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Background
Single-cell RNA sequencing (scRNA-seq) has revolutionized traditional transcrip-
tomic studies by extracting the transcriptome information at the resolution of a single 
cell; therefore, this approach is able to detect heterogeneous information that cannot 
be obtained by sequencing mixed cells and to reveal the genetic structure and gene 
expression status of a single cell [1–7]. Moreover, it helps to identify new cell types [8, 
9], provides new research ideas and opens up new directions for in-depth research on 
the occurrence, development mechanisms, diagnosis and treatment of complex diseases 
[10]. However, scRNA-seq generally results in a large amount of noise, and the capture 
efficiency is also much lower than that of traditional bulk RNA-seq, generating a very 
large number of dropouts, which gives rise to new challenges in single-cell data analysis 
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and calculation [11]. Accordingly, use of unsupervised clustering algorithms based on 
such noisy single-cell gene expression data has become the main computational strategy 
for identifying cell types, which is usually the first step for the subsequent analysis of 
scRNA-seq data (e.g., the reconstruction of cell developmental trajectories) [12, 13].

A number of clustering methods have been developed by using scRNA-seq data; e.g., 
Xu and Su designed a new method by using a shared nearest neighbor approach followed 
by a quasi-clique-based clustering algorithm (SNN-cliq) to cluster single-cell transcrip-
tomes [14]. In addition, the approach that uses a shared nearest neighbor approach fol-
lowed by walktrap was applied for cell type clustering [15]. The DynamicTreecut method 
was designed by using a voting strategy based on approval votes from known markers 
[16]. The SC3 algorithm [17] performs cell-type clustering using a strategy combining 
multiple clustering solutions to generate a consensus result. Clustering methods such as 
tSNE [18] followed by k-means (tSNE + kmeans which was also tested in the study [17]) 
and pcaReduce [19] perform dimensionality reduction before clustering to extract prin-
cipal components and reduce computational complexity. Among these methods, SC3 
is the most widely used clustering method with high accuracy and adaptability, mainly 
because of its consensus strategy. Although great efforts have been made in the develop-
ment of these clustering algorithms to effectively cluster cell types, the noise caused by 
artifacts induced by laboratory protocols during single-cell sequencing and the lack of 
the universality of the clustering algorithms themselves mean that the clustering accu-
racy is far from sufficient for many practical applications, and there remains a large 
amount of room for the improvement of clustering models.

Generally, most single-cell clustering methods use gene expression data as their input, 
estimated from the scRNA-seq data of individual cells. A critical step in those cluster-
ing methods is to perform data preprocessing before cell-type clustering to eliminate 
the effects of confounding factors and reduce the effects of noise in the sample. Gene 
expression data record the expression value of each gene in each cell generally by tran-
scripts per million mapped reads (TPM), counts per million mapped reads (CPM), reads 
per kilobase of transcript per million mapped reads (RPKM), fragments per kilobase of 
transcript per million mapped reads (FPKM), read counts mapped to a gene (READS), 
quantile normalization (QN) or others. For a given gene expression data set, the com-
monly used data preprocessing methods for single-cell clustering include log transfor-
mation, z-score transformation and a newly developed approach sctransform [20] in the 
statistical sense [21]. Then, a challenging problem for a specific single-cell gene expres-
sion data set is whether preprocessing should be performed for the given data before 
clustering. If the answer is yes, which kind of preprocessing method should we choose?

In this study, we analyzed the effects of data preprocessing on clustering results in 
detail by applying several widely employed clustering methods, such as SC3, dynamic-
Treecut, pcaReduce, tSNE + k-means, and SNN-clip, to eight commonly used single-cell 
gene expression data sets. The results showed that different data preprocessing meth-
ods have quite different effects on different clustering algorithms for different types of 
gene expression data. Additionally, some clustering methods showed the best clustering 
results for certain data sets without any preprocessing. Therefore, we conclude that there 
is no specific preprocessing approach that is applicable to all clustering methods for any 
gene expression data set. Based on this conclusion, we designed the graph-based SC3-e 
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algorithm specifically for discriminating the best data preprocessing method for SC3 
algorithm. When our algorithm was tested on the eight frequently used single-cell gene 
expression data sets, SC3-e always accurately selects the best preprocessing method for 
SC3 and therefore greatly enhances the performance of SC3.

