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Abstract 

Background:  Classification of diseases based on genetic information is of great sig-
nificance as the basis for precision medicine, increasing the understanding of disease 
etiology and revolutionizing personalized medicine. Much effort has been directed at 
understanding disease associations by constructing disease networks, and classifying 
patient samples according to gene expression data. Integrating human gene networks 
overcomes limited coverage of genes. Incorporating pathway information into disease 
classification procedure addresses the challenge of cellular heterogeneity across 
patients.

Results:  In this work, we propose a disease classification model LAMP, which concen-
trates on the layered assessment on modules and pathways. Directed human gene 
interactions are the foundation of constructing the human gene network, where the 
significant roles of disease and pathway genes are recognized. The fast unfolding 
algorithm identifies 11 modules in the largest connected component. Then layered 
networks are introduced to distinguish positions of genes in propagating informa-
tion from sources to targets. After gene screening, hierarchical clustering and refined 
process, 1726 diseases from KEGG are classified into 18 categories. Also, it is expounded 
that diseases with overlapping genes may not belong to the same category in LAMP. 
Within each category, entropy is applied to measure the compositional complexity, 
and to evaluate the prospects for combination diagnosis and gene-targeted therapy 
for diseases.

Conclusion:  In this work, by collecting data from BioGRID and KEGG, we develop 
a disease classification model LAMP, to support people to view diseases from the 
perspective of commonalities in etiology and pathology. Comprehensive research 
on existing diseases can help meet the challenges of unknown diseases. The results 
provide suggestions for combination diagnosis and gene-targeted therapy, which 
motivates clinicians and researchers to reposition the understanding of diseases and 
explore diagnosis and therapy strategies.

Keywords:  LAMP, Disease classification, Modules, Pathways, Human gene network, 
Entropy

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Mi et al. BMC Bioinformatics          (2020) 21:487  
https://doi.org/10.1186/s12859-020-03800-2

*Correspondence:   
guobinghui@buaa.edu.cn 
1 Beijing Advanced 
Innovation Center for Big 
Data and Brain Computing 
and LMIB, Beihang University, 
Beijing, China
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-0540-3779
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03800-2&domain=pdf


Page 2 of 20Mi et al. BMC Bioinformatics          (2020) 21:487 

Background
Traditionally, the classification of diseases stems from the correlation between clini-
cal syndromes and pathological analysis. Although it has served clinicians well, it is 
intrinsically limited in the 21st century biological big data era [1]. Genes play a cru-
cial role in cellular process regulation and disease development. Understanding the 
relationships between diseases on account of underlying biology can provide new 
insights into disease classification [2, 3]. The significance of redefining human dis-
ease in the era of precision medicine cannot be overemphasized [1].

The microarray technology enables people to classify diseases based on gene 
expression profiles. However, cellular heterogeneity within tissues and genetic heter-
ogeneity between samples challenge the expression-based classification in complex 
diseases [4]. Integrating pathway information addresses these challenges [4]. Based 
on the associations with biological pathways, Li et al. [2] present a way of discover-
ing relationships between human diseases, which offers novel therapeutic opportu-
nities for medicines. By inferring pathway activities, Su et al. propose a classification 
method and achieve more reproducible pathway markers of breast cancer metastasis 
[5]. However, the pathway-based classifiers are limited to the coverage of genes by 
known biological pathways. To overcome this problem, one possible approach is to 
integrate human gene networks to overlay more genes.

The availability of gene relationships promotes the development of network 
medicine [6], which has the potential to indicate the complexity of diseases at the 
molecular level and offer computational methods for therapy strategies [7]. Pathway 
and network based approaches enable us to systematically explore the relationships 
between biomarkers and interacting molecules [8]. Combining biomedical data with 
networks helps to evaluate disease etiologies and identify treatment markers [9]. 
Disease classification is indispensable for achieving precision medicine, and asso-
ciated biological pathways should be properly reflected in disease description [10]. 
Further, disease classification methods are expected to increase knowledge of dis-
ease etiology and revolutionize personalized medicine [3, 6].

In this work, we propose a disease classification approach focusing on the layered 
assessment on modules and pathways (LAMP). Directed human gene interactions 
are the foundation of constructing a directed human gene network (HGN). The larg-
est connected component (LCC) contains most disease and pathway genes, of which 
the significant roles are recognized. The fast unfolding algorithm identifies 11 mod-
ules in LCC. Then layered networks are introduced to distinguish positions of genes 
in propagating information between diseases, modules and pathways. For 1726 dis-
eases from KEGG, gene screening, hierarchical clustering and refined process result 
in 18 categories. After that, it is expounded that diseases with overlapping genes 
may not belong to the same category in LAMP. Both KEGG and LAMP classifica-
tion allow us to view diseases from the perspective of commonalities in etiology and 
pathology. Further, entropy of KEGG and LAMP categories evaluates the prospects 
for combination diagnosis and gene-targeted therapy.
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Results
Recognizing the significant roles of disease and pathway genes in the human gene 

network

Traditionally, the classification of diseases stems from the correlation between clinical 
syndromes and pathological analysis. For example, disease classification in KEGG is 
based on diseased tissues and organs as well as congenital factors [11, 12]. 1726 diseases 
are considered in this work because their genes are in the LCC. Detailed diseases infor-
mation can be found in Additional file 1. The human gene network provides a perspec-
tive for studying the association between disease genes and pathway genes, enabling us 
to systematically assess the etiology of diseases.

