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Abstract 

Background:  Alternative splicing isoforms have been reported as a new and robust 
class of diagnostic biomarkers. Over 95% of human genes are estimated to be alterna-
tively spliced as a powerful means of producing functionally diverse proteins from a 
single gene. The emergence of next-generation sequencing technologies, especially 
RNA-seq, provides novel insights into large-scale detection and analysis of alternative 
splicing at the transcriptional level. Advances in Proteomic Technologies such as liquid 
chromatography coupled tandem mass spectrometry (LC–MS/MS), have shown tre-
mendous power for the parallel characterization of large amount of proteins in biologi-
cal samples. Although poor correspondence has been generally found from previous 
qualitative comparative analysis between proteomics and microarray data, significantly 
higher degrees of correlation have been observed at the level of exon. Combining pro-
tein and RNA data by searching LC–MS/MS data against a customized protein database 
from RNA-Seq may produce a subset of alternatively spliced protein isoform candidates 
that have higher confidence.

Results:  We developed a bioinformatics workflow to discover alternative splicing 
biomarkers from LC–MS/MS using RNA-Seq. First, we retrieved high confident, novel 
alternative splicing biomarkers from the breast cancer RNA-Seq database. Then, we 
translated these sequences into in silico Isoform Junction Peptides, and created a cus-
tomized alternative splicing database for MS searching. Lastly, we ran the Open Mass 
spectrometry Search Algorithm against the customized alternative splicing database 
with breast cancer plasma proteome. Twenty six alternative splicing biomarker pep-
tides with one single intron event and one exon skipping event were identified. Further 
interpretation of biological pathways with our Integrated Pathway Analysis Database 
showed that these 26 peptides are associated with Cancer, Signaling, Metabolism, 
Regulation, Immune System and Hemostasis pathways, which are consistent with the 
256 alternative splicing biomarkers from the RNA-Seq.
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Conclusions:  This paper presents a bioinformatics workflow for using RNA-seq data 
to discover novel alternative splicing biomarkers from the breast cancer proteome. 
As a complement to synthetic alternative splicing database technique for alternative 
splicing identification, this method combines the advantages of two platforms: mass 
spectrometry and next generation sequencing and can help identify potentially highly 
sample-specific alternative splicing isoform biomarkers at early-stage of cancer.

Keywords:  Alternative splicing, Breast cancer, Biomarker discovery, Pathway analysis, 
Mass spectrometry

Background
Breast cancer death rates for women in the U.S. are higher than those for any other 
cancer, besides lung cancer. About 1 in 8 U.S. women (about 12%) will develop inva-
sive breast cancer over the course of her lifetime. In 2020, an estimated 276,480 new 
cases of invasive breast cancer were expected to be diagnosed in women in the U.S., 
along with 48,530 new cases of non-invasive (in situ) breast cancer [1].

Traditional methods for early breast cancer detection such as self-examination and 
mammography have many drawbacks. For example, tissue biopsies can be difficult to 
be obtained and small tumors may not be detected by mammography [2]. In recent 
years, alternative splicing variants (AS) have been reported to show their growing 
importance in representing a new class of diagnostic biomarkers [3–5]. Alterna-
tive splicing occurs during the splicing process of pre-mRNA in which introns are 
removed and exons are connected. Recent studies of genome-wide alternative splicing 
analysis estimated that over 95% of human genes contain alternative splicing events 
[6]. Alternative splicing have been reported to be implicated in several areas of cancer 
genesis and progression. For example, Yae et al. found that the expression of a CD44 
variant isoform (CD44v) was regulated by epithelial splicing regulatory protein 1, and 
CD44 isoform could be switched from CD44v to CD44 standard (CD44s) by knock-
down of epithelial splicing regulatory protein 1 in CD44v+ cells. Therefore, regula-
tion of isoform CD44v was a potential therapeutic target to prevent metastasis [7].

