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Background
This paper is based on two main concepts: (i) genetic and biochemical dynamics are key 
to understand biological function, and (ii) optimality hypotheses enable predictions in 
biology. We start by briefly reviewing the relevant previous literature, with emphasis on 

Abstract 

Background:  Optimality principles have been used to explain the structure and 
behavior of living matter at different levels of organization, from basic phenomena at 
the molecular level, up to complex dynamics in whole populations. Most of these stud-
ies have assumed a single-criteria approach. Such optimality principles have been justi-
fied from an evolutionary perspective. In the context of the cell, previous studies have 
shown how dynamics of gene expression in small metabolic models can be explained 
assuming that cells have developed optimal adaptation strategies. Most of these works 
have considered rather simplified representations, such as small linear pathways, or 
reduced networks with a single branching point, and a single objective for the optimal-
ity criteria.

Results:  Here we consider the extension of this approach to more realistic scenarios, 
i.e. biochemical pathways of arbitrary size and structure. We first show that exploiting 
optimality principles for these networks poses great challenges due to the complexity 
of the associated optimal control problems. Second, in order to surmount such chal-
lenges, we present a computational framework which has been designed with scalabil-
ity and efficiency in mind, including mechanisms to avoid the most common pitfalls. 
Third, we illustrate its performance with several case studies considering the central 
carbon metabolism of S. cerevisiae and B. subtilis. In particular, we consider metabolic 
dynamics during nutrient shift experiments.

Conclusions:  We show how multi-objective optimal control can be used to predict 
temporal profiles of enzyme activation and metabolite concentrations in complex met-
abolic pathways. Further, we also show how to consider general cost/benefit trade-offs. 
In this study we have considered metabolic pathways, but this computational frame-
work can also be applied to analyze the dynamics of other complex pathways, such as 
signal transduction or gene regulatory networks.
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early works. Then, we discuss the integration of these two main ideas in an optimal con-
trol framework which can then be used to analyze and understand complex biochemi-
cal pathways. We finally illustrate this approach with case studies related with metabolic 
networks.

Dynamics

Mathematical modelling allows us to understand complex biological systems [1–3]. 
Wolkenhauer and Mesarovic [4] argue that the central dogma of systems biology is that 
system dynamics give rise to the functioning and function of cells. In this view, the lan-
guage of dynamical systems is used to represent mechanisms at different levels (meta-
bolic, signalling and gene expression) in order to describe the observed biochemical and 
biological phenomena. This mechanistic dynamic modelling is usually carried out using 
systems of coupled ordinary differential equations [5, 6]. Dynamical systems theory has 
a long history in physiology [2, 7, 8], and is receiving increasing attention in molecular 
systems biology [9–17].

The dynamic behaviour of biological systems is often explained in terms of feedback 
regulation mechanisms [4, 18]. Feedback is also a pillar in control theory, and in this 
context it is important to remember that the early concepts of feedback control were 
inspired by the study of regulation in biosystems [2]. Not surprisingly, a number of 
researchers have suggested that molecular systems biology can greatly benefit from the 
powerful methods of modern systems and control theory [1, 19–24]. Similar arguments 
have been made for synthetic biology [25–29].

Optimality

Can biology be predictive? It has been argued that the systems approach to biology will 
enable us to predict biological outcomes despite the complexity of the organism under 
study [30–32]. According to Sutherland [33], optimality is the only approach biology has 
for making predictions from first principles.

The optimality hypothesis as an underlying principle in living matter has a long history. 
It was already used in the early 1900s to explain structural and functional organization 
in physiology [34, 35]. A few decades later, Rosen [36] published what seems to be the 
first monograph dedicated to optimality in biology, reviewing a number of applications. 
In this book, Rosen started highlighting the successful use of optimality principles in 
physics (where they are usually called variational principles), and their interrelationships 
with other disciplines including biology, mathematics and the social sciences (especially 
with economics). Rosen then proceeded to discuss how evolution via natural selection 
explains the appearance of optimality principles in biology, and how these principles can 
explain biological systems. These ideas were updated in a later publication [37], noting 
the two distinct (yet related) roles that optimality can play: 

	(i)	 analytic (in the sense of explanatory), i.e. helping us to understand, or even predict, 
the way in which a biological system occurs. Many examples can be found in ecol-
ogy [38] and evolutionary [39, 40] and behavioral biology [41].

	(ii)	 synthetic (in the sense of design and/or decision making), where it helps us to 
decide how to optimally manipulate, change or even build a bioprocess or biosys-
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tem. Examples can be found in biomedicine [42], metabolic engineering [43–45] 
and synthetic biology [45, 46].

Optimality in cellular systems

In the remainder of this paper, we will focus on the explanatory role of optimality in the 
context of cellular systems. Savageu [47] and Heinrich and collaborators[48–51] devel-
oped many of the early theoretical applications of optimality principles in this domain, 
mostly to analyze metabolic networks and their regulation. Other notable examples of 
optimization studies in the context of biochemical pathways can be found in [43–46, 52–
62] and references cited therein. Optimization can be applied at the genome-scale level 
with steady-state models (acting as algebraic constraints), as done with constraint-based 
models [63, 64].

Chapters specifically devoted to the interrelation between evolution and optimality in 
the context of biochemical pathways can be found in [65, 66]. From all these studies, two 
key ideas can be distilled: (i) evolution via natural selection can be understood as a fit-
ness optimization process; (ii) therefore fitness optimality should allow us to understand, 
explain and even predict the evolution of the design of biochemical networks provided 
we can characterize their function(s) and how such function(s) impact on the organism 
fitness.

Heinrich et al [50] noted that the optimality hypothesis finds support in the fact that 
perturbations (e.g. mutations) or changes in the structure of enzymes usually leads to 
worse functioning of the metabolism. These authors also reviewed the cost functions 
most frequently considered in metabolic networks, concluding that they were mostly 
related with fluxes, concentrations of intermediates, transition times and thermody-
namic efficiencies.

In this context, it is worth remembering that any optimization problem involves at 
least two elements: the objective (or cost) function, i.e. the criterion being maximized or 
minimized, and the decision variables, i.e. the degrees of freedom of the system which 
can vary to seek the optimal cost. Additionally, in most realistic situations the optimi-
zation problem also needs to incorporate constraints, i.e. relationships describing what 
is feasible or acceptable (i.e. requirements and fundamental limitations). Both in biol-
ogy and physics, the set of constraints include physicochemical laws (e.g. conservation 
of mass, thermodynamics). But a main difference between physics and biology is the 
presence of additional functional constraints in the latter [1]. That is, biological systems 
evolve to fulfill functions, with insufficient performance leading to extinction.

Optimality and dynamics: optimal control theory

Most of the above mentioned early studies of optimality in biology considered stationary 
(i.e. steady state) systems. However, as remarked at the beginning of this paper, biologi-
cal function is closely linked to dynamics. Thus we now focus on the question of explain-
ing and/or predicting dynamics (i.e. function) exploiting optimality principles.

The optimization of dynamical systems is studied by optimal control theory [67, 68]. 
Optimal control considers the optimization of a dynamic system, that is, one seeks the 
optimal time-dependent input (control) to minimize or maximize a certain performance 
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index (cost function). Optimal control is sometimes also called dynamic optimization 
when the system is open loop. The basic elements of an optimal control problem are the 
performance index (cost function to be optimized), the control variables (time-varying 
decision variables), and the constraints (which can be inequalities or equalities, dynamic 
or static, and can be active during all or part of the time horizon considered). Typically, 
equality dynamic constraints constitute the time-varying model of the system under 
consideration.