Degree distribution reveals significant regulatory role of disease and pathway genes. 
The LCC indegree distribution obeys a power law distribution with γ = 1.7502 , and 
LCC outdegree distribution obeys a power law distribution with γ = 1.4001 , (see in 
Fig. 1a, b). The average indegree and outdegree of genes in LCC is 19.8073 (marked 
with red lines in Fig. 1c, d). The indegree is larger than the outdegree for most genes. 
Consistent with the above conclusions is the following fact that the median inde-
gree is 8, which is larger than the median outdegree 5. The disease genes and path-
way genes are a high-priority part of the entire network for the following facts (see 
in Fig. 1e–l). First, the average degrees (indegree and outdegree) and median degrees 
(indegree and outdegree) of disease and pathway genes are much larger than those of 
other genes in LCC, which emphasizes the significance of disease and pathway genes. 
Second, for disease and pathway genes, the median indegree is larger than the median 
outdegree, however, the average indegree is a little less than the average outdegree. 

outdegree of D \ P genes in LCC outdegree of D  P genes in LCC outdegree of P \ D genes in LCC outdegree of other genes in LCC

indegree of genes in LCC

indegree of P \ D genes in LCC

outdegree of genes in LCC

indegree of other genes in LCCindegree of D \ P genes in LCC

indegree distribution of LCC

indegree of D  P genes in LCC

outdegree distribution of LCC

a b c d

e f g h

i j k l

Fig. 1  Degree distribution. a, b Dual logarithmic coordinate diagrams of indegrees and outdegrees of LCC 
genes. c, d Histograms of indegrees and outdegrees of LCC genes. In each panel, the red and green line 
represent the average and median degree, respectively. In addition, the top 5% degrees are combined into 
the last column. e–l Histograms of indegrees and outdegrees of D \ P, D ∩ P, P \ D and other genes, respectively. 
\ and ∩ are set operators. The dyadic operation between two sets A and B, say, resulting in the set A \ B 
consisting of those elements that are in A but not in B. The dyadic operation between two sets A and B, say, 
resulting in the set A ∩ B consisting of those elements that are in both A and B
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The explication is that for disease and pathway genes, the maximum outdegree is 
larger than the maximum indegree, and the proportion of genes with high outdegree 
is larger than the proportion of genes with high indegree. In fact, for D \ P, D ∩ P, P \ D 
genes, the maximum indegrees are 261, 489 and 1974, respectively, while the maxi-
mum outdegree are 1339, 2328 and 1938, respectively. Note that the second maxi-
mum indegree of D \ P genes is 564. This points out that disease and pathway genes 
play a more extensive role compared with other genes, particularly, minorities are of 
significant function in gene interactions.

In addition, betweenness centrality indicates the difference between gene sets. 
Genes of LCC are sorted by betweenness centrality from high to low to find the top 
ranked genes such as APP, TP53, EGFR are very well studied disease genes [13]. 
12,198 genes, almost all of which are LSCC (largest strongly connected component) 
genes, have a betweenness centrality larger than 0, implying that LSCC genes play 
a key role as a bridge in gene network regulations. Besides, disease genes and path-
way genes account for the majority in the 12,198 genes (Fig. 2a). Also, all four types 
(D\ P, D ∩ P, P \ D, and other genes) are close to evenly distributed in the list of ranked 
genes. When pathway genes make up the pathway as a whole, the differences come 
out. Metabolism pathway genes are distributed among the top 10,000 ranked genes, 
nevertheless, most of other 5 types pathways are involved by at least one pathway 
gene in top 200 (Fig. 2b). The growth trends of pathways of organismal systems and 
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Fig. 2  Betweenness centrality. a Number of four types of genes in top ranked genes. The red line represents 
the mark 12,198. b Number of pathways involved by top ranked genes. c Number of diseases involved by top 
ranked genes. d Number of module genes involved by top ranked genes
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human diseases are almost the same, and the growth trends of pathways of genetic 
information processing and cellular processes are almost the same (Fig. 2b).

When it comes to diseases, cancers are always the first primary concern. TP53 ranked 
fourth in the betweenness centrality, and it is a disease gene of 42 cancers, so the num-
ber of cancers involved by top ranked genes is growing rapidly at the beginning, and is 
the fastest to reach the maximum (Fig. 2c). Congenital malformations diseases and con-
genital disorders of metabolism diseases are two major diseases due to the large num-
bers, but the disease genes of half these diseases ranked after 3000. The same is true 
for other types of diseases except cancers, which makes cancers different. Under the 
existing classification of diseases, even for the same group of diseases, the status of the 
corresponding disease genes in information transmission is very different. Developing a 
classification in view of the effects of disease genes on pathway functions may work well.

Preliminary results of LAMP classification: reflecting the associations of pathways 

and diseases

In this work, importance of the integration of knowledge on the etiology is attached. 
Three modularity concepts have been reviewed including topological modules, func-
tional modules and disease module, to help recognize the network-based position of dis-
ease genes [14]. As a result of executing the fast unfolding algorithm [15], 11 modules 
are identified in LCC. Figure 2d points out that all the 11 modules of genes are close to 
evenly distributed in the list of ranked genes, especially for those genes with positive 
betweenness centrality. This implies that all the modules are composed of genes of dif-
ferent levels, in the context of betweenness centrality.

