figs. 2 and 3 depict the sensitivity of CSRGELM to dif-
ferent parameters. Because there are so many different combinations of parameters, we 
only show the first 180. As shown in the 4-D figures, the X-axis represents the range of 
� , the Y-axis represents the range of σ , and the Z-axis represents the range of C . Each 
point in the figure represents the classification accuracy obtained by different parameter 
combinations. A conclusion can be drawn from Figs. 2 and 3 that CSRGELM is sensi-
tive to σ and C, while it is insensitive to �. For the benchmark datasets, when σ > 2−2.5 
and C < 10−1, the classification performance of CSRGELM is better. And for TCGA 
datasets, when σ ≥ 2−2.5 and C ≥ 10−4, the classification performance of CSRGELM is 
better.

Taking four datasets as the examples, we also show the effect of the number of hid-
den layer nodes on classification performance in Fig.  4. It is obvious that with the 

Table 4  Information of the integrated datasets

Datasets #Classes #Samples #Training #Testing #Features

CE 2 445 356 89 20,502

EHP 3 757 606 151 20,502

CEHP 4 1019 815 204 20,502

CEHPC2 5 1055 844 211 20,502

Fig. 2  Parameter sensitivity of CSRGELM on COIL20
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increase of the number of hidden layer nodes, the classification performance of 
CSRGELM on the benchmark dataset fluctuates greatly. On the TCGA dataset, how-
ever, CSRGELM can obtain good classification results.

Besides, L2,1-norm and correntropy induced loss are introduced to our method, and 
their iterative optimization is more complicated. So, an iterative optimization algo-
rithm is designed to solve the above optimization problem. As shown in Figs. 5 and 
6, we plot the convergence curves to prove the convergence of the method. In the 
experiments, we assume that the method will converge after 40 iterations. And it’s 
worth noting that CSRGELM can achieve convergence after 10 iterations. This can 
prove that the convergence rate of the method is relatively fast, and our iterative opti-
mization algorithm is very efficient.

Fig. 3  Parameter sensitivity of CSRGELM on CEHP

Fig. 4  The influence of the number of hidden layer nodes on classification results
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Classification results on benchmark datasets and TCGA datasets

In this sub-section, the classification results of every method are provided. On every 
dataset, each method runs 20 times, and the average results and variance of the 20 

Fig. 5  Convergence curve of CSRGELM on benchmark datasets a Iris, b COIL20, c USPST, d g50c

Fig. 6  Convergence curve of CSRGELM on TCGA datasets a CE, b EHP, c CEHP, d CEHPC2
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classification results are listed in Tables  5 and 6. Besides, the running time of each 
method on different datasets is also listed in Tables 7 and 8. The best results are high-
lighted in italics.

Table 5  Classification results on benchmark datasets (± variance)

Datasets Evaluations Iris (L = 100) COIL20 (L = 500) USPST (L = 500) g50c (L = 1000) RNA-seq 
(L = 200)

RELM Acc 0.9511 ± 0.0021 0.9763 ± 0.0001 0.9229 ± 0.0000 0.9001 ± 0.0004 0.9275 ± 0.0021

Pre 0.9546 ± 0.0015 0.9753 ± 0.0004 0.9175 ± 0.0000 0.8937 ± 0.0014 0.9165 ± 0.0029

Recall 0.9495 ± 0.0021 0.9752 ± 0.0005 0.9140 ± 0.0000 0.9202 ± 0.0033 0.9279 ± 0.0012

F-mea 0.9459 ± 0.0025 0.9742 ± 0.0005 0.9150 ± 0.0000 0.9146 ± 0.0002 0.9205 ± 0.0020

L21-RFELM Acc 0.9622 ± 0.0006 0.9815 ± 0.0000 0.9337 ± 0.0002 0.8210 ± 0.0010 0.9525 ± 0.0003

Pre 0.9608 ± 0.0005 0.9823 ± 0.0000 0.9253 ± 0.0002 0.8407 ± 0.0034 0.9478 ± 0.0014

Recall 0.9650 ± 0.0004 0.9812 ± 0.0000 0.9251 ± 0.0002 0.8008 ± 0.0018 0.9531 ± 0.0002

F-mea 0.9604 ± 0.0005 0.9807 ± 0.0000 0.9240 ± 0.0002 0.8186 ± 0.0011 0.9497 ± 0.0002