Results
Impact of different preprocessing methods on cell‑type clustering

In this study, five commonly used clustering methods (dynamicTreecut, tSNE + k-means, 
SNN-clip, pcaReduce, and SC3) were applied to evaluate clustering performance under 
four of the most commonly used data preprocessing methods (log transformation, 
z-score transformation, no transformation, and sctransform) with eight frequently used 
data sets (see “Methods” section for the details of the eight data sets, Darmanis, Lake, 
Yan, Romanov, Baron, Biase, Deng, and Leng). The clustering accuracy was evaluated by 
the commonly used criterion of the adjusted Rand index (ARI), as defined in the “Meth-
ods” section.

After running the five clustering algorithms under the four preprocessing methods on 
all eight data sets, the results showed that different preprocessing methods have quite 
different effects on the five clustering algorithms, and none of the four preprocessing 
methods is applicable to all clustering methods for any gene expression data set. As 
shown in Table 1, dynamicTreecut performed the best under log transformation for six 
of the data sets, but performed the best for three data sets under sctransform. PcaReduce 
showed its best performance for four data sets under sctransform, tSNE + k-means also 
showed its best performance for five data sets under log transformation, while pcaRe-
duce performed best for three data sets under log transformation, and tSNE + k-means 
performed best for three data sets under sctransform. SNN-clip showed its best per-
formance under z-score transformation for three data sets, while it also worked best 
under sctransform for three data sets. SC3 showed its best performance for three data 
sets under z-score transformation, while it worked best under no transformation for two 
data sets, and it worked best under sctransform for two data sets. Based on the above 
results, it is clear that different clustering methods are quite differently affected by differ-
ent preprocessing methods. Even for the same clustering algorithm, the best preprocess-
ing method still depends on the input data. Log transformation and sctransform seem 
to be applicable to most clustering methods for a large number of data sets, and z-score 
transformation also performs the best for SNN-clip and SC3 for multiple data sets.

Moreover, for a given data set, there can be large differences between clustering accu-
racies under different preprocessing methods. For example, the clustering accuracy of 
SC3 under z-score transformation for the Leng data set was 0.594, while it was only 0.21, 
0.22 and 0.221 under log, no transformation and sctransform, respectively. Similarly, the 
clustering accuracy of dynamicTreecut under log transformation, no transformation, 
and sctransform for the Yan data set was 0.667, while the accuracy was only 0.296 under 
z-score transformation. The default preprocessing method of SC3 is log transformation, 
which is not the optimal method for any of the tested datasets. By selecting the best 
preprocessing method for different data sets, the ARI of the SC3 clustering result will be 
increased by up to 37%. Therefore, the choice of the best preprocessing method would 
greatly improve the performance of the clustering methods.
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Performance evaluation of the SC3‑e algorithm

Based on the above conclusions, we designed a graph-based algorithm, SC3-e, specifi-
cally for discriminating the optimal data preprocessing method for the SC3 algorithm. It 
first builds two new graph models for each preprocessing method by using the cluster-
ing result and the corresponding consensus matrix generated by SC3, based on which a 
so-called C-score value can be calculated for each preprocessing method. And then the 
optimal preprocessing method for the SC3 clustering algorithm can be effectively and 
stably determined by the C-score values.

Validity of SC3‑e to discriminate the best preprocessing method

After running SC3-e on each data set, we obtained four C-scores (see details in the 
“Selection of the best preprocessing method for SC3” section) corresponding to the 
four preprocessing methods of log transformation, z-score transformation, no trans-
formation, and sctransform, and the smaller the C-score, the better the corresponding 
preprocessing method. To test the validity of SC3-e, we ran SC3-e 50 times on each of 
the eight data sets, and the results showed that SC3-e effectively discriminated the best 
preprocessing method from the other three preprocessing methods in most cases (see 
Fig. 1). As a result of the instability of SC3, the 50 calculated C-scores may be different, 

Table 1  ARI values of the five clustering algorithms under the four preprocessing methods

Each bold number in the table represents the maximum ARI of a clustering algorithm.