Rosen was probably the first to recognize the importance of optimal control as a 
unifying framework that could bring together important areas of theoretical biology. 
Although in his works [36, 37] he outlined the potential of optimal control theory for 
biological research, he did not present any illustrative example. Successful applications 
of optimal control in biology and biomedicine started to appear in the 1970s, with nota-
ble impetus in the case of optimal decision making in biomedical engineering (e.g. drug 
scheduling [69]). Around the same time, explanatory uses of optimal control in biology 
started to appear (an introductory book discussing several early examples can be found 
in [70]).

In recent years, optimal control has been increasingly used to explain cellular phe-
nomena (e.g. [71–73]). In the case of metabolic systems and their regulation, Klipp et al 
[74] were the first to predict temporal gene expression profiles in a metabolic pathway 
assuming optimal function under a constraint limiting total enzyme amount. They used 
an optimization approach similar to control parameterization methods in numerical 
optimal control. Notably, these researchers considered a simplified model of the cen-
tral metabolism of yeast undergoing a diauxic shift, and they were able to predict time-
dependent enzyme profiles which agreed well with experimental gene expression data 
[75]. Further, considering a simple linear pathway model, they found a wave-like enzyme 
activation profile which agreed with previous observations of gene expression dur-
ing the cell cycle [76, 77], indicating that for this pathway topology, genes involved in a 
certain function are activated when such function is needed. Interestingly, these results 
were later experimentally confirmed by Alon and co-workers [78], who named this kind 
of activation profile “just-in-time” (a term originated in industrial manufacturing to 
describe a methodology aimed at reducing production times and inventory sizes). As 
noted by Ewald et al [79], this timing pattern had also been previously observed in the 
flagellum assembly pathway [80]. Similar activity motifs were also found in the timing in 
transcriptional control of the yeast metabolic network [81].

There are several important messages in the pioneering work of Klipp et al [74]: (i) it is 
possible to predict the dynamics of biological pathways without knowing the underlying 
regulatory mechanisms, confirming the concepts proposed by Heinrich and collabora-
tors a decade earlier [50]; (ii) the timing of gene expression allows the cell metabolism to 
optimally adapt to varying external conditions; (iii) the optimal operation of the pathway 
needs to take into account constraints that arise from physico-chemical limitations of 
the cell (e.g. total enzyme concentration is limited by protein synthesis capacity); (iv) for 
the case studies considered, the authors considered different (and single) objective func-
tions, which encapsulate the optimality hypothesis.

The work of Klipp et al [74] spurred the application of optimal control to character-
ize cellular dynamics related with metabolism [82–98]. Ewald et  al [79] have recently 
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reviewed many of these studies, illustrating how dynamic optimization is a power-
ful approach that can be used to decipher the activation and regulation of metabolism. 
Furthermore, Ewald et al [79] have also reviewed other important types of applications, 
including dynamic resource allocation in cells (as studied by e.g. [93]), the genomic 
organization of metabolic pathways (e.g. [87]), the development of effective treatments 
against pathogens (e.g. [95, 99]), and other manifold applications in metabolic engineer-
ing and synthetic biology.

Cellular trade‑offs and multicriteria optimality

Trade-offs are ubiquitous in evolutionary biology: very often one trait can not improve 
without a decrease in another, as already noted by Darwin [100]. Numerous works have 
studied cellular trade-offs considering e.g. the design of microbial metabolism [101, 102] 
and strategies for resource allocation, storage and growth [103–106]. Similarly, trade-
offs between economy and effectiveness have been found in biological regulatory sys-
tems [107]. Analyses of different trade-offs have been used to uncover design principles 
in cell signalling networks [108–110].

A mathematical framework that combines in a natural way the concepts of optimality 
and trade-offs is multicriteria optimization, where one seeks the best (optimal) trade-
offs (the so called Pareto optimal set) that correspond to the simultaneous optimization 
of several objectives. The concept of Pareto optimality was originally developed in the 
field of economics, but it was already suggested for applications to ecology in the early 
1970s [111]. In the case of biochemical networks, multicriteria optimality was discussed 
by Heinrich and Schuster in the 1990s for metabolic steady-state conditions [49, 65, 
112]. During the 2000s, the approach gained traction: El-Samad et al [113] studied the 
Pareto optimality of gene regulatory network associated with the heat shock response 
in bacteria; multi-objective approaches were used to perform metabolic network opti-
mization [114, 115] and flux balance analysis [116–118]. More recently, Alon and co-
workers applied Pareto optimality to explain evolutionary trade-offs [119] and biological 
homeostasis systems [107]. Higuera et al [120] analyzed optimal trade-offs for the allos-
teric regulation of enzymes in a simple model of a metabolic substrate-cycle. Different 
optimal trade-offs in molecular networks capable of regulation and adaptation have also 
been studied in the context of synthetic biology [121–125]. Many other applications of 
multicriteria optimality in biology are reviewed in [126–128].

Considering the prediction of dynamics in biochemical pathways, to the best of our 
knowledge the study of de Hijas-Liste et  al [88] was the first to apply a multicriteria 
dynamic optimization framework. These authors proposed multi-objective formulations 
for several metabolic case studies, showing how this framework provided biologically 
meaningful results in terms of the best trade-offs between conflicting objectives.

Both in single and multicriteria formulations there is an underlying key question that 
needs to be addressed: the selection of the objective functions. In other words, we need 
to formulate objective functions which encapsulate the fitness and the trade-offs of the 
biological system under study. Heinrich and Schuster [65] suggested following heuristic 
arguments and checking their validity by comparing the predictions derived from the 
associated optimality principle with experimental observations. This study-hypothesize-
test approach has been the one followed by the vast majority of the works cited above. 



Page 6 of 33Tsiantis and Banga ﻿BMC Bioinformatics          (2020) 21:472 

Recently, we proposed an alternative based on an inverse optimal control formulation 
[129] that aims to find the optimality criteria that, given a dynamic model, can explain a 
set of given dynamic (time series) measurements. In other words, inverse optimal con-
trol can be used to systematically infer optimality principles in complex pathways from 
measurements and a prior dynamic model.

Challenges and motivation

As discussed above, optimal control can provide important insights in the domain of 
systems biology. So far, existing studies have made use of rather simple dynamic models 
(see the review of Ewald et al.[79]). In many situations, using a simple model might be 
in fact a totally satisfactory approach: an excellent illustration is the study by Giordano 
et al [93], where optimal control of coarse-grained dynamic models was used to explain 
resource allocation strategies in microbial physiology.

However, for many applications, more complex models need to be used. Can optimal 
control be applied at these larger scales? This is one of the key questions considered 
here. The answer ultimately relies on two key issues: (i) the availability of the detailed 
(time-series) measurements need to build these more complex dynamic models, and (ii) 
the existence of numerical optimal control methods that can solve these problems in 
a reliable and efficient way. Regarding (i), Ewald et al.[79] mention recent advances in 
experimental techniques (like large-scale quantitative proteomic data) that should make 
it possible to apply these optimality principles at more complex molecular levels.

