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Background
The wealth of data available from high-throughput phenotyping platforms used in mod-
ern agronomic experiments enables unprecedented study into the genomic underpin-
nings of genotype-to-phenotype relationships [1, 2]. In particular, these data make it 
possible to gain insight into the simultaneous contributions of genomic loci to multiple 
traits, a phenomenon known as pleiotropy [3]. To ensure that accurate inferences are 
being made from these data, the most appropriate statistical approaches must be used. 
One avenue towards assessing the performance of such approaches is to simulate cor-
related traits in which the pleiotropic and non-pleiotropic quantitative trait nucleotides 
(QTNs) underlying the genomic sources of phenotypic variability are known.
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of genetic architectures, including additive, dominance and epistatic models.

Results:  We illustrate simplePHENOTYPES’ ability to simulate thousands of phenotypes 
in less than one minute. We then provide two vignettes illustrating how to simulate sets 
of correlated traits in simplePHENOTYPES. Finally, we demonstrate the use of results from 
simplePHENOTYPES in a standard GWAS software, as well as the equivalence of simulated 
phenotypes from simplePHENOTYPES and other packages with similar capabilities.

Conclusions:  simplePHENOTYPES is a R/CRAN package that makes it possible to 
simulate multiple traits controlled by loci with varying degrees of pleiotropy. Its ability 
to interface with both commonly-used marker data formats and downstream quantita-
tive genetics software and packages should facilitate a rigorous assessment of both 
existing and emerging statistical GWAS and GS approaches. simplePHENOTYPES is also 
available at https​://githu​b.com/samue​lbfer​nande​s/simpl​ePHEN​OTYPE​S.
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Several useful software packages have been developed to simulate correlated traits 
[4–6]. However, there is not a single package that enables the user to control for all pos-
sible parameters involved in the genetic architecture of complex traits. For instance, to 
the best of our knowledge, none of the currently available simulation packages allows the 
user to simulate spurious pleiotropy as defined by [3]. In this work, we present the R/
CRAN package simplePHENOTYPES. This package uses real marker data to simulate 
additive, dominance, and additive x additive epistatic QTN controlling multiple traits 
via pleiotropy, partial pleiotropy, and a novel implementation of spurious pleiotropy. We 
maximize simplePHENOTYPES’ utility to the research community by ensuring its com-
patibility with popular data formats and state-of-the-art GWAS and GS software. Devel-
opmental versions and vignettes (i.e., example code for using the demo genotypic data 
set to simulate specific genetic architectures in simplePHENOTYPES), may be found at 
https​://githu​b.com/samue​lbfer​nande​s/simpl​ePHEN​OTYPE​S.

Implementation
simplePHENOTYPES is capable of simulating traits controlled by a wide range of 
genetic settings, as depicted in Fig.  1. After reading in biallelic marker data in one of 
many formats (i.e., Numeric, HapMap, VCF, GDS, Plink Ped/Bed files) into R, the user 
specifies the desired genetic architecture using the create_phenotypes() function. In par-
ticular, the user has the option to indicate the degree of pleiotropy among the QTNs, the 
number of additive and non-additive QTNs, the degree of correlation between multiple 
traits, and the heritability of each simulated trait.

When simulating multiple traits, the user has control over whether all QTNs control all 
traits (pleiotropy), a subset of the QTNs control all traits (partial pleiotropy), or separate 
QTNs in linkage disequilibrium (LD) control individual traits (spurious pleiotropy). To 

Fig. 1  Workflow and main options implemented in simplePHENOTYPES to simulate single and multiple traits

https://github.com/samuelbfernandes/simplePHENOTYPES
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illustrate these three different scenarios, consider a set of 20 QTNs and two traits (Trait j 
and Trait j′ ), as depicted in Fig. 2. In the pleiotropy scenario, the same 20 QTNs control 
both of the simulated traits. In the partial pleiotropy scenario, four QTNs control both 
traits, seven QTNs only control Trait j, and nine QTNs only control Trait j′ . The final sce-
nario, spurious pleiotropy, simulates two correlated traits where ten different QTNs control 
each trait. Here, simplePHENOTYPES randomly selects ten markers; each of these markers 
is within a user-specified amount of LD with one QTN controlling Trait j, as well as another 
QTN controlling Trait j′ . The spurious pleiotropy depicted in Fig. 2 is an implementation of 
what is defined in Figure 1-f in [3], but simplePHENOTYPES also offers the option to simu-
late traits where the user-specified maximum LD refers to the maximum LD between each 
neighboring QTN pairs for the two traits. The user may select between the two LD options 
by using the type_of_ld input parameters of create_phenotypes() (see Listing 1 below).

