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Background
Over the last decade, RNA sequencing (RNA-seq, [1]) has become the standard experi-
mental approach for accurately profiling gene expression. Complex biological questions 
can be addressed, also thanks to the development of specialized software for data analy-
sis; these aspects are, e.g., reviewed in the works of Conesa et al. [2] and Van den Berge 
et al. [3], which cover a broad spectrum of the possible applications.
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Differential expression analysis is a very commonly used workflow [4–7], whereby 
researchers seek to define the mechanisms for transcriptional regulation, enabled by 
the comparisons between, for example, different conditions, genotypes, tissues, cell 
types, or time points. The ultimate aim is to determine robust sets of genes that dis-
play changes in expression, and to contextualize them at the level of molecular path-
ways, in a way that can explain the biological systems under investigation and provide 
actionable insights in basic research and clinical settings [8].

Established end-to-end analysis procedures (such as [9–11]) are nowadays available, 
yet often bioinformatics analyses can be a challenging and time-consuming bottle-
neck, especially for users whose programming skills do not suffice to flexibly combine 
and customize the steps (and software modules) of a complete analysis pipeline.

Current software implementations for quality assessment (e.g. FastQC, https​://
www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/), preprocessing, alignment 
[12], and quantification [13–16] have streamlined the generation of large matrices of 
the transcriptome profiles. These intermediate results have to be provided as input to 
software for differential expression analysis [7, 17, 18], which constitute core compo-
nents of the R/Bioconductor project [19, 20].

In our previous work [21], we reviewed a selection of interfaces for RNA-seq analy-
sis from the perspective of a life scientist, defining criteria that cover many essential 
aspects of every software/framework, including e.g. installation, usability, flexibility, 
hardware requirements, and reproducibility. Building upon these results, we sub-
sequently developed a tool that satisfies a broad set of requirements for differential 
expression analysis and is presented in the following.

As a result of close collaborations with wet-lab life scientists and clinicians, we 
developed our proposal as an interactive Shiny [22] web based application in the 
ideal R/Bioconductor package, which guides the user through all operations in a 
complete differential expression analysis. ideal provides an integrated platform for 
extracting, visualizing, interpreting, and sharing RNA-seq datasets, similar to what 
our Bioconductor pcaExplorer package does for the fundamental step of explora-
tory data analysis [23].

The ideal package takes as input a count matrix and the experimental design infor-
mation, for allowing to also analyze complex designs (such as multifactorial experimen-
tal setups), while making it easy to reproduce and share the analysis sessions, promoting 
effective collaboration between scientists with different skill sets, an open research cul-
ture [24], and the adherence to the FAIR Guiding Principles for scientific data [25]. 
Moreover, ideal delivers a wide range of information-rich visualizations, charts, and 
tables, both for diagnostic and downstream steps, which taken together form a compre-
hensive, transparent, and reproducible analysis of RNA-seq data.
ideal reprises and expands some design choices of pcaExplorer, with an 

improved documentation system based on tooltips and on the adoption of self-paced 
learning tours of the main functionality (with the rintrojs library [26]). State sav-
ing and automated HTML report generation via knitr and R Markdown, following a 
template bundled in the package itself (which can be edited by the experienced users to 
address specific questions), ensure code reproducibility, which has received increasing 
attention in recent years [27–32].

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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There is a multitude of software packages, developed to operate on tabular-like sum-
marized expression data, or on formats which might derive from their results [33–49]. 
We provide a comprehensive overview of their functionality and characteristics in Addi-
tional file 1: Table S1.

Similar to ideal, many of the existing tools accept count data in tabular format, and 
proceed to compute differentially expressed genes, accompanying this with visualiza-
tions (both focused on samples and on features) and sometimes downstream operations 
such as functional analysis for the identified subset. In most of the existing software, sin-
gle genomic features of interest can be inspected, with some support for identifier con-
version. The majority of these solutions are distributed as standalone web applications 
(commonly in R/Shiny, although some are written in Javascript); still, not all of these 
can be easily distributed as packages, or deployed seamlessly to private local instances. 
While still underrepresented, some of the tools allow the generation of an analysis prod-
uct, which in many cases is based on a report in R Markdown [50], dynamically gener-
ated at runtime.

