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lead to tumor rejection. Since it is impractical to experimentally assess all candidate
neoepitopes prior to vaccination, developing accurate methods for predicting tumor-
rejection mediating neoepitopes (TRMNS) is critical for enabling routine clinical use of
cancer vaccines.

Results: In this paper we introduce Positive-unlabeled Learning using AuTOmI (PLATO),
a general semi-supervised approach to improving accuracy of model-based classifiers.
PLATO generates a set of high confidence positive calls by applying a stringent filter
to model-based predictions, then rescores remaining candidates by using positive-
unlabeled learning. To achieve robust performance on clinical samples with large
patient-to-patient variation, PLATO further integrates AutoML hyper-parameter tuning,
classification threshold selection based on spies, and support for bootstrapping.

Conclusions: Experimental results on real datasets demonstrate that PLATO has
improved performance compared to model-based approaches for two key steps in
TRMN prediction, namely somatic variant calling from exome sequencing data and
peptide identification from MS/MS data.

Keywords: Machine learning, Positive-unlabeled learning, Somatic variant calling,
Peptide identification, Exome sequencing, Tandem mass-spectrometry

Background

Personalized cancer vaccines are emerging as a promising alternative to nonspecific
treatments such as chemotherapy in the management of advanced cancers [1, 2]. This
approach harnesses the power of the patient’s own immune system to attack cells that
express immunogenic peptides called neoepitopes. Neoepitopes are generated as a result
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of somatic DNA mutations that arise in cancer cells, hence making the immune response
tumor-specific. However, only a small proportion of the potential neoepitopes lead to
tumor rejection [3-6]. Methods for predicting tumor-rejection mediating neoepitopes
(TRMN:Ss) are the subject of much active research, including large consortium efforts
such as the Tumor Neoantigen Selection Alliance [7].

Existing bioinformatics pipelines for neoepitope and TRMN prediction (e.g., [8—11])
include two main steps: (1) calling tumor-specific somatic variants from matched tumor-
normal exome or whole-genome sequencing data, and (2) predicting which mutated
peptides generated by non-synonymous somatic variants are presented to the immune
system by the Major Histocompatibility Complex (MHC) alleles of the patient. Recent
experimental work using a mouse tumor model [12] supports the utility of incorporating
a third step, which prioritizes for vaccination the mutated peptides detected by tandem
mass-spectrometry (MS/MS) in elutions of peptide-MHC complexes recovered from
the surface of tumor cells.

Although many bioinformatics tools exist for each of these steps, there is still signifi-
cant room for improvement. In particular, although many somatic variant callers have
been developed based on diverse statistical models, agreement between them remains
low [13, 14]. Key impediments to achieving consistently high accuracy with model-based
methods include the large patient-to-patient variation in tumor purity and heteroge-
neity, sequencing library preparation artifacts, sequencing errors, and data processing
errors such as incorrect read alignment. Several machine learning methods for somatic
mutation calling have been recently developed to address this challenge [15-22]. How-
ever, most of these methods adopt a supervised learning paradigm and generally require
large amounts of training data.

In this paper we introduce a novel machine learning approach aimed at increasing
the sensitivity of any existing model-based pipeline for somatic variant calling while
maintaining a high positive predictive value. To achieve robust performance despite
the significant patient-to-patient variation present in clinical samples, we adopt a semi-
supervised approach that learns salient attributes from the data itself, without a need for
prior training datasets. Our approach, referred to as Positive-unlabeled Learning using
AuTOml (PLATO), is illustrated in Fig. 1 (see also the flowchart in Fig. 2). PLATO takes
as input the list of unfiltered candidate somatic variant calls generated using an existing
model-based pipeline along with a subset of highly confident calls obtained by apply-
ing stringent thresholds. PLATO adopts a Positive-Unlabeled (PU) learning approach,
in which the set of highly confident calls are used as positive examples and the remain-
ing candidate calls are used as unlabeled examples. Real cancer datasets have typical
unlabeled:positive ratios of 1000:1 or higher. The vast majority of unlabeled examples
are a priori expected to be true negatives (sequencing errors or germline variants).
PLATO takes advantage of this skewed distribution to generate likely negative data-
sets by informed undersampling, i.e., randomly picking points that are furthest from
the positive set according to the Gower distance in a space defined by categorical and
numerical features such as confidence scores and allele coverage information gener-
ated by the model-based pipeline and sequence properties extracted from the genome
and alignment files. PLATO then trains a classifier to discriminate between the posi-
tive and likely negative examples, and uses this classifier to label remaining data points.
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Fig. 1 Schematic representation of supervised classification (a) versus PLATO's PU learning approach (b).
Supervised classification requires training data and can perform poorly when the distributions of training and

test data do not match. PU learning uses an existing model-based classifier with stringent thresholds and
informed undersampling to train a classifier from the data itself