Then the disease classification approach is performed focusing on the layered 
assessment on modules and pathways. An example network and specific layered net-
works are illustrated in Fig. 3a, and a summary of the LAMP classification is shown 
in Fig. 3b (more details are available in Methods). We represent UP_LSCC the set of 
genes in LCC \ LSCC that can access LSCC genes. Thus, there is a path from genes in 
UP_LSCC to genes in LSCC but no path from genes in LSCC to genes in UP_LSCC. 
We represent DOWN_LSCC the set of genes in LCC \ LSCC that can be accessed by 
LSCC genes. Thus, there is a path from genes in LSCC to genes in DOWN_LSCC but 
no path from genes in DOWN_LSCC to genes in LSCC. The size of modules in each 
part of LCC can be found in Additional file 2. Implementing the maximum matching 
algorithm [16, 17] finds out that the 5136 of 17,486 LCC nodes are driver nodes to 
ensure structural controllability [17] of the linear control system, not to mention the 
nonlinear system. Almost 95% of UP_LSCC genes are driver nodes (see in Additional 
file 2), which makes sense because very few genes point to them. The perturbations 
of UP_LSCC genes not only have wide influence but also lack internal adjustments 
to correct. However, the perturbation of genes in DOWN_LSCC only have an impact 
on DOWN_LSCC genes. Totally 440 disease genes are screened in DOWN_LSCC, 
which means that perturbation of the state of these genes does not affect the vast 
majority of genes through interactions. Further, 151 diseases caused only by the above 
440 disease genes. Denoted by CATG-0 (also see in Additional file 3), we group these 
151 diseases together for the reason that the targeted drug therapy may be safe with 
very limited side effects in the context of gene interactions. Figure  4 illustrates the 
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Fig. 3  Layered networks and LAMP classification approach flow. a Illustration of layered networks of the 
original network with 36 nodes and 62 edges. The forward layered network is on the top with green nodes as 
the source nodes. The reverse layered network is on the bottom with red nodes as the target nodes. Orange 
nodes and dashed edges do not belong to these layered networks. b Flow diagram of the LAMP classification 
approach. 1726 diseases are divided into 2 group in gene screening process corresponding to whether the 
disease genes are all screened in DOWN_LSCC. Answer yes to get diseases group1, which are considered to 
belong to the same category, denoted by CATG-0. Answer no to get diseases group2. Preliminary results are 
obtained after hierarchical clustering. Refined results are obtained from the tSNE diagram, which together 
with CATG-0 constituted the final results

a b c d e f
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Fig. 4  Illustration of disease genes (pink) and downstream genes (white) of the following CATG-0 diseases. 
a Irritable bowel syndrome. b Histidinemia. c Ichthyosis with hypotrichosis. d Autosomal dominant striatal 
degeneration. e Van Maldergem syndrome. f Alport syndrome. g Familial osteochondritis dissecans, 
Spondyloepiphyseal dysplasia (Kimberley type). h Stiff skin syndrome, Marfan syndrome, MASS phenotype. 
i Weill-Marchesani syndrome. Note that diseases in g, h, i share a part of disease genes and downstream 
genes. The different color of gene FBN1 means that it is not a disease gene in g but a disease gene in h and i 
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disease genes (pink) and their downstream genes (white) for 12 diseases. The other 
139 diseases are single-gene diseases, and there are no more downstream nodes.

In the following, we focus on the output influence on modules and pathways from 
disease genes of rest 1575 diseases. The normalized impact score vectors NIS(Dl) cor-
responding to pathways are calculated. Hierarchical clustering of 1575 diseases yields 
17 categories (see Fig. 5a and Additional file 4). The distance matrix of 1575 diseases 
is illustrated in Fig.  5b in the clustering order in the dendrogram. Each of 17 cat-
egories contains several types of diseases in KEGG, suggesting similarities impacts 
on pathways. Focusing on cancers, the results show that CATG-1 and CATG-2 both 
possess 32 cancers. Specifically, cancers in CATG-1 are mainly composed of cancers 
of the digestive system and cancers of the breast and female genital organs, however, 
cancers in CATG-2 are mainly composed of cancers of soft tissues and bone and can-
cers of haematopoietic and lymphoid tissues. Some myoma diseases such as sube-
pendymal giant cell astrocytoma, lymphangioleiomyomatosis, renal angiomyolipoma, 
uterine leiomyoma, are also grouped in CATG-1, although the locations of the lesions 
are different. Cancers may occur in the same tissues, organs, and systems, but their 
effects on pathways also exist differences, same for the other diseases. Figure 5a illus-
trates that CATG-1 and CATG-2 diseases mainly affect pathways of genetic informa-
tion processing, however, CATG-1 diseases also have apparent impacts on pathways 
of environmental information processing, cellular processes, organismal systems and 
human diseases.

Pathways of metabolism are less affected by diseases, except for endocrine and met-
abolic diseases and congenital disorders of metabolism. In detail, most endocrine and 
metabolic diseases are grouped in CATG-9, which mainly affect biosynthesis pathways 
of steroid, mannose type O-glycan, etc. Most congenital disorders of metabolism are 
grouped in CATG-10, which mainly affect metabolism pathways of arachidonic acid, lin-
oleic acid, nicotinate, nicotinamide, and retinol, as well as degradation pathways of gly-
cosaminoglycan and other glycans. A small part of congenital disorders of metabolism 
are grouped in CATG-17, which affect metabolism pathways relatively evenly.

Fig. 5  Preliminary classification results. a Hierarchical clustering of 1575 diseases yields 17 categories 
(CATG-1, 2, ..., 17). For the 1575 diseases, the normalized impact score vector NIS(Dl) corresponding to 
pathways are calculated, and the euclidean distance is used to measure the distance between two diseases. 
b The distance matrix of 1575 diseases, which are arranged in the order in a 
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Note that CATG-4 and CATG-5 diseases mostly affect D-Arginine and D-ornithine 
metabolism pathway, the only gene in which is DAO (D-amino acid oxidase). Alzhei-
mer’s disease (AD) is a typical example in CATG-5. More and more researches are con-
ducted to explore the relationship between AD and D-amino acid level alterations. Fisher 
et al. show that the degenerative process in the brain can be reflected by the higher con-
centrations of D- and L-amino acids in AD ventricular cerebrospinal fluid [18]. Lin et al. 
indicate that age-related cognitive declines while the peripheral DAO levels increase 
[19]. Autism and schizophrenia are typical examples in CATG-4. Chung et al. indicate 
significant associations between SNPs of the DAO gene and boys with autism spectrum 
disorders [20]. Chumakov et al. reveal the association of both DAO and G72 with schiz-
ophrenia [21]. In recent years, trials of sodium benzoate, a D-amino acid oxidase inhibi-
tor, have been contacted for the treatment of mild AD [22], autism [23], schizophrenia 
[24], resulting in symptomatology improvement of patients. D-amino acids have impor-
tant functions in the nervous system and DAO is associated with microbial induction of 
intestinal [25]. Recent work has suggested that brain function can be affected by micro-
biota in healthy and diseased individuals [26]. Based on the associations between nerv-
ous system, D-amino acids and microbiota, we agree that novel methods for treating 
neurological diseases could be suggested by studying microbiota-gut-brain axis mecha-
nisms [26].