LR21ELM Acc 0.9556 ± 0.0035 0.9814 ± 0.0000 0.9401 ± 0.0000 0.8150 ± 0.0023 0.9425 ± 0.0036

Pre 0.9594 ± 0.0019 0.9819 ± 0.0000 0.9341 ± 0.0001 0.8818 ± 0.0144 0.9445 ± 0.0029

Recall 0.9587 ± 0.0025 0.9803 ± 0.0000 0.9325 ± 0.0000 0.8040 ± 0.0164 0.9332 ± 0.0065

F-mea 0.9535 ± 0.0036 0.9799 ± 0.0000 0.9324 ± 0.0001 0.8423 ± 0.0057 0.9379 ± 0.0046

CELM Acc 0.9634 ± 0.0002 0.9865 ± 0.0000 0.9306 ± 0.0001 0.8674 ± 0.0002 0.9400 ± 0.0002

Pre 0.9702 ± 0.0002 0.9867 ± 0.0000 0.9215 ± 0.0001 0.8242 ± 0.0003 0.9458 ± 0.0001

Recall 0.9641 ± 0.0001 0.9851 ± 0.0000 0.9227 ± 0.0001 0.9344 ± 0.0002 0.9358 ± 0.0001

F-mea 0.9711 ± 0.0002 0.9853 ± 0.0000 0.9205 ± 0.0001 0.8758 ± 0.0002 0.9405 ± 0.0002

CSRGELM Acc 0.9788 ± 0.0000 0.9899 ± 0.0000 0.9513 ± 0.0005 0.9084 ± 0.0002 0.9625 ± 0.0002

Pre 0.9745 ± 0.0000 0.9897 ± 0.0000 0.9346 ± 0.0001 0.8964 ± 0.0003 0.9626 ± 0.0001

Recall 0.9747 ± 0.0000 0.9892 ± 0.0000 0.9325 ± 0.0001 0.9152 ± 0.0005 0.9631 ± 0.0002

F-mea 0.9735 ± 0.0000 0.9891 ± 0.0000 0.9325 ± 0.0001 0.9059 ± 0.0002 0.9622 ± 0.0001

Table 6  Classification results on TCGA datasets (± variance)

Datasets Evaluations CE (L = 1000) EHP (L = 1000) CEHP (L = 2000) CEHPC2 (L = 2000)