Meanwhile, various platforms and methods have been designed for the purpose of 
identification of alterative splicing events, such as the Affymetrix Exon–Exon Junc-
tion Array, RNA-Seq, and LC–MS/MS. For example, Lapuk et  al. used the Affyme-
trix Human Exon–Exon Junction Array to assess the level of alternative splicing in 
31 breast cancer and nonmalignant immortalized cell lines which represented lumi-
nal, basal, and claudin-low breast cancer subtypes. 181 splice events were identified 
representing 156 genes as candidates for AS and 90% of them were confirmed as 
the predicted AS events by reverse transcription-PCR. Nearly half of the AS events 
were found to be associated with basal, luminal, or claudin-low breast cancer sub-
types [8]. The Affymetrix Human Exon–Exon Junction Array they used has a signifi-
cant improvement in probe design compared to the Affymetrix’s first generation exon 
array platform. The Affymetrix Human Exon–Exon Junction Array has on average 
eight probes per probeset, contains 315,137 exons and 260,488 exon–exon junctions, 
and covers all AS events in the UCSC/Ensembl databases [9].

The recent RNA-Seq technology has greatly revolutionized the way for alterna-
tive transcripts identification and quantification [10]. For example, with RNA-Seq, 
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Eswaran et al. systematically revealed splicing characteristics of the three breast sub-
types: TNBC, non-TNBC and HER2-positive and discovered subtype-specific dif-
ferentially spliced genes and splice isoforms which were not previously recognized 
in human transcriptome. They validated novel isoforms of critical genes like CDK4, 
LARP1, ADD3, and PHLPP2. They found the predominant splice events in breast 
cancer: exon skipping and intron retention [11]. Unlike the Affymetrix Human Exon–
Exon Junction Array, which can only measure pre-specified variants, RNA-Seq allows 
for the detection of novel splice junctions and exonic sequences [12]. A comparison 
of RNA-Seq and Affymetrix Human Exon–Exon Junction Array showed that RNA-
Seq had significantly improved transcript coverage and increased sensitivity for dif-
ferentially expressed transcripts [13].

It becomes possible to perform high-throughput AS analysis with recent advances in 
methodology, including expressed sequence tagged (EST) sequencing, exon array, exon–
exon junction array, and next-generation sequencing of all mRNA transcripts [11]. How-
ever, “indirect” transcriptome-level characterization of alternative splicing has some 
disadvantages. For example, proteins are the actual major molecules in the cell but don’t 
often correlate well with mRNA transcripts.

Recently, as an innovative analytical technology platform, liquid chromatography tan-
dem mass spectrometry (LC–MS/MS) has emerged and been applied to a wide number 
of analyses including high-throughput protein identification [14]. Both sensitivity and 
specificity of candidate disease biomarkers can be improved when using LC–MS/MS 
to identify alternative splicing isoforms relevant to disease. Many proteins can produce 
abundant pathological alternative splicing isoforms. It is often sufficient to identify them 
distinguishing between disease samples and controls because they may be exclusively 
regulated in a disease condition [15].

Searching against a proper alternative splicing database, tandem mass spectrometry 
can be powerful technique to identify, analyze and characterize potential novel alterna-
tive splicing isoforms at the protein level. For example, the synthetic AS databases PEPPI 
[15] and SASD [16] have demonstrated as efficient means for identification, analysis 
and characterization of novel AS isoforms from tandem mass spectrometry. The SASD 
[16] is superior to PEPPI [15] in that it supports context-specific alternative splicing 
searching, which enables users to focus on the specific proteins of interest and therefore 
remarkably reduce computational time. In addition, SASD also allows interpretation and 
analysis of alterative splicing events in the context of: pathway, disease, drug and tissue 
specificity.