Hyper-parameter tuning is performed by cross-validation using the AutoML service
provided by Microsoft Azure. Additionally, PLATO uses a “spy” approach for robust

classification threshold selection, and performs a user specified number of bootstraps,
reporting only variants with 50% or higher bootstrap support.

Results

Somatic variant calling from multi-technology exome sequencing data

To assess PLATO’s accuracy we used matched normal-tumor exome sequencing data
generated for four ovarian cancer patients (identified in this article as P1 to P4) using
two different sequencing technologies, Illumina and Ion Torrent.The unlabeled set
given as input to PLATO was generated using the Consensus Caller Cross-Platform
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Fig.2 PLATO flowchart

(CCCP) Galaxy tool available as part of the GeNeo immunogenomics toolbox [23].
CCCP incorporates two state-of-the-art somatic mutation callers, SNVQ [24] and
Strelka [25], and has the ability to process multi-technology sequencing data. Positive
calls were generated by applying the 2CP filter [26] on the raw output of CCCP. 2CP
requires that at least one of the two callers make a high confidence call from each of
the two sequencing technologies. The only exception is when one of the sequencing
technologies yields no read coverage, in which case both callers must make confident
calls from the reads generated by the complementary technology. The ground truth
for a subset of the predicted somatic variants was established by taking the consensus
of calls made from high-depth targeted re-sequencing of amplicons generated using
the AccessArray system from three or more replicates per patient of both tumor and
normal tissue. The first column of Table 1 gives the number of resequenced variants
for each patient along with the sizes of the P and U sets. In all cases, the resequenced
set included all variants that passed the 2CP filter and for which AccessArray primers
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Table 1 Variant calling performance on sequencing datasets P1-P4 generated for four
ovarian cancer patients

DataSet Caller # calls TP FP TN FN TPR PPV F1

P1 SNVQ 515 48 114 0 0 100 29.63 45.71
P: 65 Strelka 435 48 34 80 0 100 58.54 73.85
U: 29758 2CP 65 41 8 106 7 85.42 83.67 84.54
Reseq: 162 PLATO 587 42 6 104 10 80.77 87.5 84

P2 SNVQ 597 147 65 3 2 98.66 69.34 8144
P:187 Strelka 619 149 59 9 0 100 71.63 8347
U:31210 2CP 187 133 39 29 16 89.26 7733 82.87
Reseq: 217 PLATO 449 144 43 25 5 96.64 77.01 85.71
P3 SNVQ 629 61 13 8 1 98.39 8243 89.71
p.76 Strelka 306 62 M 10 0 100 84.93 91.85
U: 30289 2CP 76 57 1 20 5 91.94 98.28 95

Reseq: 83 PLATO 429 62 3 18 0 100 95.38 97.64
P4 SNVQ 482 48 23 87 2 96 67.61 79.34
P67 Strelka 380 50 94 16 0 100 34.72 5155
U: 30176 2CP 67 45 2 108 5 90 95.74 92.78
Reseq: 160 PLATO 490 48 7 103 2 96 87.27 9143

could be successfully designed using the primer design tool in GeNeo. The rese-
quenced sets also included additional SNVs called using a random forest classifier
at varying levels of bootstrap support. For each compared method we computed the
number of true positives (TP), false positives (FP), true negatives (TN), and false nega-
tives (FN) relative to the set of variant calls for which the ground truth was avail-
able. The reported true positive rate, TPR := TP /(TP + FN), positive predictive value,
PPV :=TP/(TP + FP), and F1 score, F1:=2-TPR- PPV /(TPR + PPV), were also
computed relative to the ground truth available for each method.