In contrast, regarding (ii), the situation currently remains an open question, serving as 
the main motivation for this work. Despite the many significant advances during the last 
decades, reliably solving nonlinear optimal control problems can be very challenging, 
even for small problems, due to the existence of local solutions and high sensitivity to 
initial guesses [130]. This is true even in areas with a long optimal control tradition, such 
as aerospace [131, 132]. In the case of kinetic models, it has been shown that small (and 
apparently simple) problems can exhibit hundreds of unique local solutions [133]. The 
existence of local solutions, possibly exacerbated in problems with path constraints, also 
pose a challenge for the application of standard optimal control methods in areas such as 
robotics and (bio)chemistry [134]. It is important to note that finding the global solution 
of nonlinear optimal control problems with guarantees (i.e. certificate of global optimal-
ity) remains an open question of research [135].

In the case of biochemical pathways, the application of optimal control faces impor-
tant challenges and pitfalls, in line with those identified for chemical reaction systems 
[133, 134], including: multimodality (local solutions, due to nonlinear dynamics), com-
plicated control profiles with many switching points and singular arcs, path constraints, 
possible discontinuous dynamics, sensitivity to initial guesses, and scaling issues. More 
details regarding these issues are given below.

Our objectives and approach

Here, our goal is to provide a multi-objective optimal control approach that can be 
applied to dynamic models of complex biochemical pathways, surmounting the above 
mentioned challenges. In particular, we present a computational workflow that is reli-
able (robust), avoiding convergence to local solutions, but efficient enough (in terms 
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of reasonable computation times) to handle realistic network topologies and arbitrary 
nonlinear kinetics. We will show how this workflow is capable of scaling up well with 
network size, and how it can handle multi-criteria formulations.

We illustrate the performance of this workflow considering three different case 
studies, based on dynamic models of the central carbon metabolism of S. cerevisiae 
and B. subtilis. In particular, we use our workflow to explain metabolic dynamics dur-
ing nutrient shift experiments.

Methods
Optimal control problem: general formulation

We consider dynamic systems described by nonlinear ordinary differential equations 
(ODEs). The problem of optimal control (OCP) consists of computing the optimal 
decision variables (also called time-varying inputs, or controls) and time-invariant 
parameters that minimize (or maximize) a given cost functional (performance index), 
subject to the set of ODEs and possibly algebraic inequality constraints. Mathemati-
cally, the OCP is usually stated as follows:

Subject to:

where J[x,u,p] is the objective functional (sometimes called performance index, or cost 
functional), encapsulating the optimality criteria; u(t) are the time-dependent control 
variables which must be computed in order to minimize (or maximize) the objective 
functional ( J[x,u,p] ). The problem is subject to constraints, including the dynamics of 
the system described by Eq. (2), i.e. the set of ordinary differential equations and their 
corresponding initial values ( x(t0) ), forming the so-called initial value problem (IVP); 
inequality ( g ) path constraints are encoded in equations (3), representing inequali-
ties relationships that must be enforced during the time horizon considered (e.g. total 
enzyme capacity, critical thresholds for specific concentrations, etc.). In some cases we 
also need to consider inequality ( gι ) time-point constraints, encoded in Eq. (4). Finally, 
( uU ,uL ) are the upper and lower bounds for the control variables, as stated in Eq. (5).

In the case of a multicriteria formulation, the cost functional J[x,u,p] is a set of 
objective functions corresponding to the N different criteria considered:

(1)min
u(t),tf

J[x,u,p]

(2)
dx

dt
= f [x(t,p),u(t),p, t],

x(t0,p) = x0

(3)g[x(t,p),u(t),p] ≤0

(4)gι[x(tι,p),u(tι),p] ≤0

(5)uL ≤u(t) ≤ uU
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where, in its general form, each objective functional Ji in this set ( i ∈ [1,N ] ) consists of a 
Mayer ( �i

M ) and a Lagrange ( �i
L ) term:

We assume the same general form for the single-objective case.

Multicriteria optimal control

In multicriteria optimization, the objectives are usually in conflict (improving one dam-
ages the others), so the optimal solution is not unique, but a set of optimal trade-offs 
(i.e. the set of the best compromises, which is also called the Pareto set). Many methods 
have been developed for multicriteria optimal control, and they are usually classified in 
three categories [136]: scalarization techniques, continuation methods and set-oriented 
approaches. Here we use the ǫ-constraint scalarization method, which transforms the 
original multiobjective problem into a finite set of single-objective optimal control 
problems.

The ǫ-constraint method proceeds by solving a single objective problem with respect to 
one of the objectives Ja while treating the rest of the objectives Ji as algebraic constraints:

Subject to:

The above problem will also be subject to the rest of the differential and algebraic con-
straints considered in the original multicriteria formulation. Therefore the Pareto set is 
obtained by solving a set of single objective problem for different values of ǫi.

Numerical solution of nonlinear optimal control problems

Methods for the numerical solution of nonlinear optimal control problems can be clas-
sified under three categories: dynamic programming, indirect and direct approaches 
(Fig. 1). Dynamic programming [137, 138] suffers from the so-called curse of dimension-
ality, so the latter two are the most promising strategies for realistic problems. Indirect 
approaches were historically the first developed and are based on the transformation of 
the original optimal control problem into a multi-point boundary value problem using 
Pontryagin’s necessary conditions [67, 68]. Indirect methods are not used in practice due 
to several major difficulties, particularly the need of very good initial guesses, and in the 
case of problems with path constraints, the need of an a priori estimation of the sequence 
of constrained/unconstrained singular arcs (more details can be found in e.g. page 129 in 

(6)J[x,u,p] =















J1[x,u,p]
J2[x,u,p]

.

.

.

JN[x,u,p]















(7)Ji[x,u,p] = �i
M[x(tf ,p),p] +

∫ tf

t0

�i
L[x(t,p),u(t),p]

(8)min
u(t),tf

Ja[x,u,p]

(9)Jb[x,u,p] ≤ ǫi with i = 1, ..., n and i �= a



Page 9 of 33Tsiantis and Banga ﻿BMC Bioinformatics          (2020) 21:472 	

[139]). Direct methods, which are presently the preferred way to solve these problems, 
transform the optimal control problem into a nonlinear programming problem (NLP). 
They are based on the discretization of either the control, known as the sequential strat-
egy, or both the control and the states, known as the simultaneous strategy.

Sequential strategy (control vector parameterization)

In the sequential strategy [140–143], also known as control vector parametrization, the 
controls are approximated by piecewise functions, usually by a low order polynomial, 
the coefficients of which are the decision variables of the resulting discretized problem. 
Thus, the problem is transformed into an outer non-linear programming (NLP) problem 
with an inner initial value problem (IVP) where the dynamic system is integrated for 
each evaluation of the cost function.

The control vector parameterization (CVP) approach proceeds by dividing the time 
horizon into a number of elements ( ρ ). The control variables ( j = 1 . . . nu ) are then 
approximated within each interval ( i = 1 . . . ρ ) by means of some basis functions, usu-
ally low order Lagrange polynomials [144], as follows:

where τ is the normalized time in each element i:

and Mj the order of the Lagrange polynomial ( ℓ ). In this work we will consider Mj = 1 or 
Mj = 2 , i.e. piecewise constant or piecewise linear approximations of the controls.