In addition, CATG-16 diseases mostly affect spliceosome pathway, followed by ribo-
some pathway, mRNA surveillance pathway, ribosome biogenesis pathway. In this case, 
genetic information processing should be severely affected. As expected, most diseases 
in CATG-16 are congenital malformations, congenital disorders of metabolism or other 
congenital disorders. Prevention and treatment of congenital disorders are of equal 
importance.

Refined results of LAMP classification: revealing the multiple attributes of diseases

A two-dimensional tSNE diagram [27] is drawn to visualize the results of 17 categories, 
verify and refine the disease classification (see in Fig. 6). The tSNE function is a non-
linear embedding technique that is commonly used for finding a faithful representation 
of high-dimensional data in a lower-dimensional space for visualization [28]. The Rtsne 
function in “Rtsne” package is used to implement the Barnes-Hut tSNE algorithm [28], 
and here are the parameter values used in tSNE function: perplexity = 30, early exag-
geration factor = 12, learning rate = 200, maximum number of iterations = 3000. The 
parameter perplexity is a guess about the number of close neighbors of each point [29], 
and typical values are between 5 and 50 [27]. We have considered the intrinsic stochas-
ticity of tSNE algorithm, and use the set.seed function (random number generator in R) 
when running the algorithm to ensure the results and figures are reproducible. The pre-
liminary results of LAMP classification are objectively presented, and the refined pro-
cess of the classification results is based on high-dimensional scores, two-dimensional 
visualization as well as knowledge and experience of diseases. Note that most diseases 
get closer to diseases of the same category. Focusing on those overlaps helps to dis-
cover potential and vital relations between different diseases, which in turn refines the 
classification.
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At the top left of Fig. 6, there are 2 CATG-16 diseases standing close to 15 CATG-10 
diseases, listed in Additional file 5(a). All these 17 diseases are related to congenital dis-
eases or disorders of metabolism, with no exception for the two cardiovascular diseases. 
As mentioned above, most congenital disorders of metabolism are grouped in CATG-
10, while CATG-16 contains most congenital malformations, as well as some congenital 
disorders of metabolism. Inspired by the disease classification in KEGG, specifically, one 
disease like GM2 gangliosidoses or lysosomal cysteine protease deficiencies can belong 
to two categories, we refine the disease classification by making the 2 CATG-16 diseases 
belong to both CATG-16 and CATG-10. In the top of Fig. 6, there are 5 CATG-9 diseases 
that overlap with 12 CATG-17 diseases, listed in Additional file 5(b). Note that CATG-9 
and CATG-17 are adjacent in the top of Fig. 5a, we refine the disease classification by 
making the 5 CATG-9 diseases mentioned above belong to both CATG-9 and CATG-
17, similarly. In the left of Fig. 6, there are 3 CATG-8 diseases that mix up with CATG-5 
diseases. Besides, near the main cluster of CATG-5, there are 27 CATG-4 diseases and 
12 CATG-5 diseases stand close, which includes two cancers (myelofibrosis and essen-
tial thrombocytosis) and two neurological diseases (autism and AD) of concern, listed 
in Additional file 5(c). We refine the disease classification by making the 3 CATG-8 dis-
eases belong to both CATG-8 and CATG-5, and making the 24 CATG-4 diseases belong 
to both CATG-4 and CATG-5.

Forming a circle in the middle of Fig. 6 are diseases in CATG-1,3,4,6,7,13 and 15. Fail-
ing to visualize well-separated homogeneous groups in the two-dimensional tSNE dia-
gram does not necessarily mean that the data cannot be correctly classified. The two 
dimensions may not be low enough to accurately represent the internal data structure 
[30]. What those diseases have in common is high impact on more pathways, illustrated 
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in Fig.  5a. Reducing high-dimensional data to two-dimensional data will lose some 
characteristic information. As the classification model utilizes the full 317-dimensional 
information for each disease, namely, the normalized impact score vector on pathways, 
no refined measure is taken for the classification results for these categories. Overall, 
15 types of diseases in KEGG are classified into 18 categories illustrated in Fig. 7a, also 
detailed in Additional file 6.