RELM Acc 0.9638 ± 0.0012 0.9589 ± 0.0003 0.9545 ± 0.0012 0.9623 ± 0.0010

Pre 0.9714 ± 0.0003 0.9604 ± 0.0005 0.9434 ± 0.0010 0.9564 ± 0.0016

Recall 0.9846 ± 0.0002 0.9508 ± 0.0003 0.9510 ± 0.0009 0.9584 ± 0.0015

F-mea 0.9778 ± 0.0001 0.9546 ± 0.0004 0.9511 ± 0.0010 0.9564 ± 0.0018

L21-RFELM Acc 0.9783 ± 0.0005 0.9571 ± 0.0001 0.9547 ± 0.0001 0.9753 ± 0.0001

Pre 0.9714 ± 0.0012 0.9535 ± 0.0001 0.9668 ± 0.0005 0.9747 ± 0.0002

Recall 0.9905 ± 0.0000 0.9426 ± 0.0004 0.9648 ± 0.0005 0.9751 ± 0.0002

F-mea 0.9805 ± 0.0004 0.9478 ± 0.0003 0.9642 ± 0.0005 0.9745 ± 0.0002

LR21ELM Acc 0.9823 ± 0.0004 0.9383 ± 0.0005 0.9403 ± 0.0002 0.9667 ± 0.0002

Pre 0.9878 ± 0.0004 0.9393 ± 0.0005 0.9422 ± 0.0002 0.9718 ± 0.0000

Recall 0.9877 ± 0.0004 0.9383 ± 0.0007 0.9292 ± 0.0004 0.9605 ± 0.0005

F-mea 0.9865 ± 0.0003 0.9255 ± 0.0010 0.9273 ± 0.0004 0.9653 ± 0.0002

CELM Acc 0.9062 ± 0.0046 0.9741 ± 0.0000 0.9646 ± 0.0000 0.9767 ± 0.0001

Pre 0.9068 ± 0.0026 0.9691 ± 0.0000 0.9722 ± 0.0000 0.9706 ± 0.0000

Recall 0.9454 ± 0.0042 0.9704 ± 0.0000 0.9690 ± 0.0000 0.9857 ± 0.0001

F-mea 0.9306 ± 0.0027 0.9796 ± 0.0000 0.9707 ± 0.0000 0.9778 ± 0.0000

CSRGELM Acc 0.9964 ± 0.0001 0.9834 ± 0.0001 0.9709 ± 0.0000 0.9782 ± 0.0001

Pre 0.9956 ± 0.0002 0.9860 ± 0.0000 0.9678 ± 0.0000 0.9813 ± 0.0001

Recall 0.9970 ± 0.0002 0.9741 ± 0.0000 0.9695 ± 0.0000 0.9774 ± 0.0003

F-mea 0.9963 ± 0.0001 0.9796 ± 0.0002 0.9685 ± 0.0000 0.9790 ± 0.0002
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A conclusion can be easily drawn that, both on the benchmark datasets and the inte-
grated TCGA datasets, our method can get better results than other methods, or at 
least have competitive results. By evaluating each method using different evaluation 
measures, we can see that our method always gets a competitive result. Compared with 
RELM, L2,1-RFELM, LR21ELM, and CELM, CSRGELM obtains better results in most 
cases. In terms of running time, RELM can complete the training of the network model 
in the shortest time because there is no iterative adjustment. Compared with other 
methods, CSRGELM requires the most running time. According to the analysis, in addi-
tion to constantly iterating to optimize the output weight, the calculation of HTZH or 
ZHHT also takes a lot of time. How to shorten the training time is also a problem we 
need to study in the future.

As stated in the previous section, L2,1-norm is applied to the output weight matrix 
as a sparse regularization constraint. To prove the validity of the sparse constraint 
and the sparseness of the output weight matrix, we analyze the weight distribution of 
CSRGELM and CELM. Figures 7 and 8 show the output weight distribution of CELM 
and CSRGELM on CE and CEHP.

Table 7  Training time of every method on benchmark datasets (± variance)

Datasets RELM L21-RFELM LR21ELM CELM CSRGELM

Iris 0.0020 ± 0.0000 0.0197 ± 0.0004 0.0752 ± 0.0003 0.0221 ± 0.0001 0.0834 ± 0.0021

COIL20 0.0366 ± 0.0000 1.3369 ± 0.0001 2.9500 ± 0.0002 3.2786 ± 0.0599 6.2550 ± 0.0001

USPST 0.0483 ± 0.0001 0.4450 ± 0.0001 4.9219 ± 0.0242 5.1551 ± 0.0046 8.1832 ± 0.0010

g50c 0.0055 ± 0.0001 0.1535 ± 0.0001 0.4197 ± 0.0389 0.0962 ± 0.0038 0.2858 ± 0.1133

RNA-seq 0.0070 ± 0.0000 1.0653 ± 0.0001 1.9405 ± 0.4001 0.4083 ± 0.0003 1.4773 ± 0.0891

Table 8  Training time of every method on TCGA datasets (± variance)

Datasets RELM L21-RFELM LR21ELM CELM CSRGELM

CE 0.0108 ± 0.0000 0.5854 ± 0.0004 0.8893 ± 0.0001 1.2014 ± 0.0001 3.4048 ± 0.0001

EHP 0.0402 ± 0.0001 1.2358 ± 0.0001 1.3432 ± 0.0003 3.1345 ± 0.0008 6.5448 ± 0.1786

CEHP 0.0521 ± 0.0001 4.0034 ± 0.3392 1.6710 ± 0.0005 8.4452 ± 0.6172 31.2409 ± 0.7403

CEHPC2 0.0907 ± 0.0010 4.6731 ± 0.0174 6.3159 ± 0.2753 9.1278 ± 0.0033 31.7088 ± 0.0013

Fig. 7  Output weight distribution on CE a CELM, b CSRGELM
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From Figs. 7 and 8, we can conclude that the distribution of the elements of the output 
weight matrix is almost concentrated around zero. This proves that by the constraint of 
L2,1-norm to β , we can obtain a sparser network model, which makes the model easier 
to explain and saves storage space and resources. In the neural network model, a sparse 
network model can achieve feature selection, and then we can remove the unrelated hid-
den layer nodes to get a more simplified and efficient neural network model.

