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Background
Splicing has been shown to be an integrated process coupled with transcription [1], and 
the co-transcriptional nature of splicing has been shown in various ways, such as via 
the sawtooth pattern of RNA-seq [2], real-time imaging [3], nuclear fraction RNA-seq 
[4], and electron imaging for direct visualization of co-transcription [5]. These results 
showed that most introns in higher organisms are co-transcriptionally spliced.

One natural line of thought is that since splicing is coupled with transcription, the 
splicing order may also be consistent with the transcriptional direction [6]. However, 
several recent studies have shown that this is not the case; these studies used long-read 
sequencing or bulk short-read sequencing to find that splicing is a co-transcriptional 
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process but is not always consistent with the direction of transcription in S. pombe, fruit 
fly and humans [6–8]. In addition, intron splicing order has been shown to influence 
alternative splicing in COL5A1 [9], and the importance of intron splicing order has also 
been indicated by two recent studies that proved that intron splicing order can affect 
splicing fidelity [10, 11].

The current methods focused on neighbouring intron splicing order pairs and cannot 
analyse all the introns in a transcript. A computational method was developed here to 
accurately calculate the intron splicing order in each transcript. The method requires 
sequencing reads from ribo-minus depleted short-read mate-pair sequencing or ribo-
minus depleted long-read sequencing. A simulation study showed that the method 
developed here can accurately calculate intron splicing orders. While using published 
long-read sequencing and short-read sequencing datasets, I calculated intron splicing 
orders for hundreds or thousands of genes in S. pombe, fruit fly, Arabidopsis thaliana, 
and humans. The results suggest that although splicing is a co-transcriptional process, 
the splicing order varies from gene to gene. I found that humans contain more not in-
order spliced transcripts than S. pombe, fruit fly, and Arabidopsis thaliana. In addition, 
I confirmed that the first introns tend to be spliced slower in humans than in S. pombe, 
fruit fly, and Arabidopsis thaliana genome widely. The results of this work are available 
in [12].

Results
Both short-read and long-read sequencing were used to obtain information on intron 
splicing orders as previously stated, and the methods are outlined in Fig. 1a, which shows 
how the short-read pair and long-read sequencing data indicate that intron 3 is spliced 
before intron 1 (another example in Additional file  1). If one can calculate the intron 
splicing orders for each pair of introns in a transcript, then one can deduce an overall 

a

b

Fig. 1  Methodology overview. a Sequencing methods that can detect intron splicing order pairs used by 
previous studies. From top to bottom: gene structure; short-read pair; long-read sequencing read. b The 
number in the adjacent matrix is the read count that supports each intron splicing order pair; the row was 
spliced before the column; the value within [i, j] records the read count of intron i spliced before intron j. 
The + 0.1 in the matrix is the pseudo read count. The right-most part of b represents the calculated most 
likely intron splicing order for this transcript, and the log relative likelihood indicates the probability that this 
transcript is spliced in an order that is consistent with transcription, i.e., 1 → 2 → 3 → 4
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most likely intron splicing order from these intron splicing order pairs. Thus, first, these 
pairs can be used to fill a read count adjacent matrix, and then, the splicing frequency 
within each intron splicing order pairs can be obtained. Finally, the most likely order of 
introns can be calculated from the frequency matrix (Fig. 1b and Additional file 1). The 
most likely order is 1 → 4 → 2 → 3 in this example. The read counts that support intron 
1 is spliced before other introns are larger than other those for introns spliced before 
intron 1 in Fig. 1b (read count values in row 1 larger than values in column 1), which is 
consistent with the most likely order calculated.

A simulation study showed that this method worked correctly

To evaluate the framework developed here, the nascent RNA sequencing reads were 
simulated from S. pombe given random intron splicing orders for each transcript, and 
then, the most likely orders were calculated from the simulation data using the method 
developed here. I performed a Spearman correlation analysis between the calculated 
orders and given orders to test if the intron splicing orders were correctly calculated (to 
test if Spearman Rho = 1). I evaluated the pipeline using both long-read sequencing and 
short-read sequencing. The results showed that the calculated intron splicing orders 
in most transcripts were the same as the given random intron splicing orders (Fig. 2a). 
Thus, this result proved that the methods developed here can accurately calculate intron 
splicing orders using short-read and long-read sequencing. The accuracy increases when 