Overall, the existence of many such software packages highlights the need for a user-
friendly framework to generate rich outputs for assisting analysis and interpretation, 
yet currently none of the existing proposals is offering the complete set of features we 
implemented in our work, with a full integration in the Bioconductor environment, and 
a seamless combination of interactivity and reproducibility.

The ideal package integrates and connects a number of R/Bioconductor packages, 
wrapping the current best practices in RNA-seq data analysis with a coherent user 
interface, and can deliver multiple types of outputs and visualizations to easily trans-
late transcriptomic datasets into knowledge and insights. By leveraging the efficient core 
structures of Bioconductor, ideal allows flexible additional visualizations, as it is pos-
sible with custom scripts or with other GUI-based tools such as the iSEE package [51, 
52].
ideal is available at http://bioco​nduct​or.org/packa​ges/ideal​/, and the application can 

additionally be deployed as a standalone web-service, as we did for the publicly hosted 
version available at http://shiny​.imbei​.uni-mainz​.de:3838/ideal​, where the readers can 
explore the functionality of the app.

Implementation
General design of ideal

ideal is written in the R programming language, wiring together the functionality of 
a number of widely used packages available from Bioconductor. ideal uses the frame-
work of the DESeq2 package to generate the results for the Differential Expression (DE) 
step, as it was found to be among the best performing in many experimental settings for 
simple and complex eukaryotes [53, 54]. Internally, this framework includes the estima-
tion of size factors (with the median ratio method) and of the dispersion parameters, 
followed by the generalized linear model fitting and testing itself.

The web application and all its features are provided by a call to the ideal() func-
tion, which fully exploits the Shiny reactive programming paradigm to efficiently (re-)
generate the rendered components and outputs upon detection of changes in the input 
widgets.

http://bioconductor.org/packages/ideal/
http://shiny.imbei.uni-mainz.de:3838/ideal
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The layout of the user interface is built on the shinydashboard package [55], with a 
sidebar containing widgets for the general options, and the main panel structured in dif-
ferent tabs that mirror the different steps to undertake to perform a comprehensive dif-
ferential expression analysis, from data setup to generating a full report. The task menu 
in the dashboard header contains buttons for state saving, either as binary RData files or 
as environments in the interactive workspace, accessible after closing the app.

Alongside features like tooltips, based on the bootstrap components in the shinyBS 
package [56], ideal uses collapsible elements containing text to quickly introduce 
the functionality of the diverse modules, and guided tours of the user interface via the 
rintrojs package [26], which provide means for learning-by-doing by inviting the 
user to perform actions that reflect typical use cases in each section. The Quick viewer 
widget in the sidebar keeps track of the essential objects, which are either provided upon 
launch, or computed at runtime, while valueBox elements (whose color turns from 
red to green once the corresponding object is available) above the main panel display a 
brief summary of each.

We invested particular attention in designing the application to guide the user through 
the different workflow steps (Fig. 1). This can be appreciated in the steps for the Data 
Setup panel, which appear dynamically once the required input and parameters are pro-
vided. Moreover, we used conditional panels to activate the functionality of each tab 
only if the underlying objects are available.

The base and ggplot2 [57] graphics systems are used to generate static visualiza-
tions, enabling interactions by brushing or clicking on them in the Shiny framework. 
Interactive heatmaps are generated with the d3heatmap [58] package, and tables are 
displayed as interactive objects for efficient navigation via the DT package [59].

We provide an R Markdown template for a complete DE analysis together with the 
package, and users can customize its contents by editing or adding chunks in the embed-
ded editor (based on the shinyAce package [60]). Combining this object with the cur-
rent status of the reactive widgets in the main tabs of the application, an HTML report is 
generated for preview at runtime, and can later be exported, shared with colleagues, or 
simply stored (Fig. 1, bottom section).
ideal has been tested on macOS, Linux, and Windows. It can be downloaded from 

the Bioconductor project page (http://bioco​nduct​or.org/packa​ges/ideal​/), and its devel-
opment version can be found at https​://githu​b.com/feder​icoma​rini/ideal​/. Alternatively, 
ideal is also provided as a Bioconda recipe [61], simplifying the installation procedure 
in isolated software environments e.g. in combined use with Snakemake [62], with bina-
ries available at https​://anaco​nda.org/bioco​nda/bioco​nduct​or-ideal​.