Discussion
Our method is applied to the sample classification problems, and the generalization per-
formance is better than other methods. The main reason is that the non-convex function 
of the correntropy-induced loss is introduced to improve the robustness. CSRGELM is 
more efficient and accurate than CELM because of the introduction of the graph regu-
larization. What’s more, the L2,1-norm regularization constraint has also contributed to 
the improvement of classification performance. Although in another method LR21ELM 
[9], the L2,1-norm is also used as a loss function to improve the robustness, from the 
experimental results, in most cases, the robustness of the L2,1-norm is weaker than the 
correntropy induced loss. In other words, correntropy induced loss based methods can 
effectively reduce the negative influence of noise and outliers on classification results. 
At the same time, the introduction of the graph regularization can preserve the local 
structural information of data. The effective combination of them can not only improve 
the classification performance, but also improve the generalization ability of the model.

The introduction of L2,1-norm regularization tends to produce a structural sparsity. It 
is capable of reducing some rows of the output weight matrix to zero and simplify the 
inherent complexity of the neural network model. The results of Figs. 7 and 8 also prove 
the validity of the L2,1-norm regularization.

Conclusions
In this paper, we propose a new method named correntropy induced loss based sparse 
robust graph regularized extreme learning machine (CSRGELM) and apply it to the 
classification problems of cancer samples. The introduction of correntropy induced 
loss weakens the influence of noise and outliers on the classification performance 
and improves the robustness of the method. As a powerful sparse regularization con-
straint, L2,1-norm is used to constrain the output weight matrix, which can reduce the 

Fig. 8  Output weight distribution on CEHP a CELM, b CSRGELM
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complexity of the network model. Besides, the graph regularization is introduced to 
preserve the local manifold structure between data and reduce the loss of information. 
To solve the above optimization problem, we propose an efficient iterative optimization 
algorithm, and the computational complexity of the algorithm is also proved. Whether 
on the benchmark datasets or the TCGA integrated datasets, the classification perfor-
mance and generalization performance of CSRGELM are comparable to other methods. 
In future work, we will still conduct in-depth research on the robustness of ELM and 
apply it to the field of bioinformatics.

Methods
RELM

Huang et  al. proposed the regularized-extreme learning machine (RELM) in [5] and 
proved its good performance in classification or regression problems. For a dataset 
{X,T} = {xi, ti}

N
i=1 ∈ R

N×m, where N  is the number of samples and m is the number of 
features. The objective function of RELM can be expressed as:

where γ is a regularization parameter, and ξi is the error vector of i-th sample. T is 
the target label matrix. Substituting constraints into Eq. (5), we get the following uncon-
strained optimization problem:

Let L be the number of hidden nodes, if N ≥ L, the solution of β can be obtained by 
calculating the partial derivative of Eq. (6) and setting it to zero:

and

where IL is an identity matrix with dimension L. If N < L, β can be calculated as:

where IN is an identity matrix with dimension N . Finally, we get the solution of β:

L2,1‑RFELM

As a regularization constraint, Zhou et  al. introduced the L2,1-norm to constrain the 
output weight matrix β [34]. L2,1-norm regularization can generate row-sparsity, which 

(5)min
β, ξ

1

2
�β�2 +

γ

2

∑N

i=1

∥

∥ξi
∥

∥

2
, s.t. ξTi = tTi − h(xi)β, i = 1, . . . , N ,

(6)min
β

1

2
�β�2 +

γ

2
�T−Hβ�2.

(7)β− γHT (T−Hβ) = 0,

(8)β =

(

γHTH+ IL

)−1
γHTT,

(9)β = HT
(

γHHT + IN

)−1
γT,

(10)

{

β =
(

γHTH+ IL
)−1

γHTT, N ≥ L.