Darmanis Lake Yan Baron Biase Leng Romanov Deng

dynamicTreecut

 sctransform 0.368 0.195 0.667 0.376 * 0.069 0.562 0.858
 log 0.37 0.206 0.667 0.629 1 0.101 0.51 0.858
 no 0.28 0.21 0.667 0.16 0.71 0.052 0.191 0.582

 z-score 0.015 0.003 0.296 0 0.241 0 0 0.018

pcaReduce

 sctransform 0.457 0.292 0.818 0.425 * 0.265 0.379 0.361

 log 0.46 0.29 0.779 0.415 0.388 0.258 0.364 0.409

 no 0.071 0.156 0.41 0.278 0.004 0.154 0.166 0.422

 z-score 0.442 0.276 0.671 0.238 0.325 0.056 0.221 0.518
tSNE + k-means

 sctransform 0.467 0.304 0.679 0.462 * 0.059 0.429 0.481
 log 0.479 0.304 0.684 0.445 0.772 0.055 0.44 0.449

 no 0.43 0.276 0.618 0.311 0.76 0.126 0.29 0.435

 z-score 0.034 0.01 0.351 0.03 0.002 0.015 0.098 0.156

SNN-clip

 sctransform 0.572 0.52 0.673 0.515 * 0.26 0.422 0.594

 log 0.609 0.501 0.673 0.477 0.581 0.241 0.387 0.596

 no 0.077 0.249 0.722 0.326 0.476 0.252 0.279 0.576

 z-score 0.643 0.498 0.744 0.395 0.216 0.277 0.228 0.483

SC3

 sctransform 0.795 0.556 0.658 0.537 * 0.21 0.519 0.571

 log 0.785 0.554 0.674 0.56 0.87 0.22 0.511 0.575

 no 0.492 0.415 0.595 0.757 0.783 0.221 0.575 0.841
 z-score 0.656 0.494 0.895 0.489 0.956 0.594 0.336 0.686
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and the best preprocessing method will sometimes generate a larger C-score. However, 
the trend of the best preprocessing method generating the smallest C-score was always 
maintained.

In addition, we calculated the average value of the 50 C-scores (see Fig.  1), which 
demonstrated that the best preprocessing method always produced the smallest aver-
age C-score value. Therefore, the C-score value is effective in discriminating the best 
preprocessing methods for the SC3 clustering algorithm in practical applications. In 
addition, we did a correlation analysis between the two values C-score and ARI on all 
the eight data sets by using Pearson correlation coefficient, and results showed that the 
Pearson correlation coefficients were − 0.8982, − 0.8272, − 0.8206, − 0.3065, − 0.9927, 
− 0.7864, − 0.0214, and − 0.5724 respectively on the eight data sets. According to the 
results, the two values C-score and ARI showed high correlation on most data sets. For 
the reason why C-score is significantly less predictive of clustering quality on some data 
sets, it may be that these data sets (e.g. the Baron-5000 and Romanov data sets) con-
tain higher number of cells, which makes the constructed consensus matrix and the final 
clustering result by SC3 more instable.

Evaluation of the stability of SC3‑e algorithm

To evaluate the stability of the SC3-e algorithm, we first ran SC3-e by using different 
values of the N parameter (repeat number for calculating C-scores as described in the 
“Methods” section) for all eight data sets, and for each N, SC3-e was run 100 times. In 
each SC3-e run, if the best preprocessing method is correctly discriminated, that run is 

Fig. 1  Error bars of C-scores of SC3-e obtained via 50 runs for each preprocessing method for the eight data 
sets. Each bar represents the values of the corresponding 50 C-scores
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referred to as a good run. Then, the accuracy was defined as the fraction of good runs out 
of all 100 runs.

After running SC3-e on all the eight data sets, the results showed that the parameter 
N set to 3 would generate 100% accuracy for seven data sets, with the exception of the 
Baron-5000 data set, for which the accuracy was 99% when N was set to 3 and 100% 
when N was set to 4. Therefore, SC3-e generally only needs to be repeated 3 times to 
select the best preprocessing method for SC3 (see Fig. 2). In fact, for most of the tested 
data sets, setting the value of N to 1 would produce very high accuracy (more than 90% 
for seven data sets); therefore, the default value of N is set to 1 in the design of SC3-e 
algorithm. Based on the above evaluations, we concluded that SC3-e is not only effective 
but also quite stable.