A sample-specific protein database from RNA-Seq data should provide a more accu-
rate profile of the real protein pool in the sample. The genome is relatively static, but the 
proteome varies with disease state, tissue nature, cell development stage, and effects of 
drug treatment. The interest in proteomics for the sequencing of the human genome 
has increased because DNA sequence provides a static snapshot in which the cell might 
use its proteins and holds great promises of proteomic dynamic process in the cell. 
Therefore, combining the two platforms by searching LC/MS/MS data against a sample-
specific protein database from RNA-Seq may yield with a higher confidence a subset of 
alternatively spliced protein isoform candidates, although poor correlation between the 
two has been generally found [17–20].
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Liquid chromatography tandem mass spectrometry (LC/MS/MS) proteomics analysis 
in combination with RNA-Seq has opened up new opportunities in biomarker discovery. 
For example, Wang et al. analyzed matched RNA-Seq and LC–MS/MS proteomics data 
and found that customized protein sequence databases significantly increased the sensi-
tivity of peptide identification, reduced ambiguity in protein assembly, and enabled the 
detection of known and novel peptide variants [21]. They also proposed a workflow for 
constructing sample-specific protein sequence databases from RNA-Seq data for more 
sensitive and sequence variant-inclusive proteomic studies. Sheynkman et al. [22] col-
lected RNA-Seq data and proteomics data from same cell population, and developed a 
bioinformatics pipeline to build customized databases for the discovery of novel splice-
junction peptides.

We have developed a bioinformatic workflow to identify alternative splicing biomark-
ers from proteome using RNA-Seq. Using the RNA-Seq data from 8 normal and 24 
breast tumor samples and the LC–MS/MS data from 40 normal and 40 breast cancer 
plasma samples, we demonstrated that the bioinformatic workflow can help identify 
novel alternative splicing biomarkers from proteome using RNA-Seq and is a comple-
ment to our SASD searching method.

Results
We developed a bioinformatics workflow (Fig. 1) for identifying alternative splicing bio-
markers from the proteome using RNA-Seq, which contains three steps as described in 
detail in the “Methods and materials” section. In order to demonstrate that the bioinfor-
matics workflow can identify alternative splicing biomarkers from the proteome using 
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Data Quality 
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Reads Alignment
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Reference 
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Transcript 
Annotation

Alternative 
Splicing Analysis
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Fig. 1  A bioinformatic workflow for identifying alternative splicing biomarkers from proteome using 
RNA-Seq
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RNA-Seq, we collected breast cancer datasets from two platforms: LC–MS/MS and 
RNA-Seq.

The plasma proteome data were collected in the triple-play mode from 40 healthy 
women and 40 women diagnosed with breast cancer [23, 24]. The RNA-Seq fastq files 
were downloaded from the NCBI GEO database, which contained 8 normal samples and 
24 breast cancer samples. The average number of RNA-Seq Reads in the fastq files was 
29,012,741 (Table 1). We ran the FastQC to check the quality of the fastq files. The qual-
ity of the RNA-Seq data is uniformly good. Most the 32 fastq files had Per Base Sequence 
Quality scores all above 28 (Fig.  2). Some of the 32 fastq files were good up to about 
90 bp and dropped right at the end. After trimming all the reads back to about 90 bp 
to remove the poor quality sequence, the RNA-Seq data were qualified for downstream 
analysis.

Table 1  Bioinformatic workflow numbers

Count

Average number of RNA-Seq reads per sample 29,012,741

Junction with 6+ reads 186,784

Annotated junctions 175,225

Alternative splicing biomarkers from RNA-Seq (0.05 q-value) 256

Peptides 1% FDR and 0.1 E-value 79

Alternative splicing peptides from proteome 26

Fig. 2  Per base sequence quality
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Identification of alternative splicing biomarkers from RNA‑Seq

RNA‑Seq splice junction analysis

First, we mapped the 186,784 junction reads into the transcript database in our SASD. 
And then, we calculated the overlap rates between each block of junctions and each 
exon or intron within the corresponding transcript. Lastly, we annotated the junc-
tions by assigning the block in junctions to the exon or intron with a minimum over-
lap rate of 90% or above. After removing all unannotated junctions, we obtained 
175,225 alternative splicing junctions, the majority of AS junctions were neighboring 
exon–exon junction (E_E_NM) and first category events (EXON_NM and INTRON_
AS) (Fig. 3). We also observed that the distribution of alternative splicing junctions 
were similar at normal and cancer states, whereas the majority of alternative splicing 
junctions were neighboring exon–exon junction (E_E_NM) and first category events 
(EXON_NM and INTRON_AS) (Fig. 4).