Effect of classification threshold selection and classification algorithm
The users of PLATO can choose between automatic classification threshold selection
based on spies or using the underlying classifier’s default threshold (typically 0.5). Also,
in principle, the PLATO framework can be used in conjunction with any supervised
classification algorithm. AutoML already integrates a wide range of supervised classifi-
cation methods, dynamically evaluating them on each dataset using a cross-validation
approach to avoid over-fitting. However, using AutoML does come with an added com-
putational cost. To see if this added cost is warranted, we compared the AutoML-based
implementation of PLATO with a baseline implementation based on random forests.
Figure 3a, b show that, for both the random forest and AutoML implementations,
using spies-based classification thresholds yields F1 scores close to and often bet-
ter than those obtained by using the classifier’s default threshold. This holds inde-
pendently of the bootstrap support required for positive classification. Furthermore,
Fig. 3c shows that, when using spies-based thresholds, the AutoML-based implemen-
tation of PLATO has F1 score comparable to or better than those of the random for-
est implementation at virtually all bootstrap support cutoffs.
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Fig. 3 F1 scores obtained by running PLATO with N = 20 bootstraps. a Random forest classification with
spies-based classification threshold versus 0.5 default, b AutoML classification with spies versus 0.5 default,
and ¢ AutoML with spies versus random forest with spies. P1-P4 denote the sequencing datasets generated
for four different ovarian cancer patients

Comparison with model-based callers

Table 1 gives detailed accuracy results on the four ovarian cancer datasets, compar-
ing PLATO with model-based callers SNVQ [24] and Strelka [25], as well as the 2CP
filter of CCCP [26]. PLATO results in this table were obtained by using AutoML as
classifier, spies-based classification threshold selection, N = 20 bootstraps, and 50%
bootstrap support. On all four datasets, the F1 score of PLATO is comparable to or
better than that of 2CP, which in turn is comparable to or better than that of SNVQ
and Strelka. Unlike SNVQ and Strelka, PLATO always retains a high PPV, comparable
to or better than that of 2CP. This is important, since PLATO also makes between
2.4x and 9x more calls than the very stringent 2CP filter. Assuming a constant PPV
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this suggests that substantially more SNVs are expected to be confirmed when rese-

quencing candidates called by PLATO on the AccessArray. Figure 4 shows for each

caller the expected TP count assuming a constant PPV for up to 480 primer pairs

multiplexed on a 48.48 AccessArray IFC. For reference, Fig. 4 also includes dots rep-

resenting the counts from the actual AccessArray resequencing experiment reported

in Table 1.

Feature importance for SNV calling

Figure 5a gives the importance reported by AutoML for the top 10 features used for

SNV calling, averaged for each dataset over 20 bootstrap runs (for feature descrip-

tions see Additional file 1). Not surprisingly, the top four features are the binary

somatic calls made for each sequencing technology (Illumina and Ion Torrent) by the
two callers integrated in CCCP (SNVQ and Strelka). Binary calls made by SNVQ from
the normal Illumina and Ion Torrent exomes and dbSNP status follow close behind in

importance. The variation in feature importance from dataset to dataset is remarkably

high, underscoring the need for semi-supervised methods such as PLATO that can

adapt to the idiosyncrasies of each dataset. Figure 5b gives boxplots of the classifica-

tion cutoffs selected using the spy approach over the 20 bootstraps runs performed

for each of the four datasets. Most likely due to the over-representation of negatives
in the list of CCCP candidates, the spy-based cutoffs are always higher than the 0.5

default. Furthermore, the cutoff distributions vary from patient to patient, again

underscoring PLATO’s ability to adapt to each dataset.
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Fig. 5 Average feature importance for SNV calling (a), and boxplots of the classification cutoffs selected
using the spy approach (b) over the 20 bootstraps runs performed for the P1-P4 ovarian cancer datasets

Peptide identification from MS/MS data

For peptide identification, we evaluated our method on twenty datasets generated
by [27] and retrieved from the ProteomeXchange repository using project identifier
PXD004894. We retrieved the RAW MS/MS files for five different melanoma patients
(identified as mel3, mel4, mel5, mel8, and mel12). For each patient we retrieved four MS/
MS files, corresponding to two biological replicates per patient (p1/p2) and two inde-
pendent MS/MS runs per replicate (identified by the date of the run, 2014-03-04/2014-
03-05 or 2014-03-06). Table 2 gives the number of peptides identified at a g-value cutoff
of 0.01 by MS-GF+, Percolator, and PLATO. Although both Percolator and MS-GF+
can compute PSM and Peptide level g-values, the g-values for all three methods were
computed by our implementation of the procedure described in the Methods section to
ensure that differences in peptide counts between the different methods are not due to
variations in the g-value computation method.