a

c

b

Fig. 2  Simulation result. a Evaluation of the method using simulated datasets based on the S. pombe 
transcriptome; only transcripts that contain at least 3 introns are considered (n = 709). (Left violin) Evaluation 
of the method using simulated short-read pair-end sequencing (read length = 150). (Middle violin) Evaluation 
of the method using simulated long-read sequencing (read length = ~ 800). (Right violin) Evaluation of the 
method using simulated super long-read sequencing (read length = ~ 5000). b Simulation result for humans; 
a total of 226 multi-introns (intron number ≥ 3 ) containing transcripts are used. (Left violin) Mate-pair 
sequencing, the fragments size = ~ 15,000 and the read length = 150. (Middle violin) Long-read sequencing, 
read length = ~ 800 bp. (Right violin) Super long-read sequencing, read length = ~ 12,000. c Simulating the 
intron splicing order read count matrix 1000 times by giving random orders and then randomly erasing some 
values in the intron splicing order read count matrix. The percentage of intron splicing order pairs retained is 
labelled above each violin plot
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the sequencing read length becomes longer, as shown in Fig. 2a, and approximately 95% 
of the calculated orders were the same as the input random orders when the read length 
was ~ 5000 bp (Fig. 2a). The same simulation was performed for human chr21 but with a 
much longer simulated fragment size (Fig. 2b). This simulation was also performed with 
different sequencing depths to find appropriate sequencing depth (Additional file 1). The 
reason for the relatively poor simulation result based on humans was that reads could 
not capture all the intron splicing order pairs in each human transcript. This also indi-
cates that a read length of ~ 800 cannot properly capture all the intron splicing orders in 
humans (Fig. 2b). When the intron splicing order read count matrix was properly filled, 
the model performed very well, as will be shown (Fig. 2c).

In a real dataset, not each pair of intron splicing orders will be sequenced, and this 
problem is especially important for higher organisms, such as humans, who usually har-
bour very long introns. To evaluate how many intron splicing order pairs are necessary 
to accurately calculate the most likely orders, intron splicing order read count matrixes 
were generated by giving random orders and erasing some intron splicing order pairs 
to simulate a real dataset with missing values. Then, the calculated most likely orders 
were correlated with randomly given orders to test consistency. The percentage of intron 
splicing order pairs retained = (# of detected intron splicing order pairs) divided by 
(total number of intron splicing order pairs). The calculated most likely orders are rela-
tively accurate when this measure is > 90% and very accurate when this measure is > 95% 
(Fig. 2c). Thus, 95% was used as a threshold for the downstream real data analysis.

Splicing order change from gene to gene in S. pombe, fruit fly, Arabidopsis thaliana 

and humans

I used long-read sequencing datasets and paired-end short-read sequencing datasets to 
perform real data analysis. For each transcript, a read count adjacent matrix and graph 
can be built, and the example of hnRNP A1 is shown below (Fig. 3a). Almost every cell 
in the matrix has read count support, which suggests that the splicing of hnRNP A1 

a b

Fig. 3  Intron splicing order of hnRNP A1. a The intron splicing order read count adjacent matrix of hnRNP 
A1. The intron index number is labelled in the first row and first column. b Reordering of the read count 
frequency matrix by most likely order; values ≤ 0.5 and > 0.5 are coloured differently. The values in the upper 
diagonal are larger than the values in the lower diagonal, which supports the most likely order calculated. For 
example, values in row 1 (corresponding to intron 4) ≈ 0.9 and values in column 1 ≈ 0 suggest that intron 4 
was spliced before other introns
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frequently occurs out of order for some intron pairs, e.g., intron 7 spliced before intron 
9 has 10 reads in support, while intron 9 spliced before intron 7 also has 18 reads in 
support (Fig. 3a). Although splicing is a relatively out of order process, there is clearly a 
preferred order, e.g., intron 1 spliced before intron 4 has 1 read in support, while intron 
4 spliced before intron 1 has 12 reads in support. This result is consistent with a recent 
study that analysing the intron splicing order pairs [8]. In addition, introns that are close 
to each other have more reads support than introns between long-range sequences 
(Fig. 3a). This is because the distances between intron pairs that are far from each other 
are usually very long and make sequencing of the whole region very difficult. The most 
likely order for hnRNP A1 (ENST00000546500) is 4 → 3 → 8 → 5 → 1 → 6 → 9 → 7 → 2 
with a Spearman Rho = − 0.16. Intron 2 is spliced last as predicted, and this is consist-
ent with row 2 having relatively smaller values than column 2 (Fig. 3a). Another way to 
validate the most likely order is by ordering the frequency matrix and graph by the most 
likely order and then checking if the read counts are consistent with the order (Fig. 3b 
and Additional file 1). To quantitively measure the consistency between the calculated 
intron splicing order and the direction of transcription, the relative likelihood was cal-
culated. The log relative likelihood of − 28 suggests that this transcript of hnRNP A1 has 
little probability of being spliced in an order that is consistent with its transcriptional 
direction.