We divided the 32 RNA-Seq samples into two groups: normal group (8 benign 
breast lesions) and breast cancer group (8 ER+, 8 triple negative, and 8 HER2+ pri-
mary breast tumors). With the statistics method described in the “Methods and mate-
rials” section, 256 alternative splicing biomarkers from 65 genes and 140 transcripts 
were found to be differentially present (q-value < 0.05) depending upon diagnostic 
status. Of these, 68 were single exon, 140 neighboring exon–exon junction, 5 exon 
skipping, 40 single intron retention, 2 left intron retention, and 1 right intron reten-
tion (Table  2). Further pathway analysis showed that the 65 genes were associated 
with Signaling, Cancer, Translation, Metabolism, Immune System and Hemostasis, 
which are consistent with previous findings.

Fig. 3  Junction read from RNA-Seq
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Construction of customized alternative splicing biomarker peptide database

We used the pipeline we developed for SASD [16] to convert the 256 alternative splicing 
biomarker sequences into putative polypeptide entries for mass spectrometry search-
ing. Three types of common splicing events were contained in the customized alterna-
tive splicing peptide database. They are Normal Splicing [single exon (EXON_NM) and 
neighboring exon-–exon junction (E_E_NM)], Exon Skipping [non-neighboring exon–
exon junction (E_E_AS)], and Intron Retention [single intron (INTRON_AS), left intron 
retention junction (I_E_AS), right intron retention junction (E_I_AS)].

Identification of alternative splicing biomarkers from proteome

The OMSSA search yielded 79 peptides passing 1% MS/MS FDR and 0.1 E-value. With a 
significance (q < 0.05) and at least two hits from either cancer group or normal group as 
thresholds, we identified 26 alternative splicing biomarkers (Table 3), of which 1 is exon 
skipping (E_E_AS), 1 single intron retention (INTRON_AS), 21 single exon (EXON_
NM), and 3 neighboring exon–exon junctions (E_E_NM). The three-step q-value 
method was described in detail in the “Methods and materials” section. The feature 
importance was determined by comparing the size of these coefficients to each other 
using five-fold cross-validation SVM model.

Red color is the left part of the junction and green color is the right part. Splicing site 
is marked by ^ or ().‘^’ means the splicing site is separated by the left region and right 
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Fig. 4  Alternative splicing distribution at normal and cancer states

Table 2  statistics of 256 alternative splicing biomarkers identified from RNA-Seq

Alternative splicing events Count

EXON_NM 68

E_E_NM 140

E_I_AS 1

I_E_AS 2

E_E_AS 5

INTRON_AS 40

Total 256

Genes 65

Transcripts 140
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region. ‘()’ means the splicing site is shared by both left and right regions. For example, 
the exon-skipping peptide SETSVPDHVVWSLFNTLFMNPCCLGFIAFAYSVK^SR is a 
synthetic product of the ENST00000531688 in gene ENSG00000142089 (IFITM3) where 
the second exon was skipped and the first exon was combined together with the third 
exon. A screen shot from the UCSC genome browser [25] in the region of the peptide 
shows that the peptide sequence was not reported in EST sequences and mRNA from 
Genbank and refseq gene (Fig. 5).

Similar UCSC genome browser analysis for other peptides confirmed that 13 of the 26 
peptides were not found in EST sequences and mRNA from Genbank and refseq genes. 
We also searched the Peptide Atlas database and found that 19 of the 26 peptides were 
not reported in the Peptide Atlas database (Table 3).

The single intron alternative splicing GEPLLIGSITLRK was identified in 10 cancer 
samples and 1 health sample. The triple play mode shown in the Fig. 6 includes (a) pri-
mary scan; (b) zoom scan; (c) MS/MS scan and (d) protein identification from MS/MS). 
The spectrums of other AS sequences were omitted due to space limit.