For comparison, Table 2 also includes the number of peptides identified in [27] using
the MaxQuant search engine with the same FDR cutoff. While we provide these num-
bers as a baseline, they should be considered with caution, because MaxQuant was used
to search a different human proteome database. For MS-GF+ searches we used 20,585
protein sequences retrieved from Uniprot in 2019 (see Additional file 1 for details),
while [27] searched a database containing 85,919 protein sequences retrieved in 2014.
As shown in Table 2 and visualized as improvement over the MaxQuant baseline in
Fig. 6, both PLATO and Percolator significantly outperform MaxQuant and MS-GF+
in terms of the number of peptides identified at 1% peptide-level FDR. Although their
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Table 2 Number of peptides identified at 1% FDR from 20 MS/MS datasets generated

by [27]

Sample ID Max quant MS-GF+ Percolator PLATO
2014-03-04-mel3p1 2533 2967 3748 3898
2014-03-04-mel3p2 2770 3341 4467 4412
2014-03-06-mel3p1 2441 2704 3632 3681
2014-03-06-mel3p2 2594 3140 4271 4157
2014-03-04-mel4p1 2634 3108 3929 4073
2014-03-04-mel4p2 1765 3073 4004 3757
2014-03-06-mel4p1 2401 2824 3526 3682
2014-03-06-mel4p2 1745 2694 3856 3954
2014-03-05-mel5p1 3010 2517 3742 3923
2014-03-05-mel5p2 3342 2561 4023 4127
2014-03-06-mel5p1 2934 2643 3929 4059
2014-03-06-mel5p2 3060 2592 4070 4014
2014-03-05-mel8p1 3375 3057 4006 4297
2014-03-05-mel8p2 3764 2976 4511 4556
2014-03-06-mel8p1 3331 3023 4375 4454
2014-03-06-mel8p2 4139 3444 4801 4839
2014-03-04-mel12p1 1948 1601 2724 2870
2014-03-04-mel12p2 2013 1408 2855 3121
2014-03-06-mel12p1 2004 1301 3028 3005
2014-03-06-mel12p2 2628 1601 2942 3356

MHC-bound peptides were eluted from melanoma samples collected from five different patients (identified as mel3, mel4,
mel5, mel8, and mel12), with two biological replicates (p1/p2) per patient, each analyzed on two independent MS/MS runs
(identified by the date in the sample ID). For each MS/MS dataset, the largest number of identified peptides is typeset in
italics
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Fig. 6 Percentage increase in the number of identified peptides over MaxQuant results reported in [27]
using 1% FDR on the 20 MS/MS datasets from Table 2
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perfomance is comparable, PLATO has a slight edge over Percolator, outperforming it
on 15 out of the 20 datasets while being outperformed only 5 times.

Feature importance for peptide identification

The top 15 features ranked by average AutoML importance are shown in Fig. 7 (for fea-
ture descriptions see Additional file 1). The importance score of the InEValue dominates
the scores of the other features by more than one order of magnitude, and has relatively
small sample-to-sample variation. Interestingly, the amino acids at known anchor posi-
tions for MHC class I binding have relatively low importance scores, most likely due to
the fact that clinical MS/MS samples are comprised of peptides presented by up to six
distinct MHC class I alleles, each with potentially different anchor position specificities.

Discussion

Experimental validation results on sequencing data from four ovarian cancer patients
demonstrate the effectiveness of PLATO when combined with the existing Consensus
Caller Cross-Platform (CCCP) pipeline for somatic variant calling [23]. Since the PU
learning framework is broadly applicable, we also applied PLATO to improve the rate
of confident peptide identification from tandem mass-spectrometry data. Specifically,
we combined PLATO with the open-source MS-GF+ database search engine [28], and
used it to rescore peptide-spectrum matches (PSMs) using MS-GF+- features such as the
match-score and spectrum charge, along with sequence defined features such as amino-
acid composition and context. The use of PLATO increases the number of identified
peptides at a fixed false discovery rate (FDR) compared to both model-based database
search engines MS-GF+ and MaxQuant as well as the Percolator method, an existing
rescoring approach based on support vector machines [29].

We have made available user-friendly web-based tools for peptide identification from
MS/MS data by running the MS-GF+ and Percolator algorithms under the “Immun-
opeptidomics” section of the GeNeo Galaxy toolbox for Genomics Guided Neoepitope
Prediction [8]. More information about these tools is provided in Additional file 1. A
Python script that can be used to run PLATO on the output files generated by MS-GF+
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Fig. 7 Boxplots of feature importance values (displayed on a logarithimic scale) for PLATO peptide
identification experiments on the 20 MS/MS datasets from Table 2
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is also available at github.com/esherafat/PLATO. Integration of PLATO into the GeNeo
toolbox [8] is ongoing.

