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Background
Increasing concern about the lack of reproducibility and replicability of published 
research [1–8] has led to numerous guidelines and recommendations including the for-
mation of the National Academies of Sciences, Engineering, and Medicine committee 

Abstract 

Background:  A low replication rate has been reported in some scientific areas 
motivating the creation of resource intensive collaborations to estimate the replica-
tion rate by repeating individual studies. The substantial resources required by these 
projects limits the number of studies that can be repeated and consequently the 
generalizability of the findings. We extend the use of a method from Jager and Leek 
to estimate the false discovery rate for 94 journals over a 5-year period using p values 
from over 30,000 abstracts enabling the study of how the false discovery rate varies by 
journal characteristics.

Results:  We find that the empirical false discovery rate is higher for cancer versus 
general medicine journals (p = 9.801E−07, 95% CI: 0.045, 0.097; adjusted mean false 
discovery rate cancer = 0.264 vs. general medicine = 0.194). We also find that false 
discovery rate is negatively associated with log journal impact factor. A two-fold 
decrease in journal impact factor is associated with an average increase of 0.020 
in FDR (p = 2.545E−04). Conversely, we find no statistically significant evidence 
of a higher false discovery rate, on average, for Open Access versus closed access 
journals (p = 0.320, 95% CI − 0.015, 0.046, adjusted mean false discovery rate Open 
Access = 0.241 vs. closed access = 0.225).

Conclusions:  Our results identify areas of research that may need additional scrutiny 
and support to facilitate replicable science. Given our publicly available R code and 
data, others can complete a broad assessment of the empirical false discovery rate 
across other subject areas and characteristics of published research.
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[9] on Reproducibility and Replicability in Science [10–13]. In addition, efforts have 
been made to estimate the replication rate by forming large-scale collaborations to 
repeat a set of published studies within a particular discipline such as psychology [6], 
cancer biology [14], economics [15], and social sciences [16, 17]. The proportion of stud-
ies that replicate vary from approximately 1/3 to 2/3 depending, in part, on the power of 
the replication studies, the criteria used to define replication, and the proportion of true 
discoveries in the original set of studies [18].

These replication projects are often massive undertakings necessitating a large amount 
of resources and scientists. The sheer amount of resources needed can become a barrier 
limiting both the number and breadth of studies repeated. Indeed, the Cancer-Biology 
Reproducibility project lowered its projected number of studies for replication from 50 
to 37 and then again to 18 [19]. This suggests that an efficient, complementary approach 
to evaluate replicability would be highly beneficial.

The false discovery rate, which is the number of scientific discoveries that are false out 
of all scientific discoveries reported, is a complementary measure to replicability since 
we expect a subset of true discoveries to replicate, but do not expect false discoveries 
to replicate. In 2013, Jager and Leek [20] published a method to estimate the empiri-
cal false discovery rate of individual journals using p values from abstracts. Compared 
to the resource intensive replication studies mentioned above, Jager and Leek’s method 
is quite efficient. Here, we take advantage of this efficiency to gather and use p values 
from over 30,000 abstracts to estimate the empirical false discovery rate for over 90 jour-
nals between 2011 and 2015. Using these journals, we evaluate if and how the empirical 
false discovery rate varies by three journal characteristics: (1) subject area—cancer ver-
sus general medicine; (2) 2-year journal impact factor (JIF), and (3) Open Access versus 
closed access.

(1)	 Subject Area: The Cancer Biology Reproducibility Project was launched in Octo-
ber 2013 [14] after reports from several pharmaceutical companies indicated issues 
in replicating published findings in cancer biology. As indicated above, the Cancer 
Biology Replication Project has reduced the number of studies it plans to replicate 
by more than 50%. Here, we compare the empirical false discovery rate of cancer 
journals to general medicine journals, providing a complementary measure of the 
replication rate.

(2)	 Journal Impact Factor (JIF): Given limited resources, most projects that attempt to 
replicate published studies focus on high impact papers and journals in a handful of 
scientific fields. However, concerns about replicability occur throughout all fields of 
science and levels of impact. Indeed, research published in lower impact journals 
may have lower rates of replicability. Here, we evaluate if JIF is associated with the 
empirical false discovery rate of journals.