Our bioinformatic workflow has shown significant potential to discover new classes 
of high-quality alternative splicing biomarkers from mass spectrometry using RNA-Seq 
(Table 3). We also examined their prediction performance by modeling a Support Vector 
Machine with fivefold cross-validation and obtained a high performance (AUC = 0.9205, 
precision = 83.7%, accuracy = 86.3%, sensitivity = 90.0%, specificity = 82.5%, 

Fig. 5  UCSC genome browser screen shot of genomic region for the novel peptide

Fig. 6  Triple play mode spectrum of GEPLLIGSITLRK. The blue lines represent b-ions. And the red lines 
represent y-ions
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NPP = 89.2%) on the 80 breast cancer proteomic samples. A literature search found no 
any reports for the 26 peptides. Pathway analysis with the IPAD [26] shows the 26 pep-
tides are associated with Cancer, Signaling, Metabolism, Regulation, Immune System 
and Hemostasis pathways, which was consistent with the 256 alternative splicing bio-
markers from RNA-Seq.

Discussion
We describe here a bioinformatic workflow to identify alternative splicing biomarkers 
from proteome using sample-specific RNA-Seq database. With the bioinformatics work-
flow, we identified 256 alternative splicing biomarkers from 65 genes and 140 differen-
tially present transcripts (q-value < 0.05) at cancer state, out of which there are 68 single 
exon, 140 neighboring exon–exon junction, 5 exon skipping, 40 single intron retention, 
2 left intron retention, and 1 right intron retention. And then, we built customized sam-
ple-specific peptide database of the 256 alternative splicing using the method we devel-
oped for our SASD [16]. Lastly, we discovered 26 alternative splicing biomarkers from 
proteome, of which 1 is exon skipping (E_E_AS), 1 single intron retention (INTRON_
AS), 21 single exon (EXON_NM), and 3 neighboring exon–exon junctions (E_E_NM).

The number of alternative splicing biomarkers dropped dramatically from 256 in the 
peptide database to 26 in the proteome. The low number of alternative splicing biomark-
ers actually identified at the protein level is the major issue of the bioinformatics work-
flow. The issue has been widely reported in the literature [22, 27, 28].

The primary reason for identification of a small number of alternative splicing bio-
markers is the technical differences in sequence coverage and detection sensitivity 
between RNA-Seq and LC–MS/MS [22].

Converting total RNA into a library of template molecules and making them suita-
ble for high throughput DNA sequencing contains several steps: the poly-A containing 
mRNA molecules purification, the mRNA fragment, first strand cDNA copy and second 
strand cDNA synthesis, and PCR purification and enrichment. It becomes possible with 
these steps to detect reads that span the whole transcript with full coverage and corre-
spond to transcripts at a low-level expression.

On the other hand, the sample preparation involving reduction and alkylation of 
cysteines, digestion of the sample into peptides, desalting and concentration of the pep-
tides is considerably more critical for accuracy, sensitivity and flexibility of mass spec-
trometry. A problem is that complex mixture will make mass spectrum difficult to fully 
analyze due to the overwhelming number of components. This problem is exacerbated 
when a protein sample is fragmented into a large number of peptide products by enzy-
matic digestion. Therefore, clean samples and limited sample complexity can minimize 
the suppression of ionization and prevent MS under-sampling of eluting peptides. As a 
result of the differences in the RNA and protein measurement, detection of alternative 
splice peptides is much more difficult at the protein level than at the RNA level.