In future work we plan to assess PLATO’s robustness to intra-tumor heterogeneity
using large-scale exome sequencing datasets such as [30] and explore further improve-
ments in peptide identification accuracy by incorporating additional features in the
PLATO search. Finally, we plan to explore supervised and semi-supervised methods for
predicting TRMNSs. Improving TRMN prediction accuracy is critical for enabling rou-
tine clinical use of cancer vaccines since it is impractical to experimentally assess all can-
didate neoepitopes prior to vaccination [31].

Conclusion

In this paper we introduced PLATO, a novel semi-supervised approach to improv-
ing accuracy of model-based classifiers. PLATO generates a set of high confidence
positive calls by applying a stringent filter to model-based predictions, then rescores
remaining candidates by using positive-unlabeled learning. PLATO further integrates
AutoML hyper-parameter tuning, classification threshold selection based on spies, and
bootstrapping to achieve robust performance on clinical samples with large patient-
to-patient variation. Although the PU-learning framework implemented by PLATO
is broadly applicable, in this paper we focused on its application and evaluation in the
context of two problems arising in personalized cancer immunotherapy: somatic vari-
ant calling from matched tumor-normal exome sequencing data and peptide identifica-
tion from immunopeptidomic MS/MS data. This allowed us to leverage the ability to
conduct experimental validation of somatic variant calls as part of an ongoing clinical
trial and rely on well-established techniques for controlling false discovery rate based
on template-decoy competition in the case of peptide identification from MS/MS data.
Experimental results on real datasets show improved PLATO performance compared to
model-based approaches for both applications.

Methods

Positive-unlabeled learning

Semi-supervised learning is used when available training data is a combination of labeled
and unlabeled samples. The key idea of semi-supervised learning is to use the unlabeled
examples to modify, refine or prioritize the hypotheses derived from the labeled data
alone. Positive-unlabeled learning is an important subcategory of semi-supervised learn-
ing, where only unlabeled and positive samples are available. One popular technique for
PU learning is to predict a set of likely negatives among the unlabeled samples and then
apply standard supervised machine learning methods to the set of positives and likely
negatives. The PU learning framework implemented in PLATO is illustrated in Fig. 2.
Below we detail the key steps of this workflow.

Feature extraction and imputation

For variant calling, the sets P and U were generated from the output of the Consensus
Caller Cross-Platform (CCCP) pipeline [23]. The set of positives was taken to be the
set of variants passing the 2CP filter [26] that comes with the CCCP pipeline, and all
other SNV candidates were included in U. Both positive and unlabeled samples were
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represented using a total of 110 features, 52 extracted from the output of the CCCP pipe-
line (see Table S3 in Additional file 1) and 58 generated using SomaticSeq [16] from the
BAM files containing Illumina tumor and normal exome alignments (full list included
in Additional file 1). This broad range of features included somatic variant calls made
by the two somatic variant callers integrated in CCCP (SNVQ [24] and Strelka [25]), the
coverage in tumor and normal samples, variant allele frequency, strand bias, member-
ship in the list of common polymorphisms catalogued in the dbSNP database [32], aver-
age base and alignment quality, genomic region mappability, etc. The unfiltered output
of CCCP includes a large percentage of missing values, typically due to low read cover-
age from one of the sequencing technologies. To deal with these missing values, prior
to performing informed undersampling we removed the samples and features for which
more than half of the corresponding entries were missing. Additionally, for the remain-
ing samples we imputed missing features using the rflmpute function implemented by
the randomForest CRAN package [33].

For peptide identification from MS/MS data, P and U were generated from the list of
best peptide-spectrum matches (PSMs) generated using the MS-GF+ search engine for
each spectrum (see Additional file 1 for details). P was taken to be the set of PSMs iden-
tified by MS-GF+ at a False Discover Rate (FDR) cutoff of 1% (as estimated by target-
decoy competition, see below), while U consisted of the remaining PSMs. PLATO was
run using 27 features extracted from the MS-GF+ output (see Table S4 in Additional
file 1). No imputation was performed for the MS/MS data.