Since ideal is normally installed on local systems, its speed and performance will 
vary depending on the hardware specifications available. In our experience, a typical 
modern laptop or workstation with at least 8/16 GB RAM is sufficient to run ideal on a 
variety of datasets. For example, in the analysis of the experimental dataset described in 
Additional File S2 (24 samples, with 4 treatments on 6 cell lines from different donors), 
the core functionality of DESeq2 required slightly less than 2 GB of RAM and less than 
one minute on a MacBook Pro with 2,9 GHz Intel Core i7 and 16 GB of memory, and 
required resources can be expected to scale approximately linearly with the increase 
of sample numbers - as measured with the profvis package [63]. The routines for 

http://bioconductor.org/packages/ideal/
https://github.com/federicomarini/ideal/
https://anaconda.org/bioconda/bioconductor-ideal
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functional annotation have a peak of allocated memory of ca. 4 GB, and take less than a 
minute to complete.

The desired depth of exploration after performing the backbone of the DE analysis is 
the main factor influencing the time required for completing a session with ideal, after 
familiarizing with its interface, e.g. by following the introductory tours on the demo 
dataset included.

The functionality of the ideal package is extensively described in the package 
vignette, regularly generated via the Bioconductor build system, and also embedded in 
the Welcome tab. Documentation for each function is provided, with examples rendered 
at the Github project page https​://feder​icoma​rini.githu​b.io/ideal​/, generated with the 
pkgdown package [64].

Typical usage workflow

During the typical usage session of ideal, users need to provide (or upload) two 
essential components: (1) a gene-level count matrix (countmatrix), a common 

Fig. 1  Overview of the ideal workflow. Top section: The typical analysis with ideal starts by providing 
the count matrix for the samples of interest, together with the corresponding experimental design 
information. The optional gene annotation information can also be retrieved at runtime. The combination 
of a DESeqDataSet and a DESeqResults objects can be given as an alternate input. Package 
documentation includes tooltips, collapsible help elements, and instructions in the app. Together with the 
vignette as a detailed reference, the interactive tours guide users through the fundamental components 
in each step, coupled to the embedded demo dataset. Middle section: The interactive session spans 
from the overview on the provided input, to the generation of differential expression analysis results and 
their visualization, while supporting downstream operations such as functional analysis, to assist in the 
interpretation of the data. Bottom section: All the generated output elements can be downloaded (images, 
tables), as well as exported in form of a R Markdown/HTML report, a document that guarantees reproducible 
analyses and can be readily shared or stored. (Icons contained in this figure are contained in the collections 
released by Font Awesome under the CC BY 4.0 license)

https://federicomarini.github.io/ideal/
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intermediate result after quantifying the expression measures in widely used workflows 
([9–11]), and (2), the metadata table (expdesign) with the experimental variables for 
the samples of interest, as illustrated in the top panel of Fig. 1. ideal can accept any 
tabular text files, and uses simple heuristics to detect the delimiter used to separate the 
distinct fields; a preview on the uploaded files is shown in the collapsible boxes in the 
Step 1 of the Data Setup panel (Fig.  2a). A modal dialog informs the users about the 
formatting expected in the input files, with matched sample names and gene identifiers 
specified as column or row names. We strongly advise to perform a thorough explora-
tory data analysis on the input high-dimensional data, as this is a fundamental require-
ment in each rigorous analysis workflow. Users can refer to the pcaExplorer package 
for this purpose if an interactive approach is desired.