There is substantial flexibility for defining the number of additive and non-additive (i.e., 
dominance and additive x additive epistasis) QTNs controlling each trait, as well as their 
effect sizes. These effects may either be manually inputted in a list with a vector of effect 
sizes for each trait, or as a single value from which simplePHENOTYPES will create a geo-
metric series of effect sizes [7]. The effect sizes will be assigned to each QTN, as described 
in Table 1. For a given number of QTNs and effect sizes, the user has the option to specify 
whether or not the same markers are to be the QTNs across all experiments (i.e., repli-
cates of traits with the same genetic architectures) through the vary_QTN input parameter 
of create_phenotypes(). The latter option of varying the markers randomly assigned to be 
QTN should allow the user to have a set of experiments where the QTN allele frequencies 
and LD in the regions surrounding the QTNs differ for each experiment.

It is possible to both indirectly and directly control the genetic correlation between 
traits simulated in simplePHENOTYPES. The genetic correlation between traits can be 
indirectly controlled by assigning different effect sizes to their shared QTNs. Thus, if the 
same two additive QTNs control two traits, denoted Trait k and Trait k ′ , with effect sizes 
0.10 and 0.01 for Trait k and 0.40 and 0.16 for trait Trait k ′ , these two traits will have a 
genetic correlation 0 < cor(Trait k ,Trait k ′) < 1.

Alternatively, simplePHENOTYPES allows users to assign specific Pearson correla-
tions between genetic values of the traits using a process known as whitening/coloring 

Fig. 2  Three scenarios of multi-trait genetic architectures implemented in simplePHENOTYPES to simulate 
two traits Trait j and Trait j′ controlled by a pool of 20 QTNs. Pleiotropy: 20 QTNs control both traits; partial 
pleiotropy: 7, 4, and 9 QTNs controlling Trait j, both traits, and Trait j′ only, respectively; spurious pleiotropy: 10 
independent QTNs controlling each trait but in linkage disequilibrium (LD) with one marker that is also in LD 
with QTNs from the other trait
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transformation [8]. To illustrate this process, let Y denote the scaled and centered genetic 
values (i.e., the cumulative values of the QTNs multiplied by their effect sizes) of each 
simulated trait. Let � denote the variance-covariance matrix of the simulated genetic 
values; since Y is scaled and centered, � is equal to a correlation matrix.

To modify Y so that the desired pairwise correlation between each genetic value is 
equal to those specified by the user in �′ (which is specified using the cor input param-
eter inside create_phenotypes()), the Cholesky decomposition is first applied to � . This 
phase, called the whitening transformation, calculates X = L−1/2

Y , where L is a lower 
diagonal matrix defined from the Cholesky decomposition of � , i.e., � = LLT . Each 
of the genetic values in the resulting vector X are uncorrelated. To obtain a vector of 
genetic values Y′ with the pairwise correlations specified in �′ , a coloring transforma-
tion is applied to X , specifically Y′

= L′1/2X . Similar to the whitening phase, L′ is a lower 
diagonal matrix calculated from �′

= L′L′T , i.e. the Cholesky decomposition of �′ . 
Finally, the process of centering and scaling the genetic values Y′ is reversed so that these 
are back on the original scale.

Another feature of simplePHENOTYPES is the ability to specify the heritabilities of 
each simulated trait. These heritabilities are subsequently used to simulate normally dis-
tributed random error terms that represent non-genetic sources of trait variability. By 
default, these random error terms are independent, but the user may optionally specify 
a user-defined residual correlation (cor_res). Thus, the variance of each simulated trait 
is equal to the sum of i.) the variance of the genetic values from the QTNs and ii.) the 
variance of these random error terms. Although the current implementation of simple-
PHENOTYPES explicitly dichotomizes trait variability into these two sources, we antici-
pate that future versions will allow the user to specify the contributions of background 
genetic effects and non-genetic covariates to the simulated traits.

We took several measures to ensure the quality, reproducibility, and accessibility of 
the results produced by simplePHENOTYPES. Upon completing simulating traits, sim-
plePHENOTYPES will create a log file that will compare the estimated sample herit-
abilities and (when appropriate) genetic and residual correlations with those specified 
by the user, as well as confirm details on the specified genetic architecture. In addition, 
the variance explained by each QTN (calculated prior to the whitening/coloring trans-
formation when the desired pairwise genetic correlations between traits are specified 
in �′ ), as well as new marker data without the SNPs selected to be QTNs, are optionally 
exported into the user’s specified working directory. Finally, the seed numbers used to 
select QTNs and simulate the random non-genetic error terms for each simulated trait 
are saved as text files. These, along with genomic information on the markers selected to 

Table 1  Effect sizes assigned to each genotype under different genetic models

∗Additive effect; ‡Dominance effect; †Epistatic (additive x additive) effect

genotype

Model −1 0 1

Additive −a
∗ 0 a

Dominance 0 d
‡ 0

Epistatic −1

0

1

e
†

0

−e

0

0

0

−e

0

e
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be QTNs, should facilitate the regeneration of the simulated traits whenever the need 
arises. The resulting simulated traits are saved in user-specified formats ready for down-
stream evaluation in external quantitative genetics software packages. Output compat-
ibility includes GEMMA [9] and TASSEL [10]. Similarly, the option of saving the output 
as an R object ensures quick access by packages such as GAPIT [11] and rrBLUP [12].