Performance comparisons between SC3‑e and the other clustering algorithms by using 

the best preprocessing methods

In this section, we compare the performance of SC3-e with the other four cluster-
ing methods by using the best preprocessing methods, where SC3-e, pcaReduce and 
tSNE + k-means were run 100 times to capture the average accuracy, while SNN-clip 
and dynamicTreecut were run only once, as their solutions are stable. After running all 
the clustering methods on the eight data sets, the results showed that SC3-e performed 
the best for six data sets, except for the Biase data set and Deng data set, where only 
the dynamicTreeCut algorithm performed slightly better than SC3-e (see Fig. 3). How-
ever, when we ran SC3 by using its default preprocessing method (log transformation), 
it performed worse than many of the other clustering algorithms by using the best pre-
processing method. For example, for the Yan data set, the average accuracies of SC3-e 
and SC3 were 0.895 and 0.674, respectively, and the accuracies of pcaReduce, SNN-clip 
and tSNE + kmeans were 0.818, 0.744 and 0.684, all of which were higher than the accu-
racy of SC3. For the Leng data set, the average accuracies of SC3-e and SC3 were 0.594 
and 0.22, respectively, and the accuracies of pcaReduce and SNN-clip were 0.258 and 
0.277, respectively, which were also higher than the accuracy of SC3. Therefore, SC3-e 
performs the best among all the compared clustering methods for almost all the data 

Fig. 2  Accuracy of SC3-e for the eight data sets. The abscissa axis in each plot represents the repeat number, 
N 



Page 7 of 13Wang et al. BMC Bioinformatics          (2020) 21:440 	

sets because of its effective and stable discrimination of the best preprocessing method, 
which significantly enhances the performance of SC3 with its default settings.

Discussion
The accurate identification of diverse cell types based on noisy scRNA-seq data sets is a 
highly challenging problem, and many clustering methods have been developed to solve 
this problem by using different strategies or mathematical models. Most of the cluster-
ing methods preprocess the gene/transcript expression data before cell-type clustering, 
and the most frequently used preprocessing methods are log transformation, z-score 
transformation, no transformation, and the newly developed method, sctransform. In 
this study, we found that it is nontrivial to discriminate which preprocessing method is 
best for a specific clustering algorithm for a given data set because different clustering 
methods are quite differently impacted by different preprocessing methods for different 
data sets. log transformation seems to be applicable to the most clustering algorithms, 
followed by z-score transformation, and the effect of sctransform is very similar to that 
of log transformation, but the time consumption of sctransform is relatively high. We 
also found that no specific preprocessing method was applicable to all clustering meth-
ods for any given scRNA-seq data set. Moreover, different preprocessing methods will 
result in quite different clustering results and accuracies. Therefore, it is a highly chal-
lenging and important problem to choose an appropriate preprocessing method before 
cell-type clustering.

Based on such results, we specifically designed the graph-based SC3-e algorithm for 
discriminating the best data preprocessing method for the SC3 algorithm, which is 

Fig. 3  Performance comparisons between SC3-e and the other clustering methods by using the best 
preprocessing methods
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currently the most frequently used clustering method. This approach first builds two 
new graph models, a clustering graph and a contracted clustering graph, for each pre-
processing method by using the clustering result and the corresponding consensus 
matrix generated by SC3, based on which the closeness of cells in the same cluster and 
the closeness of a cluster to the other clusters are effectively measured. Then, a C-score 
value can be calculated for each preprocessing method based on the two graphs, which 
is able to discriminate the best preprocessing method effectively and stably for the SC3 
clustering algorithm. When tested on eight frequently used single-cell gene expression 
data sets, SC3-e performed the best among all the other clustering methods for almost 
all the data sets, which significantly enhanced the performance of SC3 with default 
settings.