The full result of the most likely order can be checked in Additional file 2. These tran-
scripts were selected because their intron splicing order pairs were well detected (the 
percentage of intron splicing order pairs retained > 95%) and only expressed isoforms are 
used in humans, Arabidopsis thaliana and fruit fly. The results showed that intron splic-
ing orders change from one gene to another and are not consistent with the order of 
transcription (Additional file 2).

One critical question is whether the intron splicing order is stable between different 
datasets. To test this, the whole dataset was randomly assigned into two groups to test 
the stability of the intron splicing order. The random assignment was repeated 5 times. 
The results showed that the intron splicing order is a stable process between different 
biological replicates (Fig. 4a). In addition, short-read sequencing was used here to con-
firm that the intron splicing order is robust with different techniques (Fig. 4b). Slower 
spliced introns have higher FPKM values than faster introns in total RNA-seq [2]. I cor-
related the FPKM of each intron with the calculated intron splicing orders in four organ-
isms, the result showed an obvious positive correlation (Fig. 4c).

Humans harbour more not in‑order spliced transcripts than S. pombe, fruit fly, 

and Arabidopsis thaliana

To systematically evaluate the in-order splicing properties of S. pombe, fruit fly, Arabi-
dopsis thaliana, and humans, Spearman correlations were performed to further test this. 
The results showed that humans exhibit more negative Rho values than S. pombe, fruit 
fly, and Arabidopsis thaliana, which indicates that humans harbour more not in-order 
spliced transcripts (Fig.  5). Fruit fly and Arabidopsis thaliana harbour more in-order 
spliced transcripts while S. pombe has almost the same number of in-order spliced and 
not in-order spliced transcripts (Fig. 5). The trend was more obvious when doing this 
analysis for each RNA-seq separately (Additional file 1). One recent study also indicated 
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that introns in fruit flies prefer to be co-transcriptional spliced than introns in humans 
and human introns tend to be spliced in a reverse direction [8].

The first introns tend to be spliced slower in humans compared with the other three 

organisms

The first intron plays a more important role in gene regulation than other introns in 
humans [13], and there are studies indicating that the first intron is usually spliced the 
slowest [6, 7]. To test this systematically, the relative orders were calculated by divid-
ing the order of the first intron by the total intron number for each transcript and 

a b

c

Fig. 4  The stable of the detected intron splicing orders. a The dataset was randomly assigned into two 
groups, and then the intron splicing orders between the two groups were correlated to test whether the 
intron splicing order is stable between different RNA-seq datasets. b Correlation of the intron splicing orders 
between short-read sequencing and long-read sequencing. c Correlation between FPKM values of introns 
and the calculated intron spicing orders. The mean value is labeled as a black dot in each violin plot
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Fig. 5  Human contains more not in-order spliced transcripts. Distribution of Spearman Rho in S. pombe, fruit 
fly, Arabidopsis thaliana, and humans. Splicing orders in humans tend to show a negative correlation with 
transcription direction
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constructed violin plots (Fig.  6a). The results showed that the first intron tends to be 
spliced slower in humans than in the other organisms. The first introns in fruit flies and 
Arabidopsis thaliana tend to be spliced the fastest, while the first introns in S. pombe 
neither tend to be spliced the fastest nor the slowest (Fig. 6a). This result is consistent 
with the above result that human introns are spliced in a more not in-order manner 
than introns in the other organisms. The same relative orders were calculated for the 
last introns as a comparison (Fig. 6b). The trend was also more obvious when doing this 
analysis for each RNA-seq separately (Additional file 1).