Listings

Results
simplePHENOTYPES is capable of simulating thousands of experiments on a typical 
laptop computer in less than one minute (Fig. 3). When we simulated phenotypes from 
a data set of 10, 650 markers genotyped on 280 maize lines from the Goodman-Buckler 
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Diversity Panel [13, 14] on a single core of a 2.40 GHz MacBook with 64 GB of RAM, 
the median time to simulate 1,  000 experiments for each evaluated scenario was 2.79 
seconds (Fig. 3). In particular, the median completion time for multivariate phenotypes 
was respectively 6.06, 15.57, and 10.79 seconds for the pleiotropy, partial pleiotropy, and 
spurious pleiotropy scenarios. Marker data sets in formats that require numericalization 
(e.g., HapMap formats) will require extra time for the numericalization step. When this 
same data set was used in a HapMap format, the median completion time was 6.7 sec-
onds (data not shown).

To illustrate the facility of simulating multiple traits in simplePHENOTYPES, we 
present a sample R script for simulating two traits from the spurious pleiotropy sce-
nario (Listing 1). Here, the same data set of 280 maize lines form the Goodman-
Buckler diversity panel is used to simulate two traits controlled by three additive 
QTNs ( add_QTN_num = 3 ). Both traits have a heritability of 0.5. The additive effect 
sizes for the three QTNs of trait 1 (trait 2) are 0.2 (0.3), 0.1 (0.2), and 0.05 (0.1). The 
LD between a given QTN of each trait and the corresponding common marker 
( type_of _ld = “indirect ′′ ) is at maximum r = 0.7 ( ld = 0.7).

In a different scenario, we also simulated a pair of traits controlled by 20 pleiotropic 
QTNs (Listing 2), with a different heritability for each trait and QTNs with a minor allele 
frequency between 0.05 ( maf _above = 0.05 ) and 0.45 ( maf _below = 0.45 ). In this case, 
we used a soybean data set consisted of a random sample of 500 accessions in maturity 
groups III and IV downloaded from SoyBase [15] (http://soyba​se.org/snps/downl​oad.
php). This data set was comprised of 42, 291 SNPs obtained with the SoySNP50K [16]. 
We filtered out SNPs with more than missing data conducted an LD pruning step using 
Plink’s options r2 = 0.9 (–indep-pairwise 100 10 0.9) [17]. We only included SNPs from 
chromosomal DNA with a minor allele count greater that 5 in this simulation. The final 
data set was composed of 18, 364 SNPs.

Detailed information on the SNPs selected to be QTNs and a summary of 
their LD for Listing 1 are presented at Tables  2 and 3, respectively. The details 
of the SNPs selected for Listing 2 are available on Additional file  1: Table  S5. To 

Fig. 3  Boxplot of running time, in seconds, required by simplePHENOTYPES to simulate 1, 000 experiments 
(i.e., replicate traits) under the single trait, pleiotropy, partial pleiotropy, and spurious pleiotropy scenarios. In 
the latter three scenarios, two traits were simulated for each experiment. This simulation was conducted on a 
single core of a 2.4 GHz MacBook with 64 GB of RAM. The data set used contained 10, 650 SNPs in numerical 
format genotyped on 280 maize individuals. The symbol “+′′ denotes the mean running time of each 
simulated architecture

http://soybase.org/snps/download.php
http://soybase.org/snps/download.php
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illustrate the use of these simulated traits in downstream quantitative genetics analy-
sis, we removed the SNPs selected to be QTNs in Listing 1 from the marker data set 
( remove_QTN = TRUE ) and conducted a multi-trait GWAS in an external software 
package, specifically GEMMA [18] (Fig.  4). The statistical model used in this pack-
age is a multivariate version of the unified mixed linear model [19], which includes 
fixed and random effect covariates to account for spurious associations attributable 
to population structure and familial relatedness. This same analysis was conducted on 
traits simulated in Listing 2 (Fig. 5). Other GWAS examples for phenotypes simulated 
under the pleiotropy and partial pleiotropy scenarios are presented in the section 2 
of the Supplementary File. As expected, in all scenarios the peak-associated markers 
from GWAS were located in the vicinity of the largest-effect QTNs.