(3)	 Open Access versus closed access: The prevalence of Open Access journals, where 
research is published and available to readers without a subscription or article fee, 
has increased considerably over the past decade [21]. The number of predatory 
journals, which exploit the Gold Open Access model by publishing with the pri-
mary purpose of collecting submission fees to make a profit, has also increased dra-
matically [22, 23]. While fees are common in Gold Open Access journals to remove 
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pay walls, reputable Open Access journals have a thorough peer-review process 
while predatory journals have little to no peer review. Some have raised concerns 
that reputable Open Access journals may be letting peer-review standards fall to 
compete with predatory journals [23–27]. Here we evaluate whether Open Access 
journals from InCites [28] have a higher empirical false discovery rate than journals 
that are not Open Access (i.e. closed access).

Results
The number of journals by subject area and Open Access status included in the final 
model is in Table 1.A full list of journals and descriptive information is included in Addi-
tional file 1: Table S6.

A nonlinear relationship, likely driven in part due to JIF being severely right skewed 
(Additional file 2: Fig. S3), was identified between JIF and the empirical false discovery 
rate. A natural logarithm transformation of JIF corrected the nonlinearity (Additional 
file 2: Fig. S5).

All 2-way and 3-way interactions were evaluated. More details are provided in the 
methods and supplemental. No interactions were nominally significant (p value > 0.05; 
Additional file 2: Appendix B). Therefore, the primary models only include main effect 
terms.

Results of the global model are shown in Table  2. Oncology journals have a sig-
nificantly higher average empirical false discovery rate of 0.071 compared to general 
medicine journals. This equates to an adjusted mean false discovery rate of 0.264 ver-
sus 0.194 for cancer and general medicine journals respecitvely. In other words, can-
cer journals have a 36% times higher mean empirical false discovery rate compared 
to general medicine journals. Additionally, we find a significant inverse relationship 
between log JIF and estimated false discovery rate. The association is non-linear, with 
the effect being strongest at lower impact factors and diminishing at higher impact 
factors. For a twofold increase in JIF (e.g. JIF of 10 vs. 5), there is an average estimated 

Table 1  Journal types

Oncology Medicine Total

Open access 12 11 23

Closed access 45 26 71

Total 57 37 94

Table 2  Global model, all journal types

Estimate Std. Error T-Value p value 95% CI

Year − 0.002 0.004 − 0.492 0.623 (− 0.009, 0.005)

Open Access 0.015 0.016 1.001 0.320 (− 0.015, 0.046)

Log(JIF) − 0.029 0.008 − 3.797 2.545E−04 (− 0.044, − 0.014)

Oncology 0.071 0.013 5.257 9.801E−07 (0.045, 0.097)
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decrease in empirical false discovery rate of 0.02. Figure  1 shows the relationship 
between JIF and empirical false discovery rate by journal subject area.

We observe similar results in the oncology journal stratified model (Table 3) where 
we find a significant inverse association between estimated false discovery rate and 
log JIF. All else held constant, a two-fold decrease in oncology journal JIF is asso-
ciated with an increase in false discovery rate of 0.028. A similar, although slightly 
weaker, relationship can be seen in the general medicine stratified model shown in 
Table 4, where a two-fold decrease in JIF is associated with an increase in false discov-
ery rate of 0.016.

All secondary models show results and conclusions consistent with the models 
above and can be found in the supplemental materials (Additional file 2: Supplemen-
tal Materials and Tables S7–S24).