In the context of differential expression testing, the design argument has also to be 
specified, and this is normally a subset of the variables in the experimental metadata, 
which constitute the main source of information when submitting the data to a public 
repository such as the NCBI Gene Expression Omnibus (National Center for Biotech-
nology Information, https​://www.ncbi.nlm.nih.gov/geo/). All other parameters (the cor-
responding DESeqDataSet, DESeqResults, and a data frame containing matched 
identifiers for the features of interest) for the ideal() function can be also constructed 

a b

c d

Fig. 2  Selected screenshots of the ideal application. a Data Setup panel, after uploading the expression 
matrix and experimental design information, here displayed with the macrophage dataset illustrated as 
use case in Additional file 2. The setup steps appear consecutively once the required input elements and 
information are provided by the user. b Overview of the Summary Plots panel, with an MA plot displaying 
expression change (as log2 Fold Change) versus average expression level. Upon interaction via brushing, a 
zoomed plot appears, where features are labeled to facilitate further exploration, e.g. by displaying expression 
plots and information fetched from the NCBI Entrez database. c Results from the Functional Analysis panel, 
with an interactive table for the enriched Biological Processes. When clicking on a row of interest, a signature 
heatmap is shown to better show the behavior of the features annotated to the particular Gene Ontology 
term. d The Report Editor panel, accessed after computing all required objects (as shown by the green value 
boxes in the upper part of the subfigure), contains a text editor which displays the default comprehensive 
template provided with the package - which can additionally be edited by the user. In the framed content, a 
screenshot of the rendered report is included, e.g. with an annotated MA plot highlighting a set of specified 
genes

https://www.ncbi.nlm.nih.gov/geo/
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manually on the command line and provided optionally, otherwise they will be com-
puted at runtime.

For demonstration purposes, we include a primary human airway smooth muscle cell 
lines dataset [65], which can be loaded in the Data Setup tab. For each module in the 
main application, ideal gives a text introduction to the typical operations, and then 
encourages the user to perform these in a guided manner by following the provided 
rintrojs tours, which can be started by clicking on a button. Descriptions of the 
user interface elements are anchored to the widgets themselves, and are highlighted in 
sequence while the interaction with them is enabled.

When the analysis session is terminated, binary RData objects and environments in 
the R session can store the exported reactive values. Additional analyses can be per-
formed on the exported values, enabling e.g. alternative methods for functional enrich-
ment, as illustrated in a section of the package vignette. While all result files and figures 
generated and displayed in the user interface can also be saved locally with few mouse 
clicks, the generation of a full interactive HTML report is the intended concluding step. 
This report is created by combining the values of reactive elements with the provided 
template, which can be extended by experienced users. Such a literate programming 
approach (conceived by [66] and perfected in the knitr package) is one of the preferred 
methods to ensure the technical reproducibility of computational analyses [67, 68].

Additionally, users can continue exploring interactively the exported objects, if some 
representations are not included in ideal directly. A flexible interface to do so is rep-
resented by the iSEE Bioconductor package [51], which also fully tracks the code of the 
generated outputs, and we support this with a dedicated export function to a Summa-
rizedExperiment object, with annotated rowData and colData slots filled with 
the results of the differential expression analysis.

Deploying ideal on a Shiny server

While we anticipate that the ideal package will typically be installed on local machines, 
it can also be deployed as a web application on a Shiny server, simplifying the work-
flow for users who want to analyze and explore their data without installing software. 
Deployment of an instance shared among lab members of the same research group is an 
exemplary use case; our proposal also supports protected instances behind institutional 
firewalls, e.g. if sensitive patient data is to be handled.

We describe the full procedure to set up ideal on a server and document the 
required steps in the GitHub repository https​://githu​b.com/feder​icoma​rini/ideal​_serve​
redit​ion, which can be particularly useful for bioinformaticians or IT-system administra-
tors. Following this approach, a publicly available instance has been created and is acces-
sible at http://shiny​.imbei​.uni-mainz​.de:3838/ideal​ for demonstration purposes, where 
users can either explore the airway dataset or upload their own data.