To determine the driving force behind the most likely intron splicing order, corre-
lation analysis was performed between the calculated most likely orders with intron 
length, distances of the introns from the TSS, 5′ splice site scores, 3′ splice site 
scores, GC content in intron, upstream exon length, and downstream exon length. 
The distance to TSS in humans showed an apparently negative correlation with 

a

b

Fig. 6  The first introns in humans tend to be spliced the slowest. a Distribution of the first introns’ relative 
splicing orders in S. pombe, fruit fly, Arabidopsis thaliana, and humans. b Distribution of the last introns’ relative 
splicing orders in S. pombe, fruit fly, Arabidopsis thaliana, and humans
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Fig. 7  Correlation of the most likely orders with introns’ distance to TSS in S. pombe, fruit fly, Arabidopsis 
thaliana, and humans respectively
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the most likely order, while this metric showed positive correlations with the most 
likely order in Arabidopsis thaliana and fruit fly (Fig. 7). This is consistent with the 
above result that intron splicing orders in humans are more not in-order than that in 
other organisms analysed here, and also agree with that the first introns tend to be 
spliced the fastest in Arabidopsis thaliana and fruit fly. The intron splicing orders in 
S. pombe didn’t correlate with this metric. Other metrics didn’t show an obvious cor-
relation with the intron splicing orders (Additional file 1).

Heterogeneity of intron splicing order in different organisms

The above results support that introns in fruit flies, Arabidopsis thaliana tend to be 
in-order spliced, while introns in humans tend to be spliced in a reverse direction. 
The introns in S. pombe didn’t prefer to be in-order or not in-order spliced. This sug-
gests that intron splicing in S. pombe may not similar to other organisms analyzed 
here. A measure was calculated to obtain the heterogeneity of the intron splicing 
orders in each transcript for the four organisms. The results showed that the intron 
splicing orders in S. pombe are more heterogeneous, i.e., tends not to be spliced in 
a defined order compared with the other organisms (Fig. 8). The result is consistent 
with the above results on that S. pombe neither enriches in-order spliced nor not in-
order spliced transcripts. The difference of the heterogeneity between S. pombe and 
the other genomes is not significant when redid this analysis for each RNA-seq (Addi-
tional file  1). So the heterogeneity of the intron splicing orders in S. cerevisiae and 
Aspergillus nidulans were also analysed here. The result showed that lower organisms 
tend to have higher entropy (Fig. 8).

Webserver

I integrated this method into a web viewer to visualize intron splicing orders (Additional 
file 1). In this viewer, researchers can adjust the read count threshold as well as other 
parameters to adjust the most likely order calculation process. Researchers can also 
check the raw read count of the intron splicing order matrix and transcriptional struc-
ture of this gene in this viewer. The website address is [12].
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Fig. 8  The heterogeneity of the intron splicing orders
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Discussion
In this work, a method that accurately calculate the intron splicing orders genome widely 
was developed. I found introns in humans are more not in-order spliced than the other 
three organisms, and the first introns in humans also tend to be spliced the slowest.

Higher organisms always contain a very high number of alternative splicing events, 
i.e., SE, A3SS, A5SS, MXE and RI, and these events make accurate calculation of intron 
splicing orders very difficult, but this bias will be reduced as sequencing reads become 
longer. Current long-read sequencing technology or short-read mate-pair sequencing 
(short-read sequencing can only sequence the two ends of a fragment) can sequence 
fragments over 10,000 bp [14], and these fragments can contain millions of nucleotides if 
we avoid the constraints of reverse transcriptase by direct RNA sequencing. Short-read 
are always cheaper and the throughput is much higher, but long-read can detect more 
introns and more accurately for the intron splicing order problem. The fragment size 
of paired-end sequencing in the Illumina sequencer can be very long in theory, but the 
accuracy decreases dramatically when fragment size > 500 bp [15]. In addition, sequenc-
ing experiments are always performed for a specific tissue or cell line each time, and 
each cell line only expresses a small part of the transcripts, which will further reduce 
the bias. Another factor is that we cannot distinguish most isoforms of the same gene 
until alternative splicing occurs. Thus, in higher organisms, transcripts that share many 
introns and are expressed in the same tissue/cell line have to be treated as having similar 
intron splicing orders based on current techniques.