β = HT
(

γHHT + IN
)−1

γT, N < L.
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can eliminate the redundant nodes and achieve the feature selection [35–37]. The math-
ematical model of L2,1-RFELM is:

where C is a parameter of the regularization term. Then, Eq. (11) can be rewritten as:

where D is a diagonal matrix with dii = 1
/(

2
∥

∥βi
∥

∥

2

)

. By computing the derivative of β 
and setting it equal to zero, we have:

According to the relationship between the number of samples and hidden layer nodes, 
there are two analytic solutions for β:

LR21ELM

In [9], Li et al. introduced the L2,1-norm to constrain both the error matrix ξ and the out-
put weight matrix β , and proposed a robust sparse ELM method named LR21ELM. The 
objective function of LR21ELM is:

Following the KKT theorem, the Lagrangian function of Eq. (15) is defined as:

where θij is the Lagrange multiplier. Based on the solution in [38], Eq. (16) is equivalent 
to:

where D1 = 1
/(

2
∥

∥ξi
∥

∥

2

)

, and D = 1
/(

2
∥

∥βi
∥

∥

2

)

. According to Eq. (17), the optimal con-
ditions can be written as:

(11)min
β, ξ

1

2
�β�2,1 +

C

2

∑N

i=1

∥

∥ξi
∥

∥

2
, s.t. ξTi = tTi − h(xi)β, i = 1, . . . ,N ,

(12)ℓ =
1

2
Tr

(

βTDβ

)

+
C

2
�T−Hβ�2,

(13)Dβ− CHT (T−Hβ) = 0.

(14)

{

β =
(

D+ CHTH
)−1

CHTT, N ≥ L,

β = CD−1HT
(

I+ CHD−1HT
)

T, N < L.

(15)min
β, ξ

�β�2,1 + C�ξ�2,1, s.t. ξ
T
i = tTi − h(xi)β, i = 1, . . . ,N .

(16)ℓLR21ELM = C�ξ�2,1 + �β�2,1 −
∑N

i=1

∑m

j=1
θij

(

h(xi)β− tij + ξij

)

,

(17)

ℓLR21ELM = CTr
(

ξTD1ξ
)

+ Tr
(

βTDβ

)

−
∑N

i=1

∑m

j=1
θij

(

h(xi)β− tij + ξij

)

,

(18)
∂ℓLR21ELM

∂θi
= 0 ⇒ Hβ− T+ ξ = 0,

(19)
∂ℓLR21ELM

∂βi
= 0 ⇒ Dβ = HTθ,
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If N < L, by substituting Eq. (19) and Eq. (20) into Eq. (18), we have:

According to Eq. (19), we have:

And if N ≥ L, by combining Eq. (19) with Eq. (20), we have:

Substituting Eq. (23) into Eq. (18), we obtain an alternative solution of β:

So, the analytic solution of β is:

Graph regularization

Graph regularization framework [39] has been widely used in semi-supervised learn-
ing [13] and unsupervised learning [40–43]. In the process of data processing, the 
graph regularization can preserve the local manifold structure between data, so that 
the structural information can be extracted, which is beneficial to clustering or clas-
sification problems. In mathematics, the expression of graph regularization is as 
follows:

where P(t|xi) and P
(

t|xj
)

 are conditional probabilities, and W =
[

Wi,j

]

 is the similar-
ity matrix. Equation (26) is equal to

where ti and tj are predictions of xi and xj , respectively. And the matrix form of 
Eq. (27) is:

(20)
∂ℓLR21ELM

∂ξi
= 0 ⇒ θ = CD1ξ.

(21)θ =

(

HD−1HT +
D−1

1

C

)−1

T.

(22)β = D−1HT

(

HD−1HT +
D−1

1

C

)−1

T.

(23)ξ =

(

HTD1

)†
Dβ

C
.

(24)β =

(

HTD1H+
D

C

)−1

HTD1T.

(25)











β =
�

HTD1H+ D
C

�−1
HTD1T. N ≥ L,

β = D−1HT

�

HD−1HT +
D−1
1
C

�−1

T. N < L.

(26)QgL =
1

2

∑

i,j
Wi,j

∥

∥P(t|xi)− P
(

t|xj
)∥

∥

2
,

(27)Q
′

gL =
1

2

∑

i,j
Wi,j

∥

∥ti − tj
∥

∥

2
,
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where T is the prediction matrix, Tr(•) is the trace norm and Z = D−W is the graph 
Laplacian matrix. D is a diagonal matrix with dii =

∑

j Wi,j .

Proposed CSRGELM

In practical applications, the dataset usually includes a lot of noise and outliers, which 
will cause serious interference to the experiment results, so as to obtain inaccurate 
results [44]. Due to the noise and outliers, the classification effect of ELM always fails 
to meet the expectation. A large number of conclusions have proved that the introduc-
tion of the graph regularization in ELM method can effectively improve the classifica-
tion performance or feature extraction ability of the algorithm [45, 46]. Therefore, it is 
necessary to develop a robust and efficient method for outliers and noise.