Fig. 1  Relationship between JIF and false discovery rate by subject area. Estimated linear mixed effects 
regression from the stratified models with 95% bootstrapped confidence bands. General medicine journals 
(red), oncology journals (blue); solid line is the predicted relationship between false discovery rate and natural 
log of JIF adjusting for year and open access status. The dashed blue line represents extrapolated predictions 
beyond the observed maximum JIF of 26.51 for oncology journals

Table 3  Stratified: oncology journals

Estimate Std. Error T-Value p value 95% CI

Year − 0.001 0.005 − 0.242 0.809 (− 0.011, 0.008)

Open Access 0.008 0.022 0.357 0.723 (− 0.035, 0.051)

Log(JIF) − 0.041 0.013 − 3.136 0.003 (− 0.066, − 0.015)

Table 4  Stratified: medical journals

Estimate Std. Error T-Value p value 95% CI

Year − 0.002 0.005 − 0.452 0.652 (− 0.013, 0.008)

Open Access 0.020 0.021 0.954 0.347 (− 0.021, 0.061)

Log(JIF) -0.023 0.009 − 2.484 0.018 (− 0.040, − 0.005)
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Discussion
Using over 30,000 abstracts in 94 journals, we assessed whether journal subject area, 
impact factor, and Open Access status are associated with the empirical false discovery 
rate. We find significant and meaningful increase in the empirical false discovery rate for 
cancer versus general medicine journals and for journals with lower JIF. These results are 
in line with previous reports that suggest difficulty replicating published cancer research 
[2]. As these models assess the average relationship between journal characteristics and 
the empirical false discovery rate, these results do not implicate all oncology journals or 
journals with low JIF. Rather, these results suggest that more effort and higher standards 
are needed in the field of oncology research and that special attention may be needed for 
journals with lower impact factors.

We find no statistically significant evidence of a relationship between Open Access 
status and false discovery rate. This result does not preclude the possibility that a small 
number of Open Access journals have a high false discovery rate. Rather this result sug-
gests that, after adjusting for JIF and journal subject area, there is no significant evidence 
of a systematically higher empirical false discovery rate across all Open Access journals 
evaluated here or of a small number of Open Access journals with extremely high empir-
ical false discovery rates.

There are several limitations to our study. We do not investigate patterns in the esti-
mated false discovery rates for individual journals; rather, we assess whether certain 
journal characteristics (i.e. subject area, journal impact factor, Open Access status) are 
associated, on average, with empirical false discovery rate. Additionally, this study was 
performed on a sample of English-speaking journals from the field of medical research 
with Open Access journals from InCites for each subject area of interest. While outside 
of the scope of this study, increasing the sample to include non-English speaking jour-
nals, other subject areas within medicine, or repeating the study in subject areas out-
side of medicine would provide additional information about the relationship between 
the empirical false discovery rate and journal characteristics. Finally, while our inclusion 
of Open Access status was motivated by the increase in predatory journals, we do not 
directly study predatory journals here. We anticipate that our sample may underrepre-
sent predatory journals as predatory journals are often excluded from reputable jour-
nal curation sites such as InCites. Further, restricting to English-speaking journals may 
exclude the majority of predatory journals that have been shown to originate in Asia and 
Africa [29, 30].

As Leek and Jager state in their 2017 Annual Review Stats paper [31], p values can 
be presented and even manipulated in ways that can influence or call into question 
the accuracy of their method’s false discovery rate estimates. Here, we do not focus on 
the accuracy and precision of individual p values and false discovery rates. Instead, we 
compare the average false discovery rate estimates by various journal characteristics. A 
critical assumption for our models is that any bias in the p values is consistent between 
journals. It is possible, although we believe unlikely, that journal characteristics not 
related to the false discovery rate may change the distribution of observed p values and 
thus influence the estimated false discovery rate.

We were able to complete the research presented here because Jager and Leek adhered 
to the highest standards of reproducible research by making their code publicly available 
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and providing complete statistical methods. We strive to do the same here by providing 
complete statistical details in the supplemental section and our R code on GitHub (https​
://githu​b.com/laure​nhall​/fdr). We hope that others will use our code and statistical details 
to improve upon our work and to complete research investigating patterns in the empirical 
false discovery rate.