This study is limited because only a small part of the transcriptome is covered here in 
fruit fly and humans, and the transcripts analysed here usually contain short and rare 
introns compared with the whole transcriptome. This may lead to some bias.

Conclusions
This is the first method that can calculate intron splicing orders. The method requires 
a batch of pre-mRNA long-read sequencing datasets to detect intron splicing orders. 
One of the major applications will be the use of this method on a few interesting genes 
to determine the relationships between intron splicing orders, splicing fidelity, sec-
ondary structure, and alternative splicing. By applying the method on real sequencing 
datasets, intron splicing orders were calculated for four different organisms. I found 
that the splicing orders in humans are more not in-order than those in the other three 
organisms. This is further supported by the fact that the first introns in humans tend 
to spliced the slowest. I found the intron splicing orders in S. pombe are different with 
the other organisms, further analysis showed lower organisms have more introns that 
are spliced not in a defined order.

Methods
First, a method was proposed based on computation theory that can calculate intron 
splicing orders. Then, this method was applied to real sequencing datasets to calcu-
late intron splicing orders for four organisms. The overall computation workflow is 
shown in Fig. 1 and Additional file 1. I list the detailed methods of each step in the 
following sections.
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Intron splicing order pair detection algorithm

A custom JAVA script was written that can calculate each pair of intron splicing 
orders in every transcript. The detailed intron splicing order pair detection algorithm 
was listed in Additional file 2. Steps 3–6 detect reads that support that intron j is not 
spliced, and steps 7–9 determine whether the above reads support that other introns 
are already spliced (contain junctions). This algorithm is used for both short-read 
paired-end sequencing and long-read sequencing datasets.

Intron splicing order graph

The intron splicing order graph is based on the R packages igraph, ggraph and 
networkD3.

Most likely order calculation model and algorithm

As described above, the read counts are not uniformly distributed in the intron splic-
ing order matrix. The read counts decrease as they move away from the main diago-
nal, and the decay rate is different from gene to gene due to different intron and exon 
lengths, which makes modelling the decay rate very difficult. An additional considera-
tion is that the read coverage should not influence the calculated most likely order. 
Thus, a frequency-based method was used here to calculate the most likely intron 
splicing orders. The idea is that for each type of order of introns, a probability can be 
calculated, and the order with the highest probability is the most likely order. For 
example, if the order is 1 → 3 → 2, then this also implies that intron 1 is spliced before 
2, so a total of three intron splicing order pairs will be calculated. Let n = number of 
introns. For a specific order, the total number of intron splicing order pairs that need 
to be multiplied is n×(n−1)

2  . Let i ∈ 1, 2, 3, . . . , n and j ∈ 1, 2, 3, . . . , n be the indices of 
introns. Let A be the read count adjacent matrix and D be the frequency matrix, 
where Dij = Aij/

(

Aij + Aji

)

 and Dij = 0 when i = j. Another way to obtain D is by cal-
culating the MLE by assuming a binomial distribution, i.e., 

Di,j = argmax
ψ

(

Ai,j + Aj,i

Ai,j

)

ψAi,j (1− ψ)Aj,i . Let θ = O1,O2, . . . ,On be an order of 

introns. There will be n! different orders of introns for this transcript. The model is a 
kind of simplified Bayesian network, and the likelihood values between different types 
of orders can be treated as the likelihood values between different DAGs in the Bayes-
ian network (Additional file 1). For a specific order θ = O1,O2, . . . ,On , the probability 
can be calculated as follows. If Dij + Dji �= 0 , then either there is no read for the 
intron pair (intron i and intron j) or i = j.

(1)P
(

i spliced before j
)

= P
(

Oi < Oj

)

= Dij
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This optimization problem can be converted into 
θ∗ = argmax

permutation

(

sum
(

upper triangle
(

logD
)))

 , where permutation refers to the swap-

ping of row i to row j and column i to column j simultaneously. The most unlikely 
order is listed below. The most unlikely order is the reverse of the most likely order.