The second reason for identification of a small number of alternative splice biomarkers 
is a limitation of proteome plasma samples. One concern is that cancer-specific biomark-
ers in plasma are probably indicators of a systemic response to cancer or other diseases 
and may not be secreted directly from cancer tissue [29]. In spite of the concern that 
using the plasma proteome may reduce overlapping with RNA-Seq breast cancer tissue, 
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we still chose the 80 plasma breast cancer for our experiment platform. One reason is 
that we couldn’t find any breast cancer tissue proteome datasets with two states (can-
cer vs normal) in repositories currently available online. Another reason is that human 
plasma is potentially the single most informative sample that can be collected from an 
individual with early stage of certain disease [30]. Since blood plasma or serum may con-
tain some residual and potentially detectable combinations of all the differentiated sub-
proteomes of the body, plasma may provide information regarding these tissues, and be 
potentially informative regarding almost any disease state. Blood plasma would appear 
ideal for detection of cancer biomarker in early stage breast cancer patients [31, 32].

The last reason for identification of a small number of alternative splice biomarkers 
is Tophat’s splice junction search limitation. Although Tophat was reported to be able 
to detect short and long range splicing [33], some testing showed that it failed to detect 
splice junctions that connect distant exons with a satisfied true positive rate, especially 
for the exons with a distance > 200 kB [34]. On the other hand, the SASD enables users 
to generate peptide sequences representing all known connections of Ensembl exons/
introns as well as junctions representing all possible splicing events for the exons/introns 
of each gene. Therefore, it is better that the bioinformatics workflow we presented and 
our SASD searching method work together as complements to each other for identifying 
alternative splicing biomarkers from proteome. The combination of the alternative splic-
ing biomarkers from the two methods are definitely needed for further experimental val-
idation from other labs or by other methods such as PCR because either the workflow or 
the SASD is an in-silico method.

The work described here on discovery of alternative splicing biomarkers presents only 
one important aspect of proteomic variation. For example, there are other variations: 
Single Nucleotide Polymorphism (SNP), Post-Translational Modification (PTM), Gene 
Fusion products etc. But the main idea of the workflow: customizing sample-specific 
RNA-Seq database for proteome searching can work for all the variations. The combi-
nation of LC–MS/MS with RNA-Seq will continue to expand the power and utility of 
this technique for the discovery of all variations as both platforms continue to become 
increasingly accessible, affordable, popular, and powerful.

Conclusions
We developed a bioinformatics workflow to discover novel alternative splicing biomark-
ers from breast cancer proteome using RNA-seq. First, we aligned reads to an anno-
tated reference genome and transcript annotation file, and identified 256 biomarkers 
from RNA-Seq that align to exons, introns and splice junctions which were differentially 
expressed in breast cancer. Then, we built a customized sample-specific alternative splic-
ing biomarker peptide database. Lastly, we ran OMSSA against the customized sample-
specific peptide database and discovered 26 alternative splicing biomarkers from the 
proteome. Additional pathway analysis aided in biological understanding of roles asso-
ciated with these pathways in cancer, including Signaling, Cancer, Regulation, Metabo-
lism, Immune System and Hemostasis.

This workflow integrates the advantages of the two types of platforms: mass spectrom-
etry and next generation sequencing. As a complement to our current SASD method 



Page 12 of 17Zhang et al. BMC Bioinformatics 2020, 21(Suppl 9):541

for alternative splicing identification, it can lead to identification of potentially highly 
sample-specific alternative splicing isoform biomarkers for early detection of cancer.

Methods and materials
RNA‑Seq for breast cancer data collection

The RNA-Seq data for breast cancer are publicly available through the GEO database 
with the accession number GSE45419 [35]. It consists of 8 benign breast lesions, 8 ER+, 
8 triple negative, and 8 HER2+ primary breast tumors. We downloaded the 32 samples 
and divided them into two groups: normal group (8 benign breast lesions) and breast 
cancer group (8 ER+, 8 triple negative, and 8 HER2+ primary breast tumors).

The sequencing files are stored in the NCBI GEO in Sequence Read Archive () format. 
First, we downloaded the SRA files and converted the SRA files to fastq using the com-
mand bash fastq-dump <SRA archive file> which created a fastq file with the same name 
as the SRA archive file.