Conclusions
Here, we investigated the relationship between the empirical false discovery rate of journals 
and journal subject area, JIF, and Open Access status. We find that cancer journals have a 
higher empirical false discovery rate compared to general medicine journals and that the 
empirical false discovery rate is inversely related to JIF. We do not find significant evidence 
of different empirical false discovery rates for Open Access versus closed access journals. 
Given its efficiency and ability to incorporate a large and comprehensive set of published 
studies, the statistical framework we use here is complementary to large-scale replication 
studies. We hope that our approach will enable other researchers to assess the empirical 
false discovery rate across a wider array of disciplines and journal attributes. We believe this 
will provide insights into the patterns of replicability across science and ultimately guidance 
as to where more resources, higher standards, and training are needed.

Methods
Methodological framework

Jager and Leek [20] define false discovery rate as the proportion of results reported as 
significant where the null hypothesis is actually true (i.e. the result is a false discovery). 
This definition is similar to the traditional definition of false discovery rate by Benjamini 
and Hochberg in 1995 [32] where Q, the proportion of errors due to rejecting a true null 
hypothesis, is estimated as the expected number of true null hypotheses divided by the total 
number of significant tests. While the false discovery rate definitions are similar, the esti-
mation methods differ. Jager and Leek exploit the close relationship between false discovery 
rate and empirical Bayes methods as described by others including Efron and Tibshirani 
[33]. More details about Jager and Leek’s method to estimate false discovery rate can be 
found in their original publication [20].

Jager and Leek’s method uses p values from abstracts to arrive at an empirical false discov-
ery rate estimate per journal per year. P values that fall below a given significance threshold, 
α, are defined as positive test results and are included in the false discovery rate estimation. 
Within this set of positive test results, results can be true or false. True discovery p values 
are assumed to follow a truncated Beta distribution (tBeta) with possible observable val-
ues between 0 and α and with shape parameters a and b. False discoveries are assumed to 
follow a uniform distribution (U) between 0 and α. The true discovery and false discovery 
distributions are combined with mixing parameter π0, which is the proportion of p values 
that belong to the Uniform (false discovery) distribution. If we assume that the distribution 
of p values is continuous on the interval (0, 1), the combined distribution for all positive test 
results (i.e. p values less than α) is:

f(p|a, b,π0) = π0U(0,α)+ (1− π0)tBeta(a, b)

https://github.com/laurenhall/fdr
https://github.com/laurenhall/fdr
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where a > 0, b > 0 and 0 < π0 < 1. Using the Expectation–Maximization (EM) algorithm, 
the maximum likelihood estimates are simultaneously estimated for the shape parame-
ters a, b and the false discovery rate, π0. Journal articles often do not report exact p val-
ues (e.g. p = 0.0123); adjustments are made to the likelihood function to accommodate 
rounded (e.g. p = 0.01) or truncated p values (e.g. p < 0.05). Two indicator variables are 
used to indicate either rounded p values or truncated p values. P values that are rounded 
or truncated have their likelihood evaluated by integrating over all values that could pos-
sibly lead to the reported value (e.g., for p < 0.05, the associated probability is 
0.05
∫
0

f (p|a, b,π0)dp ; for p = 0.01, the associated probability is 
0.015
∫

0.005
f (p|a, b,πo)dp ). P val-

ues are classified as rounded if the reported value has two or fewer decimal places, and 
as truncated if the value was read following a < or ≤ character in the text. For more 
details, see the Supplemental Materials of Jager and Leek [20].

Application

We selected journals from InCites [28] using the following criteria for each journal 
during the years 2011–2015: available 2-year JIF score, published in English, catego-
rized as General & Internal medicine, Research & Experimental medicine, or Oncol-
ogy according to InCite’s subject tags, and listed as available on the PubMed online 
database as of August 2017. False discovery rate was calculated on 143 journals. The 
EM algorithm did not converge for one or more years for 35 journals, resulting in 
no false discovery rate estimate. These journals were removed from further consid-
eration, resulting in a final sample of 108 journals with 36,565 abstracts. InCites was 
used to classify journals as Open Access or closed access for each year of the study. 
For example, a journal marked as “Open Access since 2013” will be marked as Open 
Access only for the years 2013–2015. All available abstracts from 2011–2015 were col-
lected from the online PubMed database using E-Utilities from the National Center 
for Biotechnology Information [34]. A flowchart visualizing our filtering and analysis 
process is in Fig. 2. For more details on journal selection, see Additional file 2: Sup-
plemental Materials and Additional file 3: Table S1.