Using the above discretization, the controls can be expressed as functions of a new set 
of time invariant parameters corresponding to the polynomial coefficients ( w ). Therefore 

(10)u
(i)
j (t) =

Mj
∑

k=1

uijkℓ
(Mj)

k (τ (i))t ∈ [ti−1, ti]

(11)τ (i) =
t − ti−1

ti − ti−1

Fig. 1  Classification of solution strategies for nonlinear optimal control problems. Figure adapted from [146]
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the original infinite dimensional problem is transformed into a non-linear programming 
problem with dynamic (the model) and algebraic constraints, and where the decision 
variables w correspond to the unknown polynomial coefficients. In the simplest case of 
Mj = 1 , in every interval, every control u(i)j (t) will be approximated by a constant coef-
ficient w(i)

j  (piecewise constant approximation). In other words, this strategy gives rise to 
an outer NLP problem with an embedded inner initial value problem, i.e. the dynamics 
must be integrated for each evaluation of the cost function and the algebraic constraints. 
Further details about the theory and practice of the CVP approach and its variants can 
be found in e.g. [140, 141, 143].

Simultaneous strategy (complete discretization)

In the simultaneous strategy [139, 145, 146], also known as complete parameterization 
approach, both states and controls are discretized by dividing the whole time domain 
into small intervals. This is done either using multiple shooting, where similarly to the 
sequential approach, the problem is integrated separately in each interval and linked 
with the rest through equality constraints, or by a collocation approach, where the solu-
tion of the dynamic system is being coupled with the optimization problem.

The direct collocation approach is probably the most well known complete discre-
tization approach. In this method the solution of the infinite dimensional problem is 
transcribed into a non-linear programming problem discretizing both the states and 
the controls [139] by means of low-order polynomial approximations. For example, the 
states can be approximated by a K-stage Runge-Kutta scheme. Different Runge-Kutta 
schemes use polynomials of different order ( K + 1 ) to approximate the system’s solution 
in each integration step (i) with stepsize hi:

with:

where f  is the right hand side of the ODEs while βj ,αjl , ρj are order-dependant parame-
ters. Thus, this method transforms the original infinite dimensional problem into a large 
NLP problem which, in contrast to the CVP method above, does not require the inte-
gration of the dynamic system during the iterative solution of the NLP. An additional 
advantage of complete discretization methods is a better handling of path inequalities 
[139]. Readers interested in achieving a deeper understanding of the theory and numeri-
cal details of the simultaneous strategy and its variants should check [139, 145, 146] and 
the references cited therein.

Effect of constraints on the optimal solution

Constraints play a key role in mathematical modeling in biology. From the computa-
tional optimization point of view, constraints limit the solution space, adding further 

(12)xi+1 = xi + hi

K
∑

j=1

βjfij

(13)fij = f

{(

xi + hi

K
∑

l=1

αjlfil

)

, (ti + hiρj)

}
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complexity to already complex mathematical formulations. However, from the biolog-
ical point of view, constraints add information to the model, making it more realistic.

In general, constraints can have physical and biological meaning [65]. For example, 
thermodynamic feasibility is often neglected in metabolic models although it can pro-
vide information on both directionality of reactions and range of parameters [147]. 
Additionally, information on the physico-chemical properties and the stoichiometry 
of the network under consideration can greatly restrict the solution space.

Apart from physical constraints, biological limitations can be of even higher impor-
tance and complexity [37]. These limitations are not only complex to express but 
also hard to get estimates for. Considering variations of the critical values of certain 
metabolites or proteins, necessary for the survival of the cell, can have a quite sig-
nificant effect on the optimal solution. Other relevant constraints can be related to 
the maximum protein production rate, the total enzyme burden or the total protein 
investment [48, 148].

In this context, it would be interesting to analyze the interplay between constraints 
in biological models with the optimal trade-offs (Pareto set). In some cases, con-
straints can act as the operating principles we are trying to identify and understand 
[149]. It would also be interesting to study (i) the impact of constraints not only on 
the current behavior of a biological network, and (ii) their role on how the network 
has evolved [106, 121].

In mathematical optimization, once an optimal solution is found, it is always 
interesting to analyze the role of the different constraints on such solution. In con-
strained optimization in economics, especially in linear programming, the concept 
of shadow price is used to quantify how much the optimal value of the objective 
function changes by relaxing a constraint [150, 151]. In optimal control the equiva-
lent of the shadow price is the adjoint variable [70]. The adjoint variables �(t) (also 
called costate variables) can be estimated and provided along with the results as part 
of the solution of the optimal control problem. However, an interpretation of their 
significance is not necessarily intuitive. As mentioned previously, in nonlinear opti-
mal control theory and while using direct methods, the problem is formulated as a 
constrained NLP optimization problem where both algebraic and differential equa-
tions are constraining the search space. In such a problem, the Lagrange multipliers 
represent what the cost would be if those constraints were violated. Additionally the 
Lagrange multipliers with respect to the state variables are discrete approximation of 
the adjoint variables, the approximation be depending on the transcription method of 
choice. Consequently, in nonlinear optimal control the adjoint variables can be used 
to explain the possible variation on the cost function associated with an incremental 
change in the states [70].

Using direct optimization methods, the general optimal control problem is tran-
scribed into a NLP problem. Let us consider a general NLP problem with cost function 
F(y) , dependent on n variables y , and where this cost has to be minimized subject to the 
m ≤ n constraints:

The Lagrangian is defined as [139]:

(14)c(y) = 0
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with ααα corresponding to the Lagrange multipliers.
Let us now consider an optimal control problem where we seek to find the controls 

u(t) to minimize the cost function:

subject to the differential-algebraic equation (DAE) constraints:

The augmented performance index is formed as follows:

where ��� and µµµ are the adjoint variables.
Consider now that this infinite-dimensional optimal control problem is transcribed 

into a finite-dimensional NLP problem using a complete parameterization strategy. The 
relationship between the Lagrange multipliers ( ααα ) and the adjoint variables ( �,µ�,µ�,µ ) will be 
dependent on the transcription method. Generally, it has been shown that the Lagrange 
multipliers estimate the adjoint variables in the limit of ρ → ∞ , where ρ is the number 
of time intervals in which the time horizon has been discretized [139]. More information 
about the adjoint variables computation and interpretation can be found in [70, 139].

Challenges and pitfalls in numerical optimal control

Using direct methods to solve optimal control problems involving nonlinear models 
frequently result in multimodal problems, i.e. there are multiple local solutions and at 
least a global one. This is a consequence of the presence of nonlinear dynamics and path 
constraints. As a result, local optimization methods will usually converge to bad local 
solutions [45, 152]. Often, researchers resort to the use of a multi-start strategy, i.e. ini-
tializing local methods from multiple points in the search space. However, this approach 
becomes inefficient for problems of realistic size [88].

In theory, deterministic global optimization methods can surmount these difficulties 
and find the global optimum with guarantees. Although several deterministic methods 
for finding the global solution of optimal control problems have been developed [133, 
134, 153–156], difficulties remain because they do not scale well with problem size. 
The current state of the art in deterministic global optimal control is that there are no 
generic complete-search algorithms for solving these problems to global optimality, thus 
it remains an open field of research [135].