The optimization problem proposed here is very similar to the linear tournament 
ordering problem (Kemeny–Young problem) and the Bayesian network structure 
optimization problem, both are NP-hard problems [16, 17]. Permutation and calcula-
tion of all the possible intron splicing orders are needed, selecting the ones with the 
highest probability, which will be difficult for transcripts that contain intron numbers 
larger than 11. I used two algorithms to overcome this problem: for transcripts that 
contained intron number < 12, a permutation of all types of orders was used ( O(n!)) ; 
for transcripts that contained 12 ≤ intron number < 100, an integer linear program-
ming approach was used, and over 99,97% of the transcripts in humans contained 
intron number < 100. The detailed formulation of the integer linear programming 
used here is the same as the one described in [18].

Another problem of this model is that some intron splicing order pairs have zero val-
ues. In this case, I added a small number (adjust_value = 0.1) on both sides for each 
intron pair, i.e.,Dij = (Aij + 0.1)/

(

Aij + Aji + 2× 0.1
)

 . Adjust_value = 0.1 can also be 
treated as a prior to the read count matrix, i.e.,. 

Di,j = argmax
ψ

(

Ai,j + Aj,i

Ai,j

)

ψAi,j (1− ψ)Aj,i beta(ψ ,α = 1.1,β = 1.1) , and α and β can 

be treated as pseudo read counts. Thus, the estimation of D can be treated as a calcula-
tion of the MAP of the binomial model with known beta priors.

To measure the in-order splicing probability, the relative likelihood values were calcu-
lated. Let θ̂ = O1 < O2 · · · < On be the order of in-order splicing, let θ be an arbitrary 
order. If θ∗ is the calculated optimum order, the log relative likelihood is listed as follows:

(2)

L(θ |D) = P(D|θ) ∝ P(θ |D) ∝

n
∏

i=1

n
∏

j=1

P((Oi < Oj)|D)

=

n
∏

i=1

n
∏

j=1

(DijI[Oi < Oj;Dij + Dji �= 0] + I[Oi > Oj;Dij + Dji �= 0]

+ I[Dij + Dji = 0]) where P(θ) =
1

n!

(3)

θ̂ = argmin
permutation

(

sum
(

upper triangle
(

logD
)))

= argmin
permutation

(

sum
(

logD
)

− sum
(

lower triangle
(

logD
)))

= sum
(

logD
)

− argmax
permutation

(

sum
(

lower triangle
(

logD
)))

(4)R(θ) = ln

(

L(O1 < O2 · · · < On|D)

L(θ∗|D)

)
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Simulation study for S. pombe and human chr21

For each multi-intron containing transcript in S. pombe, first, the sequences of all the 
potential pre-mRNAs given a random defined order were obtained, e.g., if a transcript 
has 4 introns, then there will be 5 possible pre-mRNAs. Then, the reads from these pre-
mRNAs were simulated using the R package polyester [19]. Please check Additional file 1 
for the overall simulation process, 150-bp paired-end reads and fragment size of 800 was 
used for short-read sequencing, read length of 800 and fragment size of 6000 was used 
for long-read sequencing, and read length of 5000 and fragment size of 6000 was used 
for super long-read sequencing. To save on computational effort, only reads from ~ 1300 
multi-introns containing transcripts were simulated in S. pombe and ignored transcripts 
that contained no introns or only one intron.

The chr21 in the human genome was chosen to do simulation because it is the shortest 
primary scaffold in the human genome except for chrY. I selected one transcript per gene 
for simulation and considered only transcripts that contained 2 or more introns. A read 
length of 150  bp and fragment size of 15,000 was used for short-read mate-pair, read 
length of 800 and fragment size of 15,000 was used for long-read sequencing, and read 
length of 12,000 and fragment size of 15,000 was used for super long-read sequencing.

To evaluate the situation in which there are some undetected intron splicing order 
pairs in the intron splicing order read count matrix in the real dataset, the read count 
matrixes were simulated directly using the Poisson distribution (mean of 15 reads per 
intron splicing order pair) given a random defined order. The simulation was performed 
in a total of 1000 times, with an average intron number of 7.