Results
The functionality of ideal is described in the next sections, and is illustrated in detail 
for the analysis of a human RNA-seq data of macrophage immune stimulation (pub-
lished in [69]) in Additional file 2 (complete use case as HTML document structured like 
a vignette, with text, code, and output chunks).

https://github.com/federicomarini/ideal_serveredition
https://github.com/federicomarini/ideal_serveredition
http://shiny.imbei.uni-mainz.de:3838/ideal
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Data input and overview

The setup for the data analysis is carried out in the Data Setup panel (Fig. 2a). To guide 
the user through the mandatory steps without an exceeding burden of interface ele-
ments, we designed this tab in a compact way, with boxes encapsulating related widgets, 
appearing consecutively once the upstream actions are completed. One of the funda-
mental data structures for the ideal app is a DESeqDataSet object, used in the work-
flow based on the DESeq2 package [9]. This is complemented by an optional annotation 
object, i.e. a simple data frame where different key types (e.g. ENTREZ, ENSEMBL, 
HGNC-based gene symbols) are matched to the identifiers for the features of interest. 
While this is not mandatory, it is recommended as some of the package functionality 
relies on the interconversion across such identifiers; ideal suggests the corresponding 
orgDb Bioconductor packages and makes it immediate to create such an object directly 
at runtime. Once the initial selections are finalized, the DESeq() command runs the 
necessary steps of the pipeline, displaying a textual summary and a mean-dispersion plot 
as diagnostic tools.

When dealing with large numbers of samples and more complex designs (entailing the 
computation of many coefficients), it is possible to take advantage of parallelized compu-
tation, as it is implemented for the DESeq2 package. ideal provides a slider to select 
the number of cores to use for running the main analysis, depending on the available 
resources (Step 3 in the Data Setup panel).

A first overview on the dataset, including a set of basic summary statistics on the 
expressed genes, as well as the (log transformed) normalized values can be retrieved 
in the Counts Overview tab, together with pairwise scatter plots of the values. Thresh-
olds can be introduced to subset the original dataset by keeping only genes with robust 
expression levels, either based on the detection in at least one sample, or on the average 
normalized value.

Generating and exploring the results for differential expression analysis

The Extract Results tab provides the functionality to generate the other fundamental 
data structure, namely the DESeqResults object. After setting the FDR threshold in 
the sidebar, users are prompted to define the contrast of interest for their data, selecting 
one of the experimental factors included in the design. When the factor of interest has 
three or more levels available (e.g. the cell type in the airway demonstration dataset), 
the likelihood ratio test can be used instead of the Wald test, to allow for an ANOVA-
like analysis across groups.

Further refinements to the results can be obtained by activating independent filter-
ing [70], or selecting the more powerful Independent Hypothesis Weighting (IHW) 
framework [71], to ameliorate the multiple testing issue by incorporating an informa-
tive covariate, e.g. the mean gene expression [72]. Shrinkage of the effect sizes is also 
optionally performed on the log fold change estimates, to reflect the higher levels of 
uncertainty for lowly expressed genes. Interactive tables for the results are shown, with 
embedded links to the ENSEMBL browser and to the NCBI Gene portal to facilitate 
deeper exploration of shortlisted genes. Moreover, a number of diagnostic plots are 
generated, including histograms for unadjusted p-values, also using small multiples to 
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stratify them on different mean expression value classes, a Schweder-Spjøtvoll plot [73], 
and a histogram of the estimated log fold changes.

More visualizations are included in the Summary Plots tab (Fig. 2b), where users can 
zoom in the MA plot (M, log2 fold change vs A, average expression value) representation 
by brushing an area on the element. From the magnified subset, by clicking close to a 
selected gene, it is possible to obtain a gene expression boxplot (with the individual jit-
tered observations superimposed), together with an info-box with details retrieved from 
the NCBI resource portal [74]. Heatmaps (both static and interactive) and volcano plots 
(log fold change vs log10 of the p-value) deliver alternative views of the underlying result 
table, or interesting subsets of it.

Iterations oriented towards exploring a set of features of interest are made easier by 
the Gene Finder tab. Genes can be shortlisted on the fly, adding them from the sidebar 
selectize widget. For each feature of interest, a plot comparing the normalized values is 
displayed, and these are included in an annotated MA plot, where the selected subsets 
are highlighted on the plot and their values are shown in a corresponding table. Alter-
natively, a gene list can be uploaded directly as text file to obtain the same output, with 
the ease of providing entire sets of genes (e.g. a file with all cytokines, or a curated list of 
genes affected by a particular transcription factor) in one step.