Alternatively, one can consider approximate probabilistic methods. Purely stochas-
tic global optimization methods were the first probabilistic methods used for optimal 

(15)L(y,ααα) = F(y)− αααT c(y) = F(y)−

m
∑

i=1

αici(y)

(16)J =

∫ tF

t1

L[x(t),u(t)]dt

(17)ẋ =f [x,u, t]

(18)0 =g[x,u, t]

(19)

Ĵ =

∫ tF

t1

L[x(t),u(t)]dt −

∫ tF

t1

���
T (t){ẋ − f [x(t),u(t)]} +

∫ tF

t1

µµµT (t)g[x(t),u(t)]
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control [157–162], but they can rather inefficient, requiring many evaluations of the cost 
function, resulting in large computation times that become prohibitive if refined solu-
tions of large problems are sought. Hybrid global-local optimization strategies combine 
the advantages of global stochastic and local deterministic methods, showing good per-
formance and robustness for many realistic problems of small and medium size [88, 131, 
163, 164]. It should be noted that these non-deterministic methods do not offer guar-
antees of global optimality, although their empirical performance seems to be adequate 
for many practical problems of realistic size [131, 164]. However, these hybrid strategies 
might also become too computationally expensive if we seek refined solutions of large 
optimal control problems.

In addition to multimodality [131, 133, 134, 158], other numerical and computational 
issues in nonlinear optimal control include complicated control profiles with multiple 
and very sensitive switching points [143, 163], discontinuous dynamics [142], path con-
straints [139, 165] and singular arcs [88, 139, 166], and the need of good initial guesses 
[131]. Even small nonlinear optimal control problems can be non-trivial, exhibiting unu-
sual behavior due to the existence of local solutions and extreme sensitivity to initial 
guesses [130].

Our combined strategy for numerical optimal control

Although several surveys of numerical methods and software for optimal control have 
been published during the last decade [131, 167, 168], these reviews are neither very 
recent nor very exhaustive. More importantly, there is a lack of studies comparing dif-
ferent approaches in a fair way and using a set of well defined benchmark problems. 
Therefore, choosing the current best numerical method and software to solve the class 
of problems considered here becomes a daunting task, especially for non-experienced 
users. To make things worse, using many currently available software packages we 
might get solutions that look reasonable but which are, however, artifacts or bad local 
solutions.

Therefore, here we present a robust workflow and guidelines to avoid, as much as pos-
sible, the many challenges and pitfalls that are common in nonlinear optimal control, as 
discussed in the previous section. We have designed an strategy with three key ideas in 
mind, i.e. it should be able to: (i) run without good initial guesses, (ii) avoid convergence 
to local solutions, (iii) approximate complicated control profiles with good accuracy 
and reasonable computation cost, (iv) scale up well in terms of control and state vari-
ables. Further, the approach is able to handle multiobjective optimal control problems 
by transforming them into a set of nonlinear optimal control problems, as depicted in 
Fig. 2.

In order to meet these requirements, we tested a number of different options and 
finally arrived to the following two-phase strategy named AMIGO2_DO+ICLOCS:

•	 first phase using AMIGO2_DO, a hybrid stochastic-deterministic method based on 
control vector parameterization

•	 second phase using ICLOCS, a simultaneous (complete discretization) fast local 
method
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The main justification for the first phase is the handling of the multimodality issues 
using a robust approach that has the additional benefit of not requiring good initial 
guesses. We have used the latest version of the AMIGO2_DO solver, a sequential optimal 
control solver included in the AMIGO2 toolbox [169]. Although this solver allows the 
user to select different combinations of global and local methods, we have found that 
the enhanced scatter search (eSS) metaheuristic [164] provided the best performance. 
The control vector parametrization strategy implemented in this solver is easier to apply 
to arbitrary nonlinear dynamics, results in smaller optimization problems and relies on 
well tested initial value solvers.

For the second phase we used ICLOCS [170], a very efficient and fast optimal control 
solver based on complete discretization and deterministic local optimization methods. 
Since the second phase is initialized in a near-global solution provided by the first phase, 
its local optimization character is not an issue. And this second phase allows a very 
good approximation of the control profiles due to the use of the complete discretization 
approach. The simultaneous strategy leads to larger optimization problems but has the 
advantage of avoiding the repeated integration of the system dynamics at each iteration, 
so it can approximate highly discretized control profiles very efficiently.

Choosing the right settings for these solvers is of key importance, but this task can be 
a real challenge for non-expert users. Here we provide the best settings that we found for 
the class of problems considered.

Recommended settings for the AMIGO2_DO phase:

•	 control discretization options: an initial piecewise-linear discretization of the control 
using 5–10 elements proved successful. When used alone, the AMIGO2_DO mesh-
refinement options can be used to approximate better difficult controls. When used 
as part of AMIGO2_DO+ICLOCS, we found more efficient to refine the controls dur-
ing the ICLOCS phase

•	 optimization solver: best results were obtained using the eSS (enhanced scatter 
search) global solver [164] with FSQP [171] as local solver

•	 initial value problem solver: CVODES [172], with relative and absolute integration 
tolerances settings of at least 1.0E–7. It is important that the optimization criteria 
tolerance is at least two orders of magnitude larger then the IVP integration toler-

Fig. 2  General workflow of our approach
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ance. Otherwise, the integration numerical noise introduces non-smoothness mak-
ing the optimization solver to converge less efficiently or fail.

Recommended settings for the ICLOCS phase:

•	 initial guesses: a good initial guesses for the unknown parameters and state trajecto-
ries is key to improve convergence. When used in the hybrid approach, the solution 
obtained by AMIGO2_DO was used as the initial guess for ICLOCS.

•	 transcription method: trapezoidal
•	 derivative generation: analytic. Providing analytic expressions for the gradient of the 

cost function, Jacobian of the constraints and Hessian of the Lagrangian was found 
extremely important. Generating this information can be very cumbersome for non-
trivial problems, so we have coded an auxiliary function that automates it using sym-
bolic manipulation

•	 NLP solver: IPOPT [173]

Multiplicity of solutions

Some optimal control problems can have non-unique solutions, i.e. different control 
trajectories corresponding to the same cost function value. This is an often overlooked 
issue that, although mathematically correct, might have unforseen consequences when 
trying to explain or predict biological behaviour.

In a strict mathematical sense, such an issue is related with the system’s structure. For 
example, a dynamic system with highly correlated controls that can compensate their 
impact on the cost function might result in multiple solutions with different controls, yet 
identical cost function. In particular, in optimal control theory, a very well known issue 
is the existence of a singular arc. In a singular arc, the controls appear linearly in the sys-
tem’s Hamiltonian and therefore can not be uniquely identified.

However, from a computational point of view, practical multiplicity of solutions can 
also be defined. When solving a non-linear optimal control problem one can obtain 
solutions of different control trajectories that correspond to very similar or, even, tol-
erance-wise same cost function values. Such a finding implies that the cost function is 
practically insensitive to at least one of the controls in at least a certain interval of the 
time horizon.

In this work we investigate the non-uniqueness of solutions from a practical and 
numerical point of view considering the ensemble of solutions found in the close vicin-
ity of the global solution (typically using a threshold of 0.5% ). We also illustrate how to 
distill valuable information about the role of constraints using the Lagrange multipliers.