Human plasma samples

Hoosier Oncology Group (HOG) (Indianapolis, IN, USA) collected the plasma protein 
data. Totally 80 plasma samples were collected with 40 from women diagnosed with 
breast cancer and 40 from healthy volunteer woman as controls. The power size for a 
two-sample t test is 0.87 for medium effect and 40 samples each group. Samples were 
analyzed in a single batch by mass spectrometry. Most cancer patients were diagnosed 
with a stage II or III or earlier breast cancer. Thermo-Finnigan linear ion trap mass spec-
trometer (LTQ) was used to analyze Tryptic peptides for protein identification. Peptides 
were eluted with a linear gradient from 5 to 45% acetonitrile over 120 min. Triple-play 
mode (MS scan, zoom scan, and MS/MS scan) was used to collect data.

Bioinformatics workflow for identifying alternative splicing biomarkers from proteome 

using RNA‑Seq

The overall workflow of identifying alternative splicing biomarkers from the proteome 
using RNA-Seq was comprised of three steps (Fig. 1): (1) identification of alternative 
splicing biomarkers from RNA-Seq, (2) construction of customized alternative splic-
ing biomarker peptide database, and (3) identification of alternative splicing biomark-
ers from proteome.

Step 1: identification of alternative splicing biomarkers from RNA‑Seq

RNA‑Seq splice junction analysis

We first used the Bowtie2 (2.2.1), Tophat (2.0.11), and samtools (0.1.19) to detect all 
the annotated and unannotated junctions, using default parameters [33, 36–38]. The 
mate inner distance was set to 150 in Tophat. The alignment of Bowtie–Tophat pro-
cessing was conducted with a supplied set of Ensembl transcript model annotations 
in GTF format [39] provided (option-G). Tophat first maped all reads to the tran-
scriptome annotation using Bowtie. All reads that did not map to the transcriptome 
annotation were set aside as ‘initially unmapped reads’ (IUM reads). The mapped 
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reads were retained and their coordinates are translated to genomic coordinates. 
Then the remaining reads were broken into sub-fragments of at least 25 bases, and 
these sub-fragments were aligned to the reference genome. If two adjacent sub-frag-
ments aligned to non-adjacent genomic locations, they were used to infer splice junc-
tions. Finally, TopHat checked whether any of the IUM reads matched any of those 
putative splice junctions. All splice junctions containing six or more RNA-Seq reads 
were annotated.

Annotation of splice junction

We annotated two categories of alternative splicing junctions. The first category was 
single exons and single introns, and the second category was the exon/intron junc-
tion regions [16]. The first category contained two types of alternative splicing: single 
exon (EXON_NM) and single intron (INTRON_AS). The second category contained 
four types of alternative splicing: intron–exon (I_E_AS, left intron retention junc-
tion), exon–intron (E_I_AS, right intron retention junction), neighboring exon–exon 
(E_E_NM, normal splicing junction) and non-neighboring exon–exon (E_E_AS, exon 
skipping junction).

We extracted the first category of alternative splicing using the “accepted_hits.bam” 
files produced by the Tophat2. The “accepted_hits.bam” files from Tophat2 were a list 
of read alignments in SAM format. We extracted the second category of alternative 
splicing using the “junctions.bed” files reported by Tophat2. The “junctions.bed” files 
from Tophat2 were a UCSC BED track of junctions with each junction consisting of 
two connected BED blocks, where each block was as long as the maximal overhang of 
any read spanning the junction.

We calculated the overlap rates between each block of junctions and each exon or 
intron within the corresponding transcript (there was one block for EXON_NM and 
INTRON_AS and there were two blocks for I_E_AS, E_I_AS, E_E_AS, and E_E_NM) 
using the following equation after extracting the coordinates of each block in junc-
tions from accepted_hits.bam and junctions.bed files (Fig. 7):

where 
∣

∣A
⋂

B
∣

∣ is the width of overlap between set A and set B, and |A| is the width of A.