To demonstrate the equivalence of simulated trait results between simplePHE-
NOTYPES and similar packages, we compared traits simulated by simplePHENO-
TYPES to those from AlphaSimR [6], SimPhe [20], and PhenotypeSimulator [4] when 
equivalent genetic architectures were specified. Due to differences between simple-
PHENOTYPES and PhenotypeSimulator concerning specific input parameters and 
implementations used for trait simulation, we compared both packages’ ability to 
simulate traits controlled by two pleiotropic QTNs with additive effects. Additionally, 
we compared simplePHENOTYPES to AlphaSimR and SimPhe for traits controlled 
by either i.) two pleiotropic QTNs with dominance effects, and ii.) one pleiotropic 
QTN with additive x additive epistatic effects. We showed that when traits with the 
same QTNs and effect sizes where simulated under a heritability of 1, the simulated 
traits from simplePHENOTYPES were identical to the other software packages. These 
identical results suggest that simplePHENOYPTES calculates the genetic contribu-
tions of simulated traits in a similar manner to AlphaSimR, SimPhe, and PhenotypeS-
imulator. Please see the Supplementary File for the code used for this benchmarking.

Fig. 4  Manhattan plot of a multi-trait GWAS conducted on two phenotypes simulated under the spurious 
pleiotropy genetic architecture. The X-axis depicts the physical position on the maize genome, while the 
Y-axis denotes the -log(P-value) at each of 10, 650 genome-wide SNPs that were considered in the multi-trait 
GWAS
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Conclusions
simplePHENOTYPES makes it possible to simulate multiple traits controlled by loci with 
varying degrees of pleiotropy. Its ability to interface with both commonly-used marker data 
formats and downstream quantitative genetics software and packages should facilitate the 
rigorous assessment of both existing and emerging statistical GWAS and GS approaches.

Fig. 5  Manhattan plot of a multi-trait GWAS conducted on two phenotypes simulated under the pleiotropy 
genetic architecture. The X-axis depicts the physical position on the soybean genome, while the Y-axis 
denotes the -log(P-value) at each of 18, 364 genome-wide SNPs that were considered in the multi-trait GWAS

Table 2  Map and  minor allele frequency information of  each SNP randomly selected 
in the sprious pleiotropy simulation presented in Listing 1, as well as those selected to be 
additive quantitative trait nucleotides (QTNs)

A value of ′′1′′ under the column labeled “Replication” indicates that these were the markers selected for the first 
experiment (i.e., the first replicate trait) for this genetic architecture
∗ centimorgan (This example does not contain information on genetic linkage).
∗∗ Marker data filtered by minor allele frequency (MAF) > 0.40

Replication Marker type Marker Allele Chromosome Position cM∗ MAF∗∗

1 cause_of_LD ss196453961 A/G 4 68,182,921 NA 0.50

1 cause_of_LD ss196498075 A/G 10 87,305,008 NA 0.50

1 cause_of_LD ss196495963 G/A 10 52,568,307 NA 0.50

1 QTN_upstream ss196453979 G/A 4 68,369,212 NA 0.50

1 QTN_upstream ss196498083 A/C 10 87,799,475 NA 0.50

1 QTN_upstream ss196496034 G/A 10 54,432,827 NA 0.50

1 QTN_downstream ss196453929 C/A 4 67,678,951 NA 0.50

1 QTN_downstream ss196498065 A/G 10 87,189,608 NA 0.50

1 QTN_downstream ss196496813 C/A 10 49,693,682 NA 0.50

Table 3  Summary linkage disequilibrium information on  quantitative trait nucleotide 
of different traits

∗Linkage Disequilibrium; ∗∗Quantitative Trait Nucleotide

Replication Marker 
causing LD∗

input LD 
(absolute 
value)

Actual LD 
with QTN∗∗ 
of Trait 1

Actual LD 
with QTN 
of Trait 2

QTN for Trait 1 QTN for Trait 2 LD 
between QTNs

1 ss196453961 0.70 0.16 0.11 ss196453929 ss196453979 0.11

1 ss196498075 0.70 0.24 0.45 ss196498065 ss196498083 −0.35

1 ss196495963 0.70 0.66 0.62 ss196496813 ss196496034 0.62
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Availability and requirements

Project Name: simplePHENOTYPES
Project Home page: https​://githu​b.com/samue​lbfer​nande​s/simpl​ePHEN​OTYPE​S
Operating system: Tested on Linux, Windows and macOS
Programming languages: R
Other requirements: R 3.5 or higher
License: MIT license
Any restrictions to use by non-academics: No (free software)

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03804​-y.

Additional file 1. Description of the R code used for benchmarking analysis, GWAS conducted on the simulated 
data sets, and to estimate the run time of simplePHENOTYPES.

Abbreviations
LD: Linkage disequilibrium; QTN: Quantitative trait nucleotide.
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