In this section, we propose a novel method which is named correntropy induced loss 
based sparse robust graph regularized extreme learning machine (CSRGELM). The cor-
rentropy induced loss function is introduced to replace the square loss, which can effec-
tively improve the robustness of the method. And in our method, the L2,1-norm is used 
to constrain the output weight matrix β . As an adaptive sparse regularization term, L2,1-
norm is used to constrain the output weight matrix, which can generate row sparsity, 
eliminate redundant hidden layer nodes and simplify the structure of the neural net-
work. In recent years, how to use local consistency of data for learning to improve the 
performance of machine learning methods that has attracted researchers’ attention [45]. 
Based on the theory that similar samples should have similar properties, the graph reg-
ularization is combined with our method to preserve the local structural information, 
which may improve the classification performance of the method [13, 47]. We use the 
label information of the training sample to construct an adjacent graph, and the regu-
larization term of the graph is integrated to constrain the output weight matrix, so as to 
learn the similar output of similar samples.

The objective function of CSRGELM

This section introduces the objective function of CSRGELM. For a dataset 
{Xtrain, Ttrain} = {xi, ti}

N
i=1 ∈ R

N×m, Ttrain is the label matrix of Xtrain , N  is the number 
of samples, and m is the number of features. The mathematical model of CSRGELM can 
be expressed as:

In Eq.  (29), ξi is the error vector, σ is the bandwidth and Z is the graph Laplacian 
matrix. � and C are regularization parameters, respectively. Since Eq. (29) is not a con-
vex function, it can’t be solved by a commonly used optimization method. According to 
the solution process in [23], we can effectively solve the optimization problem of non-
convex functions.

(28)Q
′

gL = Tr
(

TTZT
)

,

(29)
F(β) = min

β

∑N

i=1

(

1− exp

(

−
ξ2i

2σ 2

))

+
�

2
�β�2,1 +

C

2
Tr

(

(Hβ)TZHβ

)

,

s.t. h(xi)β = tTi − ξTi , i = 1, . . . ,N .
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The optimization of CSRGELM

Since the correntropy induced loss is a differentiable and smooth function, the gradient 
optimization algorithm can be employed [23]. However, the gradient-based optimization 
algorithm converges slowly, so we use the half-quadratic optimization algorithm to solve 
the optimization problem of CSRGELM.

Firstly, we should define a convex function as:

where τ < 0. Following the definition and solution of conjugate function in [48]: If we 
define a differentiable function: ψ(x) : Rn → R, the conjugate function ψ∗(x) : Rn → R 
can be expressed as: ψ∗(x) = sup

p
(px − ψ(p)). And if ψ(x) is a convex function, we can 

obtain that (ψ∗(x))∗ = ψ(x) [49]. we can obtain the conjugate function of Eq. (30):

and

By letting df′(τ )
/

dτ = 0, the solution of Eq. (32) can be obtained:

Substituting Eq. (33) into Eq. (31), so Eq. (34) can be expressed as:

When we assume υ = ξ2i

/

2σ 2, we will have

As described in [23], the supremum is reached when τ = − exp
(

−

(

ξ2i

/

2σ 2
))

< 0.

Combining Eq. (35) with Eq. (29), and we can get hold of the following mathematical 
model:

where τ = [τ1, τ2, . . . ,τN ]
T . Equation (36) can be rewritten as:

(30)f(τ ) = −τ log (τ )+ τ ,

(31)f∗(υ) = sup f′(τ ),

(32)f′(τ ) = υτ − f(τ ) = υτ + τ log (−τ)− τ .

(33)υ + log (−τ) = 0 ⇒ τ = − exp (−υ) < 0.

(34)f∗(υ) = exp (−υ).

(35)f∗

(

ξ2i

2σ 2

)

= sup

(

ξ2i

2σ 2
τ + τ log (−τ)− τ

)

= exp

(

−
ξ2i

2σ 2

)

.