Overlapping disease genes unnecessarily lead to the same category in LAMP

Many disease names are related to the locations of the lesions, which may not help iden-
tify potential pathogenic mechanisms because diseases with the same lesions may vary 
widely. Similarly, it makes sense that diseases with overlapping genes may not belong 
to the same category in LAMP. Table  1 illustrates the over-representation analysis of 
disease pairs with overlapping gene(s). 1726 diseases make up 1,488,675 pairs, of which 

a b

c

Fig. 7  Refined classification results. a Illustration of refined diseases classification results. Overall, 15 types 
of diseases in KEGG are classified into 18 categories. The number next to each category is the entropy that 
measures the compositional complexity. b A stacked bar graph showing the percentage of KEGG categories 
in each LAMP category. The colors correspond to KEGG categories in a. c A stacked bar graph showing the 
percentage of LAMP categories in each KEGG category. The colors correspond to LAMP categories in a. The 
detailed percentages are listed in Additional file 7

Table 1  Over-representation analysis of disease pairs with overlapping gene(s)

1726 diseases make up 1488675 pairs, of which 4629 pairs with overlapping gene(s). The number of disease pairs in LAMP 
and KEGG categories is listed. In Fisher test p value < 0.001, which implies that disease pairs with overlapping gene(s) are 
more likely to belong to the same LAMP or KEGG category. Meanwhile, overlapping disease genes unnecessarily lead to the 
same category in LAMP and KEGG

With overlapping 
gene(s)

All Fisher test

In the same LAMP category 1593 170,977 p value < 0.001

Not in the same LAMP category 3036 1,317,698

In the same KEGG category 2707 229,497 p value < 0.001

Not in the same KEGG category 1922 125,9178
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4629 pairs with overlapping gene(s). The number of disease pairs in LAMP and KEGG 
categories is listed. In Fisher test p value < 0.001, which implies that disease pairs with 
overlapping gene(s) are more likely to belong to the same LAMP or KEGG category. 
Meanwhile, overlapping disease genes unnecessarily lead to the same category in LAMP 
and KEGG. In the case of metabolic diseases, Glycogen storage disease (22 genes) and 
Muscle glycogen storage disease (13 genes) belong to CATG-17 and CATG-10, respec-
tively. Although there are 13 overlapping genes, more genes in Glycogen storage disease 
lead to impact difference on pathways. In the case of cardiac diseases, there are 11 over-
lapping genes between Hypertrophic cardiomyopathy (14 genes) and Dilated cardio-
myopathy (34 genes), which belong to CATG-2 and CATG-6, respectively. In addition, 
many disease pairs with overlapping genes are not in the same category in LAMP. The 
co-occurrence of diseases provides knowledge that can promote drug utilization and 
develop targeted treatment strategies [31]. For example, mutations in NRAS have been 
associated with many cancers as well as autoimmune lymphoproliferative syndrome 
[13]. RET is a proto-oncogene, and mutations in this gene can cause renal agenesis [13]. 
More attention should be paid to the research of feasible combined treatment in clinical 
practice.

For disease pairs in the same LAMP category but not in the same KEGG category, or 
in the same KEGG category but not in the same LAMP category, there may be inspira-
tion for treatment. For example, in KEGG, Polycythemia vera (disease gene: JAK2) is a 
cancer of haematopoietic and lymphoid tissues. Budd-Chiari syndrome (disease gene: 
F5, JAK2) is Cardiovascular diseases. Both diseases belong to CATG-5 in LAMP. It 
makes sense because there is evidence that many patients have Budd-Chiari syndrome as 
a complication of polycythemia vera [32]. In addition, JAK2 is the overlapping gene, and 
disregulation of the IL6/JAK2/STAT3 signalling pathways can lead to increased cellu-
lar proliferation and myeloproliferative neoplasms of hematopoietic stem cells. Besides, 
Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, character-
ized by the rapid growth of abnormal cells that build up in the bone marrow and blood 
and interfere with normal blood cell production. Chronic myeloid leukemia (CML) is a 
cancer of the white blood cells. It is a form of leukemia characterized by the increased 
and unregulated growth of myeloid cells in the bone marrow and the accumulation of 
these cells in the blood. Both AML and CML are Cancers of haematopoietic and lym-
phoid tissues in KEGG, but they are not in the same LAMP category, because compared 
with CML, AML has greater impact scores on almost pathways. This result is consistent 
with the fact that AML is a more intractable disease than CML.

Entropy of KEGG and LAMP categories: evaluating the prospects for combination diagnosis 

and gene‑targeted therapy

The percentage of KEGG categories in each LAMP category is shown in Fig.  7b, and 
the percentage of LAMP categories in each KEGG category is shown in Fig.  7c. The 
detailed percentages are listed in Additional file 7. Here, entropy is introduced to meas-
ure the compositional complexity for each category, and shown in Fig. 7a. The lower the 
entropy, the smaller differences within the category. Conversely, the higher the entropy, 
the greater the diversity in etiology and pathology within the category. In KEGG clas-
sification, the entropy of cancers is the lowest, followed by respiratory diseases and 
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reproductive system diseases. The entropy of nervous system diseases it the highest, 
followed by congenital malformations and immune system diseases. Figure 7c visually 
shows support for the results. We can clearly see that the number of LAMP categories in 
Cancers is smallest, and the LAMP categories in nervous system diseases is rather une-
ven. In LAMP classification, the entropy of CATG-17 is the lowest, followed by CATG-
10,11,12. The entropy of CATG-4 is the highest, followed by CATG-15,5,7. Also, Fig. 7b 
visually shows support for the results.

Medical conditions are usually defined pathologically or clinically rather than etiologi-
cally. Heterogeneous disease in medicine are those medical conditions that have several 
causes. Given a group of patients with certain disease, it is normal to have more than one 
cause. Therefore, heterogeneity of disease means multiple possibilities of causes. In par-
ticular, cancer heterogeneity has been recognized as an important clinical determinant 
of patient treatment and prognosis. Cancer heterogeneity researches enable us under-
stand the mechanisms, identify genes truly associated with cancer, and gain insight into 
development of treatment strategies [33–36]. In this study, the identified disease genes 
are considered as the representation of the corresponding disease, and the classifica-
tion results derived from layered assessment on modules and pathways in the human 
gene network lay stress on the similarity of the outcomes of diseases on pathways. For 
each component of a category, the impact on pathways is approximate. Entropy is intro-
duced to measure the compositional complexity for each category. Among the 15 KEGG 
categories, the result that Cancers in KEGG classification possesses the lowest entropy 
implies that the number of LAMP categories in Cancers is smallest and the outcomes 
of cancers on pathways are close. It is not conflict with the heterogeneity of cancers, 
since heterogeneity describes the multiple causes of a group patients with a disease, 
while entropy describes the compositional complexity for each category, of which dis-
eases with approximate impact on pathways. We suggest looking at diseases from both 
KEGG and LAMP classification, and integrating genetic and tissue information from the 
perspective of commonalities in etiology and pathology. In addition, it may be of benefit 
to explore combination diagnosis of diseases in low entropy categories, and to innovate 
gene-targeted therapy for diseases in high entropy categories.