Putting results into biological context

Many times it is challenging to make sense out of a carefully derived table of DE results, 
since it is not straightforward to identify the common biological themes that might be 
underlying the observed phenotypes. ideal offers different means to help research-
ers in meaningfully interpreting their RNA-seq data. The Functional Analysis panel 
offers three alternatives for gene set overrepresentation analysis, relying on topGO [75], 
goseq [76], or the goana() function in the limma package [7]; users can perform the 
enrichment tests on genes that are significantly differentially regulated, either split by 
direction of expression change, or combined in one list (Fig. 2c). Additionally, users can 
upload up to two custom lists of genes, which can be compared to the one derived from 
the result object, in order to detect significant overlaps among the sets of interest, which 
can be represented via Venn diagrams or UpSet plots [77].

The Gene Ontology (GO, [78]) terms enriched in each list can be interactively dis-
played, with links to the AmiGO database (http://amigo​.geneo​ntolo​gy.org/), as well as 
heatmaps displaying the expression values for all the DE genes annotated to a particular 
signature.

Expanding on this functionality, ideal provides a Signatures Explorer panel, where 
a signature heatmap can be generated for any gene set provided in the gmt format, 
common to many sources of curated databases (MSigDB, WikiPathways). Conversion 
between identifier types is guided in the user interface, and so is the aspect of the final 
heatmap, where rows and columns can be clustered to better display existing patterns 
in the data, or transformations (such as mean centering or row standardization) help 
to bring the feature expression levels to a similar scale, for a better display in the final 
output.

http://amigo.geneontology.org/
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Generating reproducible and transparent results

The focus in the development of ideal was on combining interactivity and reproduc-
ibility of the analysis. Therefore, we implemented the Report Editor as the toolset for 
enabling reproducible reports in the DE analysis step (Fig.  2d). The predefined tem-
plate, embedded in the package, fetches the values of the reactive elements and the input 
widgets, thus capturing a snapshot of the ongoing session. Text, code, and results are all 
combined in an interactive HTML report, which can be previewed in the app, or subse-
quently exported.

This functionality is particularly appealing for less experienced users due to its auto-
mated simplicity, but experienced users can also take full benefit of it, by expanding the 
R Markdown document by adding or editing specific chunks of code.

State saving, activated by the buttons in the task menu in the header, stores the con-
tent of the current session into binary data objects or environments accessible from the 
global workspace.

As an additional feature, we leverage the flexibility of iSEE, the interactive Summa-
rizedExperiment Explorer, another tool which fully supports intuitive and reproduc-
ible analyses, by assembling a serialized rds object that can be directly fed to the main 
iSEE() function for bespoke visualizations.

Discussion
The guiding principle for the development of our package ideal was the effective 
combination of usability and reproducibility, applied to one of the most widely adopted 
workflows in transcriptomics, i.e. the analysis of differentially expressed genes, fol-
lowed by the downstream analyses based on functional enrichment among the subset of 
detected features.

Several software packages have been developed to operate on this tabular-like sum-
marized expression data, or on formats which might derive from their results, and a 
comprehensive comparison of their features is presented in Additional file 1: Table S1. 
Notably, these tools differ by their set of included features (ranging from first exploration 
to downstream analysis steps), implementation (with R/Shiny, python, and JavaScript 
as main choices), format of distribution (packages, local web app, webserver), and ease 
of implementation in existing pipelines (e.g. by leveraging widely adopted class struc-
tures, or requiring and providing text files for portability across systems). The compari-
son with other tools is also available online (https​://feder​icoma​rini.githu​b.io/ideal​_suppl​
ement​), linked to a Google Sheet where the individual characteristics of each tool will 
be updated, in order to provide a tool for users who might be seeking advice on which 
solution to adapt for their needs (accessible at https​://docs.googl​e.com/sprea​dshee​
ts/d/167XV​0w18P​0FSld​1dt6o​wN4C2​Esxl5​FU2QT​o4D-wclz0​/edit?usp=shari​ng).