Similar to Jager and Leek, p values were scraped from the abstracts using regular 
expressions, which searched the abstract text for incidences of the non-case-sensitive 
phrases “p = ”, “p < ”, and “p ≤ ”. The strings following these phrases were collected and 
presumed to be a reported p value. These strings were cleaned to remove excess punc-
tuation or spacing characters and the remaining value was converted to numeric entry 
in scientific notation. The source code provided by Jager and Leek [20] was updated to 
include additional standardizing of notation and formatting in the abstracts, includ-
ing scientific notation, punctuation, and spacing characters, before searching for p 
values. This reduced the number of search errors from misread characters. Other 
than this addition, no changes were made to Jager and Leek’s original algorithm for 
estimating false discovery rate. Details, including all notational substitutions, can be 
found in the source code available at https​://githu​b.com/laure​nhall​/fdr.

To identify and estimate differences in false discovery rate by journal characteristic, 
we applied linear mixed effects models with the estimated false discovery rate as the 

https://github.com/laurenhall/fdr
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outcome and a random intercept by journal to account for multiple observations from 
each journal for each year as shown in Eq. (1).

where Y  is a vector of the empirical false discovery rate for N abstracts; X is a N × p 
matrix of p predictors including two-way and three-way interactions where applicable; b 
is a random intercept for journal.

We fit three models: one global model with journal subject area as a covariate (1 
for oncology and 0 otherwise), and two models stratified by journal subject area 

(1)Y = Xβ + b+ ǫ

Fig. 2  Flowchart for filtering and analysis. Gray boxes represent filtering steps. One primary dataset (bold, 
solid outline) and three secondary datasets (bold, dashed outline) were used to assess association between 
journal empirical false discovery rate and journal characteristics
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(oncology and medicine). Within each model, the following covariates were included: 
year, JIF, and Open Access status (1 if Open Access and 0 otherwise). To correct for 
a non-linear relationship between JIF and empirical false discovery rate, we used a 
natural log transformation of JIF. Additionally, two-way and three-way interaction 
terms between journal subject area, Open Access status, and JIF were considered for 
the global model, and a two-way interaction between Open Access status and JIF was 
considered for each stratified model. We first assessed the three-way interaction and 
then each nested two-way interaction removing any that did not contribute signifi-
cantly to the model (i.e. p value ≤ 0.05). All main effects were left in the model regard-
less of significance. The final model was compared with the intermediate models to 
assess consistency of results. Details for the intermediate models including results are 
in Additional file 2: Appendix B in Supplemental Materials). A nominal significance 
threshold of α = 0.05 was used to assess significance.

To check for consistency and to ensure that our results were not driven by unusual 
journal characteristics, each of the three models was fit to four data sets: (1) all jour-
nals (N = 108); (2) excluding journals that were not Open Access for all five study years 
(N = 105); (3) excluding journals that produced an estimated false discovery rate of 
approximately zero (N = 97); (4) excluding both Open Access journals that were not 
Open Access for all five study years and journals that produced an estimated false dis-
covery rate of approximately zero (N = 94). Models using data from (4) are shown in the 
Results section. More details and results for datasets (1), (2), and (3) are in Additional 
file 2: Appendix A. Descriptive statistics, and distributions of these four datasets are in 
Additional file 2: Tables S2–S5 and Additional file 2: Figs. S1–S4.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03817​-7.

Additional file 1. Supplemental Table S6: a full list of all considered journals organized by subject, open access 
group membership status, and whether the journal was removed.

Additional file 2. Contains detailed journal selection criteria including Supplemental Tables S2–S5, model selection 
and models for additional data sets including Supplemental Tables S7–S24, and Supplemental Figures S1–S5.

Additional file 3. Supplemental Table S1: The full list of journals by year, including estimated false discovery rate, 
number of abstracts received, and number of p-values identified in abstracts.
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