Informed undersampling and feature selection

In both of our applications (SNV calling from matched tumor-normal sequencing data
and peptide identification from tandem mass-spec data) the number of unlabeled sam-
ples vastly exceeds the number of labeled positives. For example, cancer datasets have
a typical unlabeled:positive ratio of 1000:1 or higher. The vast majority of unlabeled
examples are a priori expected to be true negatives (sequencing errors or germline vari-
ants). Ideally, we would like to train a classifier that predicts with high accuracy both
the minority and the majority class. However, most classifiers tend to over-predict the
majority class when they are trained with imbalanced data. One solution to this issue is
to generate a balanced training dataset by using undersampling.

In PLATO we use undersampling to create a balanced training dataset consisting of
the positive samples and an equally-sized set of likely negatives selected from the unla-
beled samples. Due to the high imbalance in the unlabeled data, randomly sampling
from the unlabeled samples is likely to produce a set consisting mostly of negative sam-
ples. However, some positive samples are also likely to be picked, and the randomly
selected points may not be very well-separated from positive samples in the underlying
feature space. Therefore our approach is to use informed undersampling, where we use
the positive samples to inform the selection of likely negatives from the unlabeled set.
Specifically, given sets P and U of positive and unlabeled samples, we generate the set
N C U of likely negatives as N = U?zl E;, where |E;| = |P|/b. Each set E; is computed
by randomly selecting a batch of m samples from U, computing the average distance of
each sample to the samples in P, and including in E; the |P|/b unlabeled samples with
the greatest average distance. Since the data has both categorical and numerical features,
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the Gower distance is chosen as the distance measure. We chose to generate the likely
negative set N by sampling multiple batches since the majority class might not be homo-
geneous (e.g., for SNV calling the negatives may represent sequencing errors or germline
variants), and using multiple batches increases the chance of selecting representative
samples from all regions of the majority class. For all experiments reported in this paper
we used b = 10 and m = |P|. We did not conduct extensive empirical evaluation of these
choices, but reasoned that they provide a good tradeoff between having enough subsam-
ples to give a good representation of the search space and keeping the computational
costs low by avoiding too many pairwise distance computations.

For somatic variant calling, once a balanced training dataset is generated by informed
undersampling, PLATO uses a random forest classifier to rank all extracted features
and selects the features with above median rank. This feature selection approach falls
under the category of embedded methods, and is often used to enhance generalization
and reduce running time of subsequent model training. We chose to use random forest-
based feature selection over alternatives such as unsupervised dimensionality reduction
methods like Principal Component Analysis (PCA) since the method works well with
both numeric and categorical features and retains interpretability. Random forest-based
feature selection is also highly scalable. This is an important consideration in PLATO,
which performs this step for multiple bootstrap samples to increase classification
robustness, as detailed below. Performing feature selection independently for each boot-
strap also reduces the risk of overfitting, as different sets of features may be selected for
different bootstrap runs.

Due to the lower number of available features, no feature selection was performed for
the MS/MS data.

Bootstrapping and spy-based cutoffs

For robustness, PLATO implements PU-learning based on informed undersampling
within a bootstrapping framework and implements a scheme of automatic classification
threshold selection based on spies (see the flowchart in Fig. 2). In each bootstrap itera-
tion PLATO performs the following steps:

+ Selects a set of likely negative equal to the size of 90% of positive data points using
the informed undersampling method described above.

+ Creates a training set by combining 90% of positive samples with the selected set of
likely negatives.

« Builds a classifier using AutoML using this training set.

+ Applies the classifier to the 10% of positive samples that were not included in train-
ing (“spy” samples) along with the other unlabeled samples.

+ Classifies an unlabeled sample as positive, if its score is higher than the minimum
score of the spy samples.

The above steps are repeated a user specified number of times (N bootstraps). A sample
in U is finally classified as positive if it scores higher than the spy samples in a user-
selected percentage of bootstrap runs, otherwise its final classification is negative. The
idea of using “spies” was initially introduced in the text classification context [34]. As
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shown in the Results section, using automatically selected classification thresholds based
on spies results in similar or better performance on clinical datasets than using the
default classifier threshold, independent of the bootstrap support.