Our proposal complements the existing pcaExplorer package, where the main 
exploratory data analysis steps are performed, and provides a platform for performing a 
complete differential expression analysis with the ease of interactivity, accompanied by a 
number of diagnostic plots, often overseen in other software tools. The combination of 
interactivity with reproducibility (Fig. 1, bottom panel) is an essential aspect to consider 
for generating robust and transparent analyses, substantiated by code which can also be 

https://federicomarini.github.io/ideal_supplement
https://federicomarini.github.io/ideal_supplement
https://docs.google.com/spreadsheets/d/167XV0w18P0FSld1dt6owN4C2Esxl5FU2QTo4D-wclz0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/167XV0w18P0FSld1dt6owN4C2Esxl5FU2QTo4D-wclz0/edit?usp=sharing
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used for didactic purposes, learning the best current practices with the state-of-the-art 
methods included in our package.
ideal fully supports widely used standard classes from Bioconductor, and thus 

allows seamless integration with many R packages for further downstream processing 
and within existing data analysis pipelines, while also benefiting from a thriving com-
munity of developers. ideal itself is part of Bioconductor, and thus is integrated into 
a build system that continuously checks all of its components and their interoperabil-
ity, guaranteeing that the available set of features is correctly interfacing with the lat-
est version of the package dependencies. Notably, the Bioconductor project enforces a 
number of best practices to enhance the usability of its components, with both internal 
and external documentation (for the individual functions and as complete tutorials, in 
form of vignettes), as well as providing unit test sets to ensure the software is working 
as expected: ideal adheres to these guidelines, which can be essential to define robust 
software [79] that can be adopted by a wide range of users.

A possible use case for deploying ideal is tightly related to data and result sharing. 
Distributing data in raw and processed format, together with a set of results, is becom-
ing a practice that enables efficient data mining and can help ensure their reproduci-
bility and reusability [25]. Stemming from a close collaboration with life and medical 
scientists, our tool allows researchers to share their work with other interested parties, 
starting from the operations during the collaboration phase, and continuing after pub-
lication, where broader audiences can effectively digest contents as they are presented 
from the authors.

The faster turnover in generating insights, thanks to the accessible interface and 
the multiple outputs, constitutes a significant advantage for reducing the time to new 
results, or alternatively for re-analyzing publicly available RNA-seq datasets. ideal 
provides a platform to facilitate discoveries in a standardized way, which at the same 
time improves the transparency and the reproducibility of the analyses. Indeed, one pos-
sible use case that we envision is the submission of a comprehensive notebook/report as 
Supplementary Material for a manuscript, so that the results are presented in a transpar-
ent manner, thus facilitating the contribution of reviewers, as well as the re-usability of 
analysis code. A rich technical description of parameters and software used would also 
greatly facilitate the writing of the “Material and Methods” sections, in a way that fully 
captures steps, parameters, code, and software versions.

Conclusion
The infrastructure provided by the ideal R/Bioconductor package delivers a web 
browser application that guarantees ease of use through interactivity and a dynamic 
user interface, together with reproducible research, for the essential step of differential 
expression investigation in RNA-seq analysis. The combination of these two features 
is a key factor for efficient, quick, and robust extraction of information, while leverag-
ing the facilities available in the Bioconductor project in terms of classes and statistical 
methods.

The wealth of information that can be extracted while running the app may play a crit-
ical role when choosing the tools to adopt in a project. Still, to ensure the proper inter-
pretation of the output results, the interaction of wet-lab scientists with collaborators 
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with additional bioinformatics/biostatistics expertise is essential. The design choices for 
ideal aim at making this communication as robust and easy as possible, possibly defin-
ing this tool as the ideal way of approaching this step.

Following the criteria used in our previous overview on RNA-seq analysis interfaces 
[21], our package reaches out to the life/medical scientist, being simple to install and 
use, based on robust statistical methods, and offering multiple levels of documentation. 
ideal allows scientists to easily take control of the analysis of RNA-seq data, while 
providing an accessible framework for reproducible research, which can be extended 
according to the user’s needs.
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