Discussion
The precision medicine initiative has been announced to help innovative personalized 
care, which integrates efforts of patients, clinicians and researchers [37]. Recent progress 
has led to an understanding of the effects of gene mutations and makes it possible to 
study human diseases all at once [3, 38, 39]. There is a key hypothesis in the field of 
network medicine that one disease phenotype reflects several processes that interact in 
a complex network [14]. General patterns and correlations of human diseases are not 
obvious from individual disorder studies. While, the network-based approaches make 
them discernible [40]. Our goal is to classify diseases integrating modules and pathways 
in the human gene network, since the integration of human gene networks overcomes 
limited coverage of genes, and incorporating pathway information into disease classifi-
cation procedure addresses the challenge of cellular heterogeneity across patients.

In 2019, our research team engaged in research on disease classification and published 
a paper [3]. The following discusses the method differences between this research and 
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the previous paper. The first difference is in the human gene network. In the previous 
paper, undirected gene-gene interaction information is obtained from NCBI to con-
struct an undirected human gene network. The largest connected component (LCC) of 
the human gene network possesses 17,274 genes and 289,913 interactions [3]. In this 
study, the human gene interaction data is obtained from BioGRID, in which the bait-
prey directionality is the basis for constructing a directed human gene network. The 
LCC of the human gene network possesses 17486 genes and 346,351 interactions. Note 
that 275,134 human-human gene pairs (equivalent to undirected interactions) are over-
lapping in the two databases. The second difference is in the definition of influence on 
pathways by diseases. In the previous paper, summation of the closeness centrality of 
disease genes within the module is used to weight the access efficiency (AE) from disease 
genes to module genes [3]. In this study, the inverse average layer summation (IALS) is 
defined to assess the layered influence of diseases on modules. Considering a gene in the 
forward layered network, the number of layers is the same as the distance between the 
gene and disease genes (source nodes), which means the equivalence of definition of AE 
and IALS. Then the jaccard similarity coefficient (JSC) is used to define the relevance of 
modules and pathways in the previous paper [3], where only the first-order neighbors 
are considered. In this study the weighted proportion summation (WPS) of modules in 
accordance with pathways are defined to assess the layered influence on pathways, con-
sidering the influence of multi-order neighbors. Note that WPS can degenerate into JSC 
when take only layer 0 into account, because genes in layer 0 are exactly the first-order 
neighbors. In this work, the forward layered network starting from a disease gene is used 
to assess the layered influence on a module, and module genes exist in almost every layer 
except layer 0. In the definition of IALS, the smaller the average layer of module genes 
in the forward layered network, the easier to be accessed by the disease gene. The more 
disease genes in a module, the more significant role the module plays in developing the 
disease. The reverse layered network from member genes in a pathway is used to assess 
the layered influence on the pathway. Note that only genes in layer 0 are pathway genes. 
In the definition of WPS, the proportion of modules in each layer characterizes the set 
similarity, and the exponential weight is used since genes in layer 0 are the foremost, fol-
lowed by genes in layer 1 and so on.

The classifications in the two studies are instructive, although there are some differ-
ences in the methods. The diseases which intersect with the LCC are considered. Net-
work-based approach demonstrates the importance of pathway and disease genes, and 
also illustrates the differences between pathways and diseases. In the previous paper, 
1728 diseases are screened out. In undirected human gene network, the perturbation of 
disease gene status brings a series of feedbacks of reachable genes. The effects of diseases 
on pathways are assessed in the human gene network, and are emphasized from different 
perspectives. To classify diseases by the intensity of effects on pathways, the normalized 
impact score is used to measure the difference in intensity between the pathways, and 
the greatly affected pathways influence the classification results. To classify diseases by 
the scope of effects on pathways, the binary impact score is used to mark pathways with 
a score exceeding the average. In this study, 1726 diseases are considered. Layered net-
works are introduced to distinguish positions of genes in propagating information from 
disease genes to pathway genes. Focusing on the layered assessment on modules and 
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pathways, the calculation method of impact score is generalized. As discussed above, 
IALS is equivalent to AE, and WPS is generated from JSC. After hierarchical clustering, 
there is a refined process for the classification results. The overlap of diseases between 
CATG-0,1,2,...,17 in LAMP classification and Group1,2,...,12 in the previous paper can 
be found in Additional file 8.