Datasets and pre‑processing for S. pombe, fruit fly, Arabidopsis thaliana and humans

As the above simulation results showed, paired-end sequencing is sufficient for cal-
culating intron splicing orders in S. pombe; thus, both short-read and long-read total 
RNA-seq (SRP093735, SRP062858 and GSE104681) were used to calculate the intron 
splicing orders in S. pombe. The long-read sequencing reads (PRJNA591665) were used 
for Arabidopsis thaliana. The long-read nascent RNA sequencing reads (GSE123191) 
were used for fruit fly and humans. ENSEMBL Fungi annotation ASM29v2.43 [20] was 
used for S. pombe; ENSEMBL dm6 annotation was used for fruit fly; ENSEMBL TAIR10 
annotation was used for Arabidopsis thaliana; and GENCODE annotation (hg19) was 
used for humans. STAR [21] was used for short-read alignment. The long-read sequenc-
ing reads were aligned using minimap2 [22] with parameters -ax splice -uf -k14. The 
BAM files were sorted and indexed by samtools [23]. The list of the full datasets used 
here can be found in Additional file 2.

The detailed method for correcting the bias of retained introns

For humans, Arabidopsis thaliana, and fruit flies, many alternative splicing events exist 
in these organisms, and transcripts were filtered by TPM > 0.1. The TPM values are 
calculated using the TPMcalculator. The datasets came from the ENCODE and NCBI 
databases (human: ENCSR000AEO, fruit fly: ENCSR045CJI, Arabidopsis thaliana: 
SRR10538404). Among the different kinds of alternative splicing events, intron reten-
tion has a stronger effect on intron splicing order. Three conditions must be met to 
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enable read that mapped into intron retention regions leading to bias in intron splicing 
order: (1). Both alternative isoforms are expressed in this dataset. (2). The two alterna-
tive isoforms share some common introns (check Additional file 1 for example). (3). The 
read supports retained introns spliced after other introns. To reduce the bias caused by 
retained introns, PSI values of the retained introns were calculated from polyA mRNA-
seq. The PSI values can be treated as the percentile of reads assigned to the retained 
intron isoforms. This value is then used to correct the read count that supports the 
retained intron spliced after other introns. For example, the number of reads supporting 
the retained intron spliced after the other intron is max(b− PSI × (b+ c + d), 0) , where 
b represents read count detected as retained intron was first spliced; c represents read 
count detected as retained intron was slower spliced; d represents read count detected as 
both introns were spliced (Additional file 1). The intron retention events were extracted 
from annotations using rMATS [24].

The intron splicing order calculation method developed here is error tolerance

Even if several pairs of intron splicing orders were wrong, the overall intron splicing 
order can be corrected. This is because the overall information in the intron splicing 
order pairs matrix is redundant, and not every pair of intron spicing orders is needed to 
calculate the final intron splicing orders. For example, suppose that the correct intron 
splicing order is 1 → 2 → 3 → 4 and every intron splicing order pair has read support. 
Even if the read count between intron 1 and 4 is wrong, i.e., 4 → 1, the final result would 
still be 1 → 2 → 3 → 4 because the order of intron 1 and intron 4 is fixed by intron 2 and 
intron 3 (see Additional file 1 for another example).

The stable of intron splicing order

All the datasets used here contains more than one biological replicates, for each organ-
ism the bam files were randomly assigned into two groups and redid the intron splic-
ing order calculation to test if the intron splicing order is stable. The permutation was 
repeated 5 times. The short-read total RNA-seq datasets used here are available in Addi-
tional file 2. The FPKM values of introns were calculated using TPMcalculator.

Correlation analysis and the relative orders of first introns

All the intron splicing order pairs detected were used for S. pombe, fruit fly, Arabidopsis 
thaliana, and humans. Some transcripts contain more than one type of most likely order 
that has the same highest likelihood value. Thus, only transcripts that contain unique 
highest likelihood values are kept for downstream real data analysis except the analysis of 
heterogeneity. This filter was applied with transcripts that contain intron numbers < 12. 
All the correlations used here are Spearman correlations. Relative order = (order with 
intron − 1)/(total intron number − 1).

The heterogeneity measure of intron splicing order

The heterogeneity measure is based on the entropy of the likelihood values. For an order 
θ , the likelihood is L(θ |D) . The normalized likelihood and entropy is listed as follows. 
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The heterogeneity measure can only be calculated for transcripts that contain intron 
number < 12, and this threshold covers most of the transcripts detected here. The dataset 
used for this analysis came from a single study for each organism to reduce the variance 
using different experiments.

Webserver

The webpage is based on the shiny package in R. The transcript structures are based on 
the Sushi package [25]. The graph in the webpage is based on the R packages networkD3, 
igraph and ggraph.
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