In general, model selection and hyperparameter tuning are complex tasks. Since
exhaustively evaluating all combinations is unfeasible, we used the AutoML service inte-
grated in Microsoft Azure to efficiently search the model space. In AutoML the user has
the choice of executing an experiment on a local PC, a VM in the cloud, or a large clus-
ter. In this work, we stored the data and executed all experiments locally. In each boot-
strap of PLATO, AutoML was run on the balanced training dataset consisting of 90%
of positives and an equally sized set of likely negatives generated by informed under-
sampling by selecting the experiment type as classification, defining the cross-validation
scheme as 10-fold cross validation, and the primary metric as accuracy. For each experi-
ment type, AutoML generates a set of initial pipeline parameters and executes a number
of experiments with different parameters. In each experiment, it measures the primary
metric using cross-validation and picks a new set of pipeline parameters until it reaches
a threshold on execution time or the number of experiments. In the end, it builds an
ensemble of different models to achieve optimal performance on the test set. Both vot-
ing and stack ensemble classifiers are currently supported. By default, they appear as the
final iterations of each run. In order to have a powerful ensemble, AutoML initializes a
list of up to five best scoring models (checking that their scores are within 5% of the best
score) using the Caruana et al. algorithm [35]. In subsequent iterations, a new model is
added to an existing ensemble only if it improves its accuracy based on the user selected
metric. The voting ensemble classifier in AutoML uses soft-voting and makes predic-
tions based on a weighted average of predicted class probabilities. The stack ensemble
classifier has a two-layer implementation. It takes the same models as the voting ensem-
ble as the first layer, and the second layer trains a meta-model to find the optimal com-
bination of models from the first layer. The default meta-model for classification tasks in
AutoML is LogisticRegression. In our experiments, the algorithms that were run through
AutoML iterations included BernoulliNaiveBayes, ExtremeRandomTrees, LightGBM,
RandomForest, and SGD. However, the best-fitted models selected by AutoML were
always Voting and Stack ensemble classifiers. For example, in the peptide identifica-
tion problem the Voting ensemble was chosen as the best model 90% of the time and
the Stack ensemble was selected 10% of the time. We have chosen 10 as the number of
AutoML iterations per bootstrap based on preliminary experiments showing that more
than 10 iterations yield diminishing improvements in accuracy.

Processing mass-spectrometry data and assessing the false discovery rate

RAW files were converted to MGF format using RawConverter 1.1.0.19 [36]. We used
the MS-GF+ search engine [28] to search the MGF files against the human proteome,
with Unspecific Cleavage, and the TDA (Target-Decoy Analysis) option turned on. The
decoy database generated by MS-GF+, consisting of reversed target peptides, was con-
catenated with the targets for FDR estimation. The MS-GF+ MZID output files were
converted to PIN (Percolator INput) format using the msgf2pin utility from Percola-
tor. The PIN files were post-processed using Percolator as well as PLATO. Further details
on MS-GF+ and Percolator settings can be found in Additional file 1.
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For estimating the false discovery rate (FDR) of peptide identifications from MS/MS
data we adopted the commonly used target-decoy competition (TDC) approach. The
first decision that needs to be made when using TDC is whether or not to search the
target and decoy databases separately, or to concatenate them before searching. In the
latter setting, each spectrum is matched with either a target or a decoy; in this way,
the targets and decoys compete to match with each spectrum. As advocated in [37],
we use concatenated searches in this study. Assuming that a higher score is better, for
concatenated searches the FDR at a certain score threshold ¢ can be estimated as in
[29, 38]:

1 4+ Number of decoy PSMs with score > ¢

FDR(¢t) =
® Number of target PSMs with score > ¢

(1)

We control the FDR at level Q by finding the lowest score threshold ¢ such that
FDR(t) < Q, and only taking target PSMs with score greater than or equal to £. In this
study, we controlled FDR at 1%.

Unfortunately, controlling the FDR at a level of o for PSMs does not imply control at
the same level for peptides. As discussed in [39], a peptide present in the sample will, on
average, be matched by a greater number of spectra than an absent peptide. To address
this, if a peptide matches multiple spectra, we eliminate all but the best scoring PSM
for that peptide. Once we have “uniquified” the peptides, we can apply the same g-value
cutoff procedure as for PSMs.To ensure reproducibility and fair comparisons, we created
a Galaxy tool to control FDR, publicly available at neo.engr.uconn.edu/?tool_id=FDR _
custom_filter, and used it to filter the results of all compared methods (MS-GF+, Perco-
lator, and PLATO) for which raw search results were generated as part of our empirical
evaluation. More details on the precise procedure for controlling FDR at both the PSM
and Peptide level as well as the Galaxy tool can be found in Additional file 1.
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