The diagnostic markers of various disease states can be identified by analyzing gene 
expression profiles. Using a classifier on the expression level of the marker gene can 
predict the disease state of a new patient [4]. Integrating information at the level of 
functional modules, such as signaling pathways, can overcome the challenge of cellular 
heterogeneity within tissues and genetic heterogeneity across patients [4, 5]. At the level 
of molecular expression, estimating pathway activation through member gene expres-
sion levels provides a biological interpretation for association of expression profiles and 
specific states of disease. Lee et al. [4] proposed a method to identify condition-respon-
sive genes (CORGs) and infer pathway activity through the combined expression levels 
of the CORGs. Estimating pathway activity in a new expression profile to classify dis-
ease status has been proved to improve the performance on several disease expression 
datasets, including tumor necrosis factor (wildtype, mutant), prostate (tumor, normal), 
acute lymphoblastic leukemia (TEL-AML1, HH), breast cancer (metastatic, non-meta-
static), lung cancer (poor prognosis, good prognosis). Su et al. [5] proposed a log-like-
lihood ratio (LLR) method for probabilistic inference of pathway activities, and applied 
the method to the classification of breast cancer metastasis, achieving better results than 
other methods such as CORG [4] and PCA. At the level of human gene network, over-
laying more genes and combining gene relationships enable us to increase knowledge of 
associated pathways and disease etiology. In this study, focusing on the layered assess-
ment on modules and pathways, we propose a disease classification approach. For each 
of 1726 diseases, given the disease gene(s), we obtain IALS to assess the layered influ-
ence on modules, and WPS to assess the layered influences from modules to pathways. 
Then the normalized impact scores on pathways by disease are evaluate and used for 
hierarchical clustering and refined process. Diseased tissues and organs as well as con-
genital factors mainly determined the disease classification in KEGG. In this work, lay-
ered assessment on the human gene network, especially pathways, results in the LAMP 
classification. The goal of LAMP classification is to reposition the understanding of dis-
eases and provide a perspective for studying the etiology of diseases, thereby inspiring 
researchers to explore diagnosis and therapy strategies.

In this study, network-based approach demonstrates the importance of pathway 
and disease genes, and also illustrates the differences between pathways and diseases. 
Diversity in etiology and pathology of most categories of diseases motivates us to study 
diseases from both KEGG and LAMP classification, and integrate commonalities. Rep-
resentative diseases of concern, such as cancers, metabolic diseases, mental diseases and 
congenital diseases, are divided into new groups in LAMP classification, which increases 
the interpretation of the differences between diseases of the same KEGG group, and also 
guides to recognize the association between diseases of different KEGG groups.

Disease classification is a progression towards precision medicine with the need for 
precise patient characterization [41]. Our effort on large number of diseases may lead to 
widespread discoveries. LAMP classification aims to provide insights for clinical practice 
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and explore combination diagnosis for diseases. Focusing on the layered assessment on 
modules and pathways, the network-based approaches may enable the progress of drug 
discovery and reposition [42, 43]. Furthermore, faced with this situation that patients 
do not respond to treatment, LAMP may motivate clinicians and researchers to try new 
and complementary strategies [44]. Disease classification also meets public health needs. 
Comprehensive study of known diseases will help to approach challenges of unknown 
diseases. Indeed, linking network-based genomic science to patient-oriented science still 
requires a lot of work. It is important for clinicians to evaluate genomic research as a 
basis for effective treatment of patients [45].

Conclusion
In this work, human gene interaction data is collected from BioGRID to construct the 
human gene network. Disease and pathway genes from KEGG is integrated for lay-
ered assessment on modules and pathways. The disease classification model LAMP is 
developed in which 1726 diseases from KEGG are classified into 18 categories. Within 
each category, the entropy is introduced to measure the compositional complexity, and 
to evaluate the prospects for combination diagnosis and gene-targeted therapy for dis-
eases. In KEGG classification, it may be of benefit to explore combination diagnosis for 
cancers, respiratory diseases and reproductive system diseases. Also, it would reward 
to explore gene-targeted therapy for nervous system diseases, congenital malforma-
tions and immune system diseases. In LAMP classification, combination diagnosis for 
CATG-17,10,11,12 and gene-targeted therapy for CATG-4,15,5,7 are worth to research. 
Through KEGG and LAMP classification, we are able to view diseases from the per-
spective of commonalities in etiology and pathology, which motivates clinicians and 
researchers to reposition the understanding of diseases and explore diagnosis and ther-
apy strategies.

Methods
Data collection

The human gene interaction data is obtained from BioGRID [46]. This download direc-
tory (https​://downl​oads.thebi​ogrid​.org/BioGR​ID/Relea​se-Archi​ve/BIOGR​ID-3.5.170/) 
contains the 3.5.170 interaction data release from the BioGRID. This release was com-
piled on Feb. 25th, 2019 and contains all curated interaction data processed prior to this 
date. The bait-prey directionality is the basis for constructing a directed human gene 
network. Totally 374,939 directed interactions of 348,335 gene pairs are curated in 
473,480 records, in which 17,562 human genes and 5578 nonhuman genes are involved. 
Particularly, 17,515 human genes are involved in human-human gene interactions. In 
this work, 17,515 human genes and 346,377 directed interactions make up the human 
gene network (HGN). A directed network is called (weakly) connected if replacing all 
of its directed edges with undirected edges produces a connected (undirected) net-
work. A directed graph is called strongly connected if there is a path in each direction 
between each pair of nodes of the network. A weakly (strongly) connected component 
of a directed network is a maximal subgraph that is weakly (strongly) connected. The 
HGN contains 23 connected components. The largest connected component (LCC) of 
the HGN possesses 17,486 genes and 346,351 interactions. Moreover, the human gene 

https://downloads.thebiogrid.org/BioGRID/Release-Archive/BIOGRID-3.5.170/
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network contains 5327 strongly connected components. The largest strongly connected 
component (LSCC) of the HGN possesses 12,179 genes and 310,271 interactions. Genes 
in LSCC can regulate each other through certain paths. In total, 317 human pathways 
are selected from KEGG PATHWAY, and summarized into 6 categories [11]. There are 
7409 pathway genes, and each gene is associated to 3.6414 pathways on average. Besides, 
1758 diseases in 15 types are selected from KEGG DISEASE [11] (https​://www.kegg.jp/
kegg-bin/get_htext​?htext​=br084​02_gene.keg). There are 3390 disease genes, and each 
gene is associated to 1.714 pathways on average. 1726 diseases are considered in this 
work because their genes are in the LCC. Detailed diseases information can be found 
in Additional file 1. Still, there are some disease genes and pathway genes that are not 
components of HGN, in other words, no interactions related to these genes have been 
detected. Confirming the interactions of these genes will be of significance for classifica-
tion, treatment and prevention of diseases.