In addition, we evaluated the effects of the three parameters, the number of clusters 
(num_clusters), α , and β on the performance of the algorithm SC3-e. For the parameter 
num_clusters, we tested its effects by setting different values of num_clusters. Results 
showed that changing the parameter num_clusters may result in the change of the 
best preprocessing method. For example, on the Biase data set, the best preprocessing 
method was z-score transformation if the num_clusters was set to 4, while the best pre-
processing method was log transformation if the num_clusters was set to 3, 5, or 6 (see 
Additional file 2: Table S2 for more examples). However, under different values of num_
clusters, the algorithm SC3-e always accurately identified the best preprocessing method 
(see Additional file 2: Table S2 for details). For the two parameters α and β , reducing the 
value of α can decrease the connections between cells in the same cluster, and increas-
ing the value of β can decrease the connections between cells in different clusters. Then 
we also tested their effects on the performance of the algorithm SC3-e by setting dif-
ferent values. Results showed that the two parameters α and β only slightly affected the 
performance of SC3-e, and reducing the value of α or increasing the value of β tended to 
obtain a more accurate C-score (see Additional file 3: Table S3 for details). However, too 
low α (or too high β ) may result in no connections between cells in the same cluster (or 
no connections between cells in different clusters), and the computed C-score would be 
0. Therefore, if the cell number of a specific data set is too small (e.g., no more than 100 
cells), a relatively high α and low β are recommended in practice.

Conclusions
To the best of our knowledge, SC3-e is the first algorithm specifically designed for select-
ing the best preprocessing method before cell-type clustering. And results showed that it 
can always accurately discriminate the best preprocessing method and therefore largely 
enhance the clustering performance of the popular algorithm SC3. The software SC3-e 
has been developed to be user-friendly and is expected to play a crucial role in new dis-
coveries of single-cell clustering using scRNA-seq, especially in complex human diseases 
such as cancers, the discovery of new cell types, and so on.

Methods
Data sets

We collected eight commonly used scRNA-seq data sets in which cell types were known 
a priori or validated in the respective study for benchmarking the performance of each 
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clustering algorithm under different data preprocessing methods. The eight data sets 
(see Table 2) came from Darmanis [22], Lake [23], Yan [24], Romanov [25], Baron [26], 
Biase [27], Deng [28], and Leng [29]. For the Baron data, we randomly selected 5000 cells 
since SC3 will randomly select 5000 cells from the data if the cell number exceeds 5000, 
and this data set is referred to as Baron-5000. The numbers of cells, genes, cell types, and 
normalization units are clearly provided in Table 2.

Data preprocessing and cell‑type clusterings

Five frequently used clustering methods, dynamicTreecut, pcaReduce, tSNE followed by 
k-means clustering (tSNE + k-means), SNN-clip, and SC3, and four of the most com-
monly used preprocessing methods, log transformation, z-score transformation, no 
transformation, and sctransform, were applied in this study to analyze the performance 
of different clustering methods under different preprocessing methods. Given input 
gene expression matrix data in which columns represent cells and rows correspond to 
genes/transcripts, different transformations were calculated as follows:

where µi is the average of the i-th row of the input data matrix, and σi is the standard 
deviation of the i-th row of the input data matrix.

After transformations, four preprocessed matrices were generated, referred to as log 
data (log transformation), z-score data (z-score transformation), no data (no trans-
formation), and sctransform data (sctransform). Then, the applied clustering meth-
ods took each of these four data matrices as the input to perform cell-type clustering. 

Input =







x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n
. . . . . . . . . . . .

xm,1 xm,2 . . . xm,n







m×n

log transformation : x′i,j = log2(xi,j + 1)

z-score transformation : x′i,j =
xi,j−µi

σi

x′i,j =
xi,j−µi

σi

Table 2  Characterization of the eight published scRNA-seq data sets

Data sets # Cells # Genes # Cell types # Units

Darmanis 466 22,088 9 CPM

Lake 3042 25,051 16 TPM

Yan 90 20,214 6 RPKM

Romanov 2881 24,341 7 READS

Baron-5000 5000 20,125 14 READS

Biase 56 25,734 4 FPKM

Deng 268 22,431 6 RPKM

Leng 460 19,084 4 QN
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To obtain stable clustering solutions for the clustering methods, we ran pcaReduce, 
tSNE + k-means and SC3 50 times, while SNN-clip and dynamicTreecut were run 
only once since their solutions are stable. Then, the clustering accuracy was calculated 
according to the commonly used criterion of the adjusted Rand index (ARI) [30] as 
follows.

where nij represents values from the contingency table, ai is the sum of the ith row of 
the contingency table, and bj is the sum of the jth column of the contingency table.

The SC3‑e algorithm

To select the best preprocessing method for each given data set for the SC3 clustering 
algorithm, we designed the graph-based SC3-e algorithm (see Fig. 4 for the pipeline of 
SC3-e), which significantly enhances the performance of SC3.