Overlap_rate(A,B) =

∣

∣A
⋂

B
∣

∣

|A|
,

Fig. 7  Annotation of each block in junction
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We assigned the block in junctions to the exon or intron with a minimum overlap rate 
of 90% or above. The annotation procedure of assigning the optimal indexing number C* 
is shown in the following equation:

where Overlap_rate is the degree of overlap between each block of junctions and each 
exon or intron region of the corresponding transcript, Region is the exon or intron 
region in the transcript, C is the indexing number of each exon or intron in the tran-
script, and T is the block of junctions.

All data processing was conducted on the Talon2 High Performance Computer at the 
University of North Texas. The unannotated junctions not matching the Ensembl tran-
script annotation or not satisfying the requirement of overlap rate greater than or equal 
to 90% were removed.

Identification of alternative splicing biomarkers from RNA‑Seq

First, statistical significance was measured by chi-square, which was used to test the 
null hypothesis that an alternative splicing biomarker was equally represented between 
normal samples and breast cancer samples. Then we calculated the q value using the 
Storey–Tibshirani method [40]. We chose a significance screening filter (q < 0.05) to 
select alternative splicing biomarkers, which we used to estimate significant differences 
between the healthy and breast cancer samples.

Step 2: construction of customized alternative splicing biomarker peptide database

We used a method similar to the one we developed for SASD [16] to construct a custom-
ized alternative splicing biomarker peptide database. All information on the correspond-
ing biomarker genes was extracted from the Homo sapiens genes dataset (GRCh37.p13) 
in the Ensembl Genes 75 database [39, 41], including each biomarker gene’s position, 
name, exon/intron coordinates, exon phase, sequences, and annotation. We used a rela-
tional database hosted in a local SQL server to store and organize all the information.

For each of the second alternative splicing category, 120 nucleotides upstream and 
downstream of the junction site were extracted, resulting in a computationally synthe-
sized transcript 240 nucleotides long. Similarly, for the first alternative splicing category, 
120 nucleotides upstream of the single exon or single intron were extracted to produce 
a synthesized transcript 120 nucleotides long. A length of 120 nucleotides is deter-
mined on basis of the length distribution of fragment from protein digestion in MS/MS 
experiments.

Translation of splicing junction

The translation frame was inferred for splice junctions consisting of exons with known 
phase information in Ensembl. For all other junctions where either exons didn’t have 
phase information in Ensembl, or the frame could not be inferred, such as in single 
intron splicing, all three frames were translated. The translation frame which included 
the longest peptide was reserved as the AS peptide for mass spectrometry searching.

C∗ = argmax
C

Overlap_rate
(

RegionC ,T
)

∣

∣

∣

∣

Overlap_rate ≥ 90%,
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Step 3: identification of alternative splicing biomarkers from the proteome

Mass spectrometry junction database searching

Raw mass spectrometry files were searched against the customized AS biomarker pep-
tide database using OMSSA [42]. OMSSA is a free program distributed by the NCBI for 
analyzing and identifying peptides from tandem mass spectrometry peptide spectra. It 
models the extent of peptide fragmentation and then estimates the probability that an 
assignment was due to a random match.

OMSSA search results can change with different search parameters, sequence librar-
ies, and samples [43]. Therefore, we created the inverse sequence datasets as a decoy 
database to calculate the false discovery rate with a target-decoy search strategy [43] and 
used both the MS/MS false discovery rate (FDR) and E-value as scoring criteria. Pep-
tides passing 1% MS/MS FDR and 0.1 E-value were used for downstream analysis.

Identification of alternative splicing biomarkers from mass spectrometry

Here, we used the same statistics and thresholds, as described in the “Identification of 
alternative splicing biomarkers from RNA-Seq” section, for identification of the final 
AS biomarkers from mass spectrometry. Alternative splicing peptides with significance 
q < 0.05 and at least two hits in either breast cancer samples or normal samples were rec-
ognized as AS biomarkers.

Pathway analysis

Interpretation of biological pathways was conducted with the database we developed: 
Integrated Pathway Analysis Database (IPAD) (https​://fzhan​g.w3.uvm.edu/ipad/) [44].
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