Results
Here we illustrate and evaluate our new two-phase approach, AMIGO2_DO+ICLOCS, 
by solving three challenging case studies:

•	 LPN3B: a three step linear pathway with transition time and accumulation of inter-
mediates as objectives
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•	 SC: the central carbon metabolism of Saccharomyces cerevisiae during diauxic shift, 
which was originally formulated as a single-objective problem in [74], and subse-
quently considered as a multi-objective problem by de Hijas-Liste et al[88]

•	 BSUB: the central carbon metabolism in Bacillus subtilis during a nutrient shift, 
extended and adapted from a single-objective formulation described in Töpfer[174].

For each case study, we present and discuss the results obtained with our combina-
tion strategy, AMIGO2_DO+ICLOCS. In order to illustrate its advantages, we also 
provide a comparison with the separate solvers, AMIGO2_DO and msICLOCS (that 
is, a multistart of ICLOCS, which was only evaluated in this way because single runs 
would likely result in local solutions). Software source code with the implementa-
tions of the above case studies for these solvers is available at https​://doi.org/10.5281/
zenod​o.37936​20.

Three‑step linear pathway (LPN3B)

This case study is a relatively simple yet non-trivial problem presented in [88], extend-
ing the formulation of Bartl et al[83]. The problem represents a simple linear pathway 
of enzymatic reactions, described by mass action kinetic, where a substrate S1 is con-
verted to a final product S4 in three steps (two intermediate metabolites S2−3 ). Here 
we consider a multiobjective formulation with two objectives: minimization of transi-
tion time and minimization of the intermediates accumulation. The transition time is 
taken as the necessary time for a given amount of product to be reached. Note that 
the substrate is considered to be in abundance, so its concentration remains constant. 
The network representation is given in Fig. 3.

The mathematical formulation of the multiobjective optimal control problem is:

Where:

Subject to the system dynamics:

Where the states’ vector is:

While the stoichiometric matrix N is:

(20)min
e(t),tf

J[S, e]

(21)J[S, e] =
[

tf ,
∫ tf
t0
(S2 + S3)dt

]T

(22)
dS

dt
= Nυ

(23)S = [S1, S2, S3, S4]

Fig. 3  Network representation for the LPN3B case study

https://doi.org/10.5281/zenodo.3793620
https://doi.org/10.5281/zenodo.3793620
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The kinetics are described by:

With the following end-point constraint:

and path constraint:

with: ET = 1 M, S1(t0) = 1 M, Si(t0) = 0 for i = 2, 3, 4 , k1−3 = 1 and P(tf ) = 0.9 M. The 
total amount of enzyme concentrations is bounded by the path constraint (26), repre-
senting the assumption that cells can only allocate a limited amount of enzymes to a 
given pathway, and also supported by the concentration limitations arising from molec-
ular crowding [74, 83]. The end-point equality constraint (25) assigns the product target 
value that defines the transition time. The path constraint (26), representing the biologi-
cal limitation for total enzyme concentration, makes this problem quite difficult to solve, 
and in fact several existing optimal control software packages tried in [88] failed to con-
verge, or converged to local solutions.

Here we computed the Pareto front of this multi-objective optimal control with 
the three different numerical strategies described above. The results are summa-
rized in the Pareto front presented in Fig. 4. The optimal controls corresponding to 

N =







0 0 0

1 − 1 0

0 1 − 1

0 0 1







(24)υi = ki · Si · ei

(25)S4(tf ) = P(tf )

(26)
3

∑

i=1

ei ≤ ET

Fig. 4  Case study LPN3B: Pareto front computed with three different approaches
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the extreme points (A and C) and the knee point (B) of the Pareto front in Fig. 4 are 
shown in Fig. 5. This comparison allows the visualization of the impact on the optimal 
control policies of the different trade-offs between the criteria considered. The path 
constraint (26) was found to be active throughout the whole time-horizon for all the 
solutions in the Pareto set.

These results are in close agreement with the best Pareto set obtained in [88]. 
However it should be noted that, while several of the solvers used in [88] resulted 
in bad local solutions, here the three strategies considered (AMIGO2_DO+ICLOCS, 
AMIGO2_DO and msICLOCS) converged to essentially the same Pareto set of near-
globally optimal solutions.

We further support this claim by providing additional detailed comparisons of the 
optimal controls and optimal state trajectories computed by the three approaches for 
several points in the Pareto front (see Additional file 1: LPN3B). It is worth mention-
ing that the solution of the problem is very sensitive to the switching times in the 
optimal controls. The different strategies considered managed to find the optimal 
switching times either by using a control discretization with elements of varying size 
(AMIGO2_DO) or by using a very refined control mesh (msICLOCS).

In Additional file 1: LPN3B, we also provide a detailed computational comparison of 
the three strategies. From these results, we conclude that the fine-tuned msICLOCS was 
the best numerical strategy for this case study, providing very good results with very 
modest computational costs (around 20 s on a standard PC). Fine-tuning msICLOCS 
was critical, providing great benefits with respect to the default settings: it accelerated 
convergence by at least one order of magnitude, and it eliminated convergence to local 
solutions. The AMIGO2_DO solver and the combination strategy AMIGO2_DO+ICLOCS 
also managed to provide very good final solutions, but with a larger computational cost. 

Fig. 5  Case study LPN3B: Optimal controls for different points (A, B and C) on the Pareto front. The solutions 
presented here were computed with a multistart of ICLOCS (msICLOCS)
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The convergence curves of the three approaches are also given in the additional file, 
showing the superiority of msICLOCS for this problem.

Finally, we checked the possible existence of near-optimal solutions with significantly 
different control profiles. This was done by performing an analysis of solution multiplic-
ity and sensitivity of the cost function with respect to control profiles from 100 runs of 
AMIGO2_DO+ICLOCS. Details are given in Additional file 1: LPN3B, showing how the 
optimal controls for those near-optimal solutions differ significantly from the global one, 
loosing the clear sequential wave-like behavior of the enzyme activation. These results 
indicate that, in order to obtain a clear cut characterization of the optimal enzyme acti-
vation, one needs to enforce convergence to the close vicinity of the global solution for 
this type of problems.

Central metabolism of Saccharomyces cerevisiae during diauxic shift (SC)

This problem, formulated in [88], considers a simplified network of the central carbon 
metabolism of Saccharomyces cerevisiae, accounting for the pathways of upper and 
lower glycolysis, TCA cycle and respiratory chain, as depicted in Figure 6. It is modeled 
as a mass-action kinetic metabolic model representing glucose, triose phosphates, pyru-
vate and ethanol by states X1−4.

The scenario examined is a diauxic shift under glucose depletion, where the main 
metabolic route changes dynamically through enzyme activation from glycolysis to aero-
bic utilization of ethanol deposits. This strategy of the yeast cell can be interpreted as 
extending its survival time as much as possible using ethanol as an alternative substrate. 
The survival of the cell is modeled taking into account critical lower bound values for 
NADH and ATP concentrations, implemented as path constraints, Eqs. (31–32), in the 
optimization formulation.

If we formulate an optimal control problem for this scenario with a single objective, 
the maximization of the survival time, as done in [88], the corresponding optimal con-
trol involves an unrealistically large amount of enzymes. Therefore, it makes more sense 
to formulate a multicriteria optimal control problem with two objectives: maximization 

Fig. 6  Network representation of the SC case study
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of the survival and minimization of the protein investment (enzyme synthesis effort). 
In this way, we obtain a good range of the cost/benefit trade-offs which can be subse-
quently used to explain the observed biological behavior.