Running SC3 under different preprocessing methods

Given a gene expression data set, M, in which rows represent genes and columns corre-
spond to cells, four kinds of transformations (log transformation, z-score transformation, 
no transformation, and sctransform) were performed on M, and four preprocessed matri-
ces, M-log, M-zscore, M-no, and M-sctransform were generated. Then, the SC3 pipeline 
was applied to each of the preprocessed matrices to produce a consensus matrix, C, and 
a clustering result, T. The value of cij (cij belongs to the interval [0, 1]) in the consensus 

ARI =

∑

ij
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Fig. 4  Flowchart of SC3-e
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matrix, C, represents the similarity between cells i and j, and the larger the value, the more 
similar they are. Therefore, we finally obtained four consensus matrices, C-log, C-zscore, 
C-no, and C-sctransform, and four corresponding clustering results, T-log, T-zscore, T-no, 
and T-sctransform.

Building the clustering graphs

To discriminate the best clustering result from T-log, T-zscore, T-no, and T-sctrans-
form, based on the consensus matrices C-log, C-zscore, C-no, and C-sctransform, we 
first built a clustering graph for each of the four clustering results. Given a clustering 
result, T and its corresponding consensus matrix, C, each node in the clustering graph 
represents a cell in the data set, and an in-cluster edge is added between two nodes, ni 
and nj, if and only if the two corresponding cells, i and j, are in the same cluster and their 
consensus value, cij, is lower than a threshold of α (default value 0.6), and the edge is 
labeled as cm,n, where m indicates that this edge belongs to the m-th cluster, and n means 
that it is the n-th in-cluster edge in the cluster. At the same time, an out-cluster edge is 
added between two nodes, ni and nj, if and only if the two corresponding cells, i and j, 
are in two different clusters and their consensus value, cij, is higher than a threshold of 
β (default value 0.5), and the edge is labeled rp, where p represents the p-th out-cluster 
edge in the clustering graph. After the processing of each clustering result, we finally 
obtained four clustering graphs G-log, G-zscore, G-no, and G-sctransform.

Contraction of the clustering graphs

After constructing a clustering graph, G, for each clustering result, we contracted the 
nodes in the same cluster into a single node, referred to as a cluster node, and two cluster 
nodes, vi and vj, are connected by an edge if and only if there is at least one out-cluster 
edge between the two corresponding clusters in the original clustering graph. Each edge 
in the contracted clustering graph is weighted by the value of di,j, calculated as follows:

where Ei,j represents the set of out-cluster edges between clusters i and j in the original 
clustering graph, and |Ei,j| represents the number of edges in set Ei,j. According to the 
definition, a smaller di,j clearly indicates lower closeness between two clusters, i and j. 
Then, each node in the contracted clustering graph is weighted by two values, wi and 
di, where wi measures the closeness among cells in the same cluster, i; di measures the 
closeness between cluster i and all the other clusters; and the two values wi and di are 
defined as follows:

where k is the number of edges in cluster i.

di,j =

∑

rp∈Ei,j
(rp − β)

∣

∣Ei,j
∣

∣

wi =

{
∑

j=1,...,k (α−ci,j)

k
, k �= 0

0, k = 0

di =

{∑

j∈D(vi)
di,j , |D(vi)| �= 0

0, |D(vi)| = 0
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where D(vi) represents the set of the neighbors of cluster node vi.

Selection of the best preprocessing method for SC3

To choose the best data preprocessing method for SC3 based on the contracted cluster-
ing graphs, we calculate a C-score value as follows:

where n represents the number of clusters, and wi and di represent the two correspond-
ing weights of cluster node vi. According to the above definition, a lower value of the 
C-score means that cells in the same cluster show closer relationships, while cells in 
different clusters show more distant relationships. Therefore, the smallest value of the 
C-score demonstrates the best data preprocessing for SC3 and therefore the best cell-
type clustering.

SC3 is an unstable algorithm that may generate different clustering results and consen-
sus matrices when it is run multiple times and therefore produces different C-scores. To 
obtain a stable C-score under each transformation, we can repeat the whole process N 
times (the default value of N is 1) and generate N C-scores for each transformation; then, 
the final stable C-score can be obtained by computing the average of the N C-scores.
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