Layered network

In order to show the hierarchical flow of information through the network, we intro-
duced the concept of layered network. There are two modes, forward and reverse, that 
is, from the perspective of the source nodes and target nodes, respectively. When attach-
ing importance to the effectiveness of receiving information from disease genes (source 
nodes), we adopt the forward layered network to obtain layered downstream nodes. 
When emphasizing on the effectiveness of transferring information to pathway genes 
(target nodes), we adopt the reverse layered network to obtain layered upstream nodes. 
The forward (reverse) layered network is different according to different source (target) 
nodes. An example network and specific layered networks are illustrated in Fig. 3a. The 
layered networks can be obtained by the following algorithm. 

LAMP: layered assessment on modules and pathways

Figure  3b shows a summary of the LAMP classification approach. Here we introduce 
the concept of normalized impact score (NIS) of diseases on pathways, which is used 
to obtain the classification results in the right branch. The number of diseases, modules 
and pathways are represented by Nd = 1726 , Nm = 11 and Np = 317 , respectively. Dis-
eases, modules and pathways are represented by Dl(l = l, 2, ...,Nd) , Mt(t = 1, 2, ...,Nm) , 
Pk(k = 1, 2, ...,Np) . The inverse average layer summation (IALS) of disease genes within 
modules are defined as follows to assess the layered influence on modules,

https://www.kegg.jp/kegg-bin/get_htext?htext=br08402_gene.keg
https://www.kegg.jp/kegg-bin/get_htext?htext=br08402_gene.keg
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where F_layergi is the forward layered network of gene gi , and F_layergis  is the set of 
genes in layer s. For gi ∈ Mt , δ(gi,Mt) = 1 , for gi  ∈ Mt , δ(gi,Mt) = 0 . The weighted pro-
portion summation (WPS) of modules in accordance with pathways are defined as fol-
lows to assess the layered influence on pathways,

where R_layerPk is the reverse layered network of pathway Pk , and R_layerPks  is the set of 
genes in layer s. The impact score of disease Dl on pathways is measured by:

NIS(Dl) is the normalized impact score vector on pathways by disease Dl . The Euclidean 
distance is used to measure the distance between two diseases. The hierarchical cluster-
ing dendrogram of diseases by Ward.D2 method [47] is regarded as a series of partitions. 
The corresponding difference vector [3] is calculated, in which each element is the dif-
ference in average disease distance within and between partitions. The dendrogram is 
cut where the absolute difference reaches the maximum, then the number of categories 
is determined [3]. Finally, the entropy is introduced as follows to measure the composi-
tional complexity for each category,

where v is the number of compositional categories, pi is the fraction of diseases from 
category i, and 

∑v
i=1 pi = 1 . Low entropy means small differences within the category, 

which may be beneficial to explore combination diagnosis of diseases. High entropy 
means great diversity in etiology and pathology within the category, which may promote 
the innovation of gene-targeted therapy for diseases.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03800​-2.

Additional file 1.  The 1726 diseases screened in KEGG DISEASE. For each disease, detailed information is listed, 
including H number in KEGG DISEASE, disease class in KEGG, gene symbol and gene ID.

Additional file 2.  The size of modules in each part of LCC. UP∪LSCC is the union of UP_LSCC and LSCC. DOWN∪
LSCC is the union of DOWN_LSCC and LSCC. The number in brackets is the number of driver nodes obtained by 
implementing the maximum matching algorithm.
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Additional file 3.  The 151 diseases in CATG-0. For each of the 151 CATG-0 diseases, detailed information is listed. All 
the disease genes are in DOWN_LSCC.

Additional file 4.  Preliminary results of 1726 diseases in LAMP classification. Category in preliminary LAMP clas-
sification of each diseases is listed.

Additional file 5.  Detailed diseases in 2 categories in refined LAMP classification. (a) Information of 15 diseases 
in CATG-10 and 2 diseases in CATG-16 that stand close at the top left of Fig. 5a. *Denotes that GM2 gangliosidoses 
appears twice, since the second-level disease classes in KEGG are different. **Denotes that lysosomal cysteine 
protease deficiencies appears twice, since the first-level disease classes in KEGG are different. (b) Information of 5 dis-
eases in CATG-9 and 12 diseases in CATG-17 overlapping in the top of Fig. 5a. *Denotes that pyruvate dehydrogenase 
complex deficiency appears twice, since the second-level disease classes in KEGG are different. **Denotes that mus-
cular dystrophy-dystroglycanopathy type B appears twice, since the first-level disease classes in KEGG are different. 
(c) Information of 3 diseases in CATG-8, 27 diseases in CATG-4 and 12 diseases in CATG-5 that near the main cluster 
of CATG-5 in the left of Fig. 5a. **Denotes that Atopic dermatitis and Myopathy with lactic acidosis and sideroblastic 
anaemia appears twice, respectively, since the first-level disease classes in KEGG are different.

Additional file 6.  Refined results of 1726 diseases in LAMP classification. Category in refined LAMP classification of 
each diseases is listed.

Additional file 7.  The percentage of KEGG categories in each LAMP category, and the percentage of LAMP catego-
ries in each KEGG category.

Additional file 8.  The overlap of diseases between CATG-0,1,2,...,17 in this study (LAMP classification) and 
Group1,2,...,12 in the previous paper (Royal Society Open Science 6(7), 190214 (2019)).
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