The mathematical formulation is given as follows:

Where:

Subject to:

Where the states’ vector is:

The stoichiometric matrix along with the reactions’ kinetics corresponds to (34) and (35) 
respectively and are given by:

With the following initial values:

(27)max
e(t),tf

J[S, e]

(28)J[S, e] =
[

tf ,−
∫ tf
t0

∑6
i=1 eidt

]T

(29)
dS

dt
= Nu, with S(t0) = S0

(30)
6

∑

i=1

ei ≤ET

(31)NADH ≥NADHc

(32)ATP ≥ATPc

(33)S = [X1,X2,X3,X4,NADH ,ATP,NAD,ADP]

(34)N =























−1 0 0 0 0 0 0 0

2 − 1 0 0 0 0 0 0

0 1 − 1 1 − 1 0 0 0

0 0 1 − 1 0 0 0 0

0 1 − 1 1 4 − 1 0 − 1

−2 2 0 0 0 3 − 1 0

0 − 1 1 − 1 − 4 1 0 1

2 − 2 0 0 0 − 3 1 0























(35)

u1 = e1 · X1 · ATP

u2 = e2 · X2 · NAD · ADP

u3 = e3 · X3 · NADH

u4 = e4 · X4 · NAD

u5 = e5 · X3 · NAD

u6 = e6 · NADH · ADP

u7 = 3 · ATP

u8 = 0.1 · NADH
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All concentrations are arbitrary and the time is given in hours. A path constraint on the 
total amount of enzymes at any time is implemented in Eq. (30) where ET is fixed at 11.5. 
Equations (31) and (32) are path constraints representing the critical values of NADH 
and ATP for cell survival.

We solved the above multicriteria optimal control problem with the three 
approaches, obtaining essentially the same Pareto front with all of them, as depicted 
in Fig. 7. More detailed results are given in Additional file 2: SC. These results are also 
in close agreement with those reported in [88], not only in terms of the Pareto front 
but also in terms of a qualitative comparison with available transcriptomics data (see 
Additional file 2: SC), illustrating how optimal control can explain the observed bio-
logical behavior.

In contrast with the previous case study, we found that AMIGO2_DO+ICLOCS was 
the best numerical strategy for this problem, arriving to the best solution in only 5 min 
of computation using a standard PC, and avoiding convergence to local solutions. Inter-
estingly, msICLOCS converged to local solutions or crashed rather frequently, even with 
the use of fine-tuning. In Fig. 8 we present a comparison of the frequency histograms of 
the solutions reached by these two strategies for one of the points in the Pareto. Further 
computational details are given in Additional file 2: SC.

We also performed an analysis of solution multiplicity and sensitivity of the cost func-
tion with respect to the controls by analyzing 100 runs of the hybrid approach. Consid-
ering the solutions within 0.5% of the best, most of the controls (time-dependent enzyme 
concentrations) present a considerable spread (details can be found in Additional file 2: 
SC). In the case of the states, the spread is also significant, although in most cases the 
qualitative behaviour is retained. In any case, these results indicate the need of using 

(36)S0 =
[

1 1 1 10 0.7 0.8 0.3 0.2
]

Fig. 7  Case study SC: Pareto front computed with the three different approaches. Point A and C correspond 
to the extreme points of the three approaches while B and K are in the vicinity of the knee point
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rather tight convergence criteria to ensure a consistent quantitative computation of the 
optimal control and state dynamics involved.

This case study includes two path constraints representing the critical values of ATPc 
and NADHc which are needed to ensure the survival of the cell. We performed a numer-
ical analysis to evaluate the impact of these path constraints on the optimal solution. In 
Fig. 9 we present a brief overview of the results corresponding to the analysis of the criti-
cal ATP value. Subfigure I shows the different Pareto fronts obtained for several values of 
this constraint, illustrating its very significant impact. In subfigure II, the corresponding 
state dynamics can be found. It can be seen that although the survival times changed 
considerably, most of the state dynamics retained the same qualitative shape, including 
the initial ethanol production phase. Interestingly, although the ATP values are almost 
always active at the critical value, confirming its high sensitivity, this is not always the 
case for the NADH dynamics. This was further studied by performing a similar analysis 
for the NADHc values, obtaining results which confirmed its less significant impact on 
the optimal solutions (details in Additional file 2: SC).

Next we performed an analysis of the adjoint variables (in practice, the Lagrange 
multipliers) to get further insights regarding the local sensitivity of the performance 
index with respect to the constraints. That is, the adjoint variables for specific con-
straints or bounds indicate the local sensitivity of the solution with respect to their 
incremental change. Detailed results for the Lagrange multipliers are presented in 
the Additional file 2: SC, confirming large values for ATPc, and relatively important 
ones for NADHc, in agreement with the results shown in Fig. 9 and discussed above. 
It should be noted that this concept becomes also interesting to evaluate the role of 
uncertainty and/or variability of the constraints (both prominent in biological model-
ling). For example, are the dynamics predicted by optimal control robust with respect 
to variability in critical constraints? Or, which are the most important constraints in 
terms of impact on the optimal cost?

Fig. 8  Case study SC: comparison of the solution histograms corresponding to the strategies AMIGO2_
DO+ICLOCS (on the left) and msICLOCS (on the right), for point K on the Pareto front shown in Fig. 7
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Central carbon metabolism in Bacillus subtilis during a change of substrates 

in the environment (BSUB)

This case study is based on a simplified kinetic model of the central carbon metabo-
lism of B.subtilis taken from [174]. The model considers important pathways such as 
upper and lower glycolysis, TCA cycle, glyconeogenesis, overflow metabolism and 
biomass production. The network representation is given in Fig. 10.

Here, the objectives considered are the maximization of the overall ATP production 
and the minimization of the protein investment (enzyme synthesis). We aim to find 
the cost/benefit trade-offs, where the benefit is computed as the integral of ATP levels 
along the time horizon, and the cost is given by the integral of the total enzyme con-
centrations for the whole time horizon.

The corresponding multicriteria optimal control formulation is as follows:

Fig. 9  Case study SC: an illustration of the impact of the ATP critical value path constraint on the Pareto front 
previously shown in Fig. 7 is presented in subfigure I. Subfigure II shows the impact of this path constraint on 
the optimal state trajectories corresponding to the extreme point of maximum tf
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Where:

Subject to:

Where the right hand side of the differential equations corresponds to:

(37)min
a(t)

J[X, a]

(38)J[X, a] =
[

−
∫ tf
t0

X6dt,
∫ tf
t0

∑20
i=8 Xidt

]T

(39)
dX

dt
= f [X(t), a(t), t],X(t0) = X0

(40)
20
∑

i=8

Xi ≤ ET

(41)0.0025 ≤ a(t) ≤ 0.125

Fig. 10  Network representation of case study BSUB
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With the vector of states corresponding to the following metabolites, enzymes and sub-
strates as presented in the network representation:

The terms fi are the right hand sides of the kinetics of the different reactions i = 1..22 . 
In this simplified model of the central carbon metabolism, several consecutive reactions 
have been merged for the sake of simplicity. This is the case of reaction 1, from GluEx 
(external glucose) to FBP (fructose-bis-phosphate), where the glucose uptake has been 
merged with the consecutive conversions Glu → G6P → F6P → FBP . The import of 
glucose is coupled to the conversion of phospho-enol-pyruvate (PEP) to pyruvate (Pyr), 
while in the subsequent conversions there is consumption of ATP. Reactions 3, 4 and 
5 represent glycolysis, yielding 4 ATP per FBP conversion to 2 Pyr. Reactions 2, 6 and 
7 correspond to gluconeogenesis, excretion of pyruvate through fermentation and bio-
mass production respectively. Reactions 8 and 10 describe the respiratory pathway of 
the TCA cycle yielding 5 ATP per Pyr. Reaction 9 describes glutamate (Glu) production 
to be used in amino acid synthesis. Malate uptake from the environment is described by 
reaction 13. Malate can be also created from Pyr (reaction 11) and then converted to PEP 
(reaction 12). Enzyme dynamics are taken into account using a simple linear dynamic 
expression ( f8−20 in (42)) with a rate constant of degradation ( β = 0.25 ) and production 
rates ( a ) as the decision variables (controls) of the optimal control formulation. The total 
enzyme capacity is implemented in Eq. (40) with a bound of 6.5 (arbitrary units).