(36)

F
′

(β) = min
β,τ

∑N

i=1

(

1− sup

(

ξ2i

2σ 2
τi − f(τi)

))

+
�

2
�β�2,1 +

C

2
Tr

(

(Hβ)TZHβ

)

,

s.t.h(xi)β = tTi − ξTi , i = 1, . . . , N ,

(37)

F
′′

(β) = min
β,τ

(

sup
∑N

i=1

(

−
ξ2i

2σ 2
τi + f(τi)

)

+
�

2
�β�2,1 +

C

2
Tr

(

(Hβ)TZHβ

)

)

,

s.t.h(xi)β = tTi − ξTi , i = 1, . . . , N .
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Obviously, there are two variables that need to be optimized: τ and β . Here we use a 
method of fixing one to optimize the other to solve Eq. (37).

(1)	Fixed βn to optimize τn+1.

For a given βn, Eq. (37) can be expressed as:

Substituting constraints into Eq. (38), we can get:

According to Eq. (32), the solution of Eq. (39) is:

where τn+1
i < 0.

2	 Fixed τn+1 to optimize βn+1.

For a given τn+1, we focus on solving the problem as:

By eliminating the constraint conditions and rewriting the Eq.  (41) into a matrix 
form, we can get:

Following the conclusion in [38]. Equation (42) can be rewritten as:

where Dn+1 is a diagonal matrix and dii = 1
/(

2
∥

∥

∥
βn+1
i

∥

∥

∥

2

)

. In theory, the value of 
∥

∥

∥
βn+1
i

∥

∥

∥

2
 can be zero, but this will make the Eq. (43) undifferentiable. To prevent this 

from happening, a regularization term is added and

(38)min
τn+1

∑N

i=1

(

−
ξ2i

2σ 2
τn+1
i + f

(

τn+1
i

)

)

, s.t.h(xi)β
n = tTi − ξTi , i = 1, . . . ,N .

(39)min
τn+1

∑N

i=1

(

−

(

tTi − h(xi)β
n
)2

2σ 2
τn+1
i + f

(

τn+1
i

)

)

.

(40)τn+1
i = − exp

(

−

(

tTi − h(xi)β
n
)2

2σ 2

)

, i = 1, . . . ,N ,

(41)
min
βn+1

(

∑N

i=1

(

−
τn+1
i

2σ 2
ξ2i

)

+
�

2

∥

∥

∥
βn+1

∥

∥

∥

2,1
+

C

2
Tr

(

(

Hβn+1
)T

ZHβn+1

)

)

,

s.t. h(xi)β
n+1 = tTi − ξTi , i = 1, . . . ,N .

(42)

ℓCSRGELM = −
τn+1

2σ 2

(

T−Hβn+1
)2

+
�

2

∥

∥

∥
βn+1

∥

∥

∥

2,1
+

C

2
Tr

(

(

Hβn+1
)T

ZHβn+1

)

.

(43)
ℓCSRGELM = −

τn+1

2σ 2

(

T−Hβn+1
)2

+
�

2
Tr

(

(

βn+1
)T

Dn+1βn+1

)

+
C

2
Tr

(

(

Hβn+1
)T

ZHβn+1

)

,
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where κ is a very small regularization term, in the experiment, κ = 10−6. It is clear 
that dii = d

′

ii when κ ⇒ 0.

Computing the derivative of βn+1 about ℓCSRGELM and we have:

where ω = diag
(

−τn+1
1 , . . . ,−τn+1

N

)

.

For the case that the number of hidden nodes is less than the number of training 
samples, the output weights matrix βn+1 can be solved as:

that is

And if the number of hidden nodes is larger than the number of training samples, 
βn+1 may have an unlimited number of solutions. Inspired by the solution of Huang 
et al. [13],and according to Eq. (46), we make:

Substituting Eq. (48) into Eq. (46), we have:

And multiplying 
(

HHT
)−1

H on both sides of the Eq. (49), we get:

Then we obtain the solution of α:

And βn+1 can be computed as:

where I is an identity matrix with dimension of N  . The analytical solution of βn+1 
can be finally determined as:

(44)
d′ii =

1

2

(
√

(

βn+1
i

)

βn+1
i + κ

) ,

(45)
∂ℓCSRGELM

∂βn+1
= 0 ⇒ −

1

σ 2
HTω

(

T−Hβn+1
)

+ �Dβn+1 + CHTZHβn+1 = 0,

(46)�σ 2Dn+1βn+1 +HTωHβn+1 + Cσ 2HTZHβn+1 −HTωT = 0,

(47)βn+1 =

(

�σ 2Dn+1 +HTωH+ Cσ 2HTZH
)−1

HTωT.