(42)

f1 = X21X8X2X6 − X9X1 − X10X1X7 + X11X2

f2 = −X21X8X2X6 + 2X10X1X7 − 2X11X2 − X12X2X7 + X19X6X5

f3 = X21X8X2X6 + X12X2X7 − X13X3 − X14X3 − X15X3X5 − X18X3

f4 = X15X3X5 − X16X4 − X17X4X7

f5 = 3X22X20 + X17X4X7 − X15X3X5 + X18X3 − X19X6X5

f6 = −X21X8X2X6 + 2X10X1X7 + X12X2X7 + 5X17X4X7 − X19X6X5 − 8X6

f7 = −(−X21X8X2X6 + 2X10X1X7 + X12X2X7 + 5X17X4X7 − X19X6X5 − 8X6)

f8 = a1 − βX8

f9 = a2 − βX9

f10 = a3 − βX10

f11 = a4 − βX11

f12 = a5 − βX12

f13 = a6 − βX13

f14 = a7 − βX14

f15 = a8 − βX15

f16 = a9 − βX16

f17 = a10 − βX17

f18 = a11 − βX18

f19 = a12 − βX19

f20 = a13 − βX20

f21 = −0.01X21X8X2X6

f22 = −0.03X22X20

(43)X =
[

FBP PEP PYR CIT MAL ATP ADP E1...13 G M
]
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In this case study we are considering two dynamic scenarios. In the first scenario 
(named G-M) we consider a culture growing in an environment where glucose is the 
only substrate. At a certain time-point we add malate and we observe the dynamic 
behavior. The second scenario (M-G) is vice-versa. That is, the culture is initially growing 
on malate, before instantly adding glucose as a substrate and then observe the dynamics. 
The first phase of both scenarios is computed starting from the same initial values and 
reaching a steady state for the consumption of the substrate available.

The initial conditions for scenario G-M are:

The initial conditions for scenario M-G are:

Considering both scenarios, we solved the corresponding multicriteria optimal control 
problems using the three strategies, the hybrid AMIGO2_DO+ICLOCS and the sepa-
rate solvers, AMIGO2_DO and msICLOCS. All of them produced almost identical Pareto 
fronts for each scenario. Figure 11(I) shows the Pareto front corresponding to scenario 
G-M. The corresponding optimal state trajectories for point B in the Pareto front are 
presented in Fig.  11(II), illustrating how the three strategies converged to essentially 
the same near-global optimal solution. Similar results were found for scenario M-G. 
Detailed results can be found in Additional file 3: Bsub.

Even though the three methods arrived to essentially the same multicriteria optimal 
control Pareto sets, msICLOCS was the fastest, converging to very good results in very 
modest computation times (typically less than 150 s per ICLOCS run on a standard PC 
when fine tuning was used). As in the previous case studies, fine-tuning ICLOCS was 
found to be critical to improve its convergence speed and to avoid convergence to local 
solutions. In Additional file 3: Bsub we provide detailed results including the effect of 
fine-tuning on the performance and robustness of msICLOCS, and comparisons with 
the other strategies.

Finally, we performed an analysis of possible solution multiplicity and sensitivity of the 
cost function with respect to the controls. We were not able to identify multiplicity of 
solutions as shown in the respective figures in Additional file 3: Bsub.

Discussion
The above results show that the novel combined strategy AMIGO2_DO+ICLOCS was 
the best in terms of robustness, solving these three challenging case studies without any 
issues, while requiring a very reasonable computational cost for all of them. Although 
the multi-start strategy msICLOCS was faster in two of the problems, it often failed 
when attempting the solve the SC case study.

The performance of the AMIGO2_DO+ICLOCS strategy also compares very favora-
bly with the previous results of the different optimal control methods considered by 
de Hijas-Liste et  al [88] for the LNP3B and SC cases. Our new strategy allows a sig-
nificant reduction of computation times (more than 50% for the SC case). Further, 

(44)
X0 = [1, 0.02, 1, 2, 2, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 12, 0]

(45)
X0 = [1, 0.02, 1, 2, 2, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0, 12]
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AMIGO2_DO+ICLOCS has also shown good scalability, solving without issues problems 
such as BSUB, which has many controls that require fine discretizations and which could 
not be handled by the previous methods considered in [88]. Finally, our approach pro-
vides adjoint information that is particularly useful to assess the role of the different con-
straints in the optimal solutions.

Conclusions
Here we have considered the exploitation of optimality principles to explain dynamics 
in biochemical networks in the absence of complete prior knowledge about the regula-
tory mechanisms. After carefully reviewing the previous literature, we have presented 
a multicriteria optimal control framework to generate biologically meaningful predic-
tions for rather complex metabolic pathways. This strategy requires, as a starting point, a 

Fig. 11  Case study BSUB: subfigure I shows the Pareto front obtained with the three different strategies. 
Subfigure II compares the corresponding optimal state trajectories for point B of the Pareto (subfigure I)
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calibrated dynamic model of the pathway and the set of cost functions to be considered 
in the multicriteria formulation. Next, the approach uses a Pareto optimality hypothesis 
to compute the dynamic effects of regulation in a metabolic pathway. Such computation 
is performed without the need of making any assumption about the pathway regulation.

We have also discussed the many possible challenges and pitfalls involved in the solu-
tion of these nonlinear multicriteria optimal control problems. In order to surmount 
these difficulties, here we have considered several numerical strategies with the aim of 
finding a method suitable to handle realistic networks of arbitrary topology. We have 
carefully evaluated their performance with several challenging case studies consider-
ing the central carbon metabolism of S. cerevisiae and B. subtilis. Our results indicate 
that the two-phase strategy AMIGO2_DO+ICLOCS presented excellent scalability and a 
good compromise between efficiency and robustness. We also show how this framework 
allows us to explore the interplay and trade-offs between different biological cost func-
tions and constraints in biological systems.

Our vision is that multicriteria optimal control can play a major role in fully exploit-
ing the explanatory and predictive power of kinetic models in computational systems 
biology. In future work, we will illustrate its usefulness for the analysis of cell signaling 
pathways, and for the solution of metabolic engineering problems considering kinetic 
models. Another interesting area for future research is that of optimal control using 
Boolean networks, a topic attracting increasing attention [175–177]. This class of prob-
lems is especially interesting for the design and analysis of intervention strategies in 
complex genetic or signalling networks.
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