(48)�σ 2Dn+1βn+1 = HTα ⇒ βn+1 =
1

�σ 2

(

Dn+1
)−1

HTα.

(49)HTα+
1

�σ 2
HTωH

(

Dn+1
)−1

HTα+
C

�
HTZH

(

Dn+1
)−1

HTα−HTωT = 0.

(50)α+
1

�σ 2
ωH

(

Dn+1
)

HTα+
C

�
ZH

(

Dn+1
)

HTα− ωT = 0.

(51)α =

(

I+
1

�σ 2
ωH

(

Dn+1
)

HT +
C

�
ZH

(

Dn+1
)

HT

)−1

ωT.

(52)βn+1 =
1

�σ 2

(

Dn+1
)

HT

(

I+
1

�σ 2
ωH

(

Dn+1
)

HT +
C

�
ZH

(

Dn+1
)

HT

)−1

ωT,
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And η = �σ 2, ρ = Cσ 2. It is worth noting that βn+1 is a dependence on Dn+1, so an 
iterative optimization algorithm is proposed for solving βn+1 and Dn+1. The flow of 
Algorithm 1 is as follows:

Computational complexity analysis

The computational complexity of CSRGELM is analyzed in this subsection. We 
define M as the number of classes. In Eq.  (47), we have to calculate Dn+1, HTωH, 
HTZH, HTωT, ω and 

(

�σ 2Dn+1 +HTωH+ Cσ 2HTZH
)−1

. The computational 
cost for Dn+1 is O(LM), and it needs O

(

L2N
)

 to compute HTωH and HTZH. For 
HTωT, the computational complexity is O(LNM), and the computational com-
plexity for 

(

�σ 2Dn+1 +HTωH+ Cσ 2HTZH
)−1 is O

(

L3
)

, while it needs O(NM) 
to compute ω. In addition, the computational time complexity of the operation of 
(

�σ 2Dn+1 +HTωH+ Cσ 2HTZH
)−1 multiplied by HTωT is O

(

L2M
)

. Owing to N > L, 
The computational cost of Eq.  (47) is O

(

L2N
)

. Assuming that the method converges 
after K  iterations, we can obtain that the final computational cost of CSRGELM is 
K × O

(

L2N
)

.

Robustness analysis

An experiment is designed to demonstrate the robustness of CSRGELM to outli-
ers and noise. Two groups of data subject to Gaussian distribution that are ran-
domly generated. Class 1 includes 300 samples with mean parameter χ1 = [−2,−2] 
and covariance matrix φ1 = [10; 01], while class 2 includes another 300 samples with 
mean parameter χ2 = [2, 2] and covariance matrix φ2 = [10; 01]. And in the experi-
ments, RELM, L2,1-RFELM, LR21ELM and CSRGELM are trained on this dataset, 
respectively. The classification decision boundary has shown in Fig.  9. Figure  9a is 

(53)







βn+1 =
�

ηDn+1 +HTωH+ ρHTZH
�−1

HTωT, N ≥ L

βn+1 = 1
η

�

Dn+1
�−1

HT
�

I+ 1
η
ωH

�

Dn+1
�−1

HT + C
�
ZH

�

Dn+1
�−1

HT
�−1

ωT. N < L
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the classification results with no noise, and it shows that these two classes are sepa-
rated easily. Figure  9b is the classification results with 50 noise, these noisy points 
originally belong to the class 2 but are confused in the class 1. And Fig. 9b shows that 
under the interference of noise, the classification decision boundaries of these four 
methods have changed. And the changes of RELM and L2,1-RFELM are more obvious. 
Again, another dataset is generated, class 1 and class 2 have 500 samples, respectively. 
First, four methods are trained on this dataset and the classification decision bound-
ary is shown in Fig. 10a. It is obvious that the data can be separated by four straight 
lines. And then, 100 points belonging to class 2 are confused into class 1 as the noise. 
The final classification results have been shown in Fig. 10b. Clearly, RELM and L2,1-
RFELM try to fit the noise, and their classification decision boundaries are already 
unreliable. But due to the constraints of the robust loss function, the classification 
decision boundaries of CSRGELM and LR21ELM are hardly affected.
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