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Background
Selection pressure due to the widespread use of anti-retroviral therapy [1] makes Human 
Immunodeficiency Virus (HIV) a valuable model for studying evolution. HIV/AIDS is a 
major pandemic disease [2] where more than 37 million people have been infected. Cur-
rently, about 60% of the infected people receive anti-retroviral therapy. Antiviral drugs 
block viral replication by targeting the viral enzymes, protease, reverse transcriptase and 
integrase, HIV entry and fusion to the host cell. Further progress in treating the disease 
is hampered by the selection of drug-resistant viral strains. Since the conversion from 
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the RNA genome to DNA is error-prone, HIV mutates rapidly [3]. HIV readily forms 
quasi-species and distinct viral strains. Thus, HIV possesses the prerequisite high degree 
of variation for the rapid evolution of drug resistance. In addition to studying drug 
resistance to enhance the development of novel therapeutics, studying the evolution of 
drug resistance can help define the optimal strategy to overcome drug resistance with 
current approaches.

HIV protease is an excellent model system due to its relatively small size and the 
extensive data for sequence variants and structures [4]. The protease acts as a dimer of 
two 99-residue subunits. Experimental studies [5] and theoretical analysis [6] of the pro-
tease mutants suggest that many of the secondary mutations contribute to the survival 
of the original resistance mutations by improving the effectiveness of the protease for 
viral replication. These findings suggest that initial mutations introduce resistance and 
further selection improves the fitness of the enzyme. Therefore, we expect to see linked 
sets of mutations in the resistance data, and have developed an analysis based on Mini-
mum Spanning Trees to detect and analyze these linkages.

Previous studies by our group and others show that machine learning can accu-
rately predict resistance phenotype from genotype data for HIV protease and reverse 
transcriptase [7–14]. We have found that including structural data with the sequence 
using Delaunay triangulation is an especially effective representation for machine learn-
ing [15]. The combined sequence and structure information is compressed into a sin-
gle 210-dimension vector for each mutant. In essence, this approach is an sequence 
edit distance weighted by the most significant local contacts in the protein. It is nearly 
a linear metric space [11]. Simple machine learning approaches such as a linear SVM 
and k-nearest neighbors are able to reliably classify resistance data with this encoding 
of sequence and structure. This approach is a marked contrast from other work where 
complicated or deep machine learning approaches are used [13, 14, 16]. It creates the 
ability to use the features for more than simple classification or regression.

Our previous work [7–9, 11, 15, 17] has concentrated on developing models for pre-
dicting the resistance to single inhibitors. Shen et  al. [11] and Pawar et  al. [17] dem-
onstrated classification accuracies higher than 99%. However, many of the resistant 
strains have lost susceptibility to all clinical inhibitors. It is important, therefore, to apply 
machine learning to the prediction of resistance to multiple inhibitors. Our previous 
work [17] showed that there was significant cross-prediction accuracy where models 
trained on one inhibitor predict the response to other inhibitors. This suggests that there 
are commonalities in resistance mechanisms and the first step to studying these com-
monalities is to build a machine learning model that describes them. This model can 
then be used to select sequences for expression, characterization, and structural analysis.

Gene trees are a major tool in the construction of molecular phylogeny [18–21] and 
they have been applied to HIV [22]. Much of the existing work has been applied to esti-
mate gene flow between species, gene duplication, and horizontal transfer. Typically, 
sequence distances are used to estimate similarity between genes and then a graph is 
constructed that reflects the relationships between the genes. The graph is a tree in the 
absence of horizontal transfer and gene duplication. There are subtle but important dif-
ferences between the standard use of gene trees and this study because mutational data 
in the HIV protease gene do not involve gene flow between species, gene duplication 
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or horizontal transfer. This paper examines the onset of speciation or quasi-speciation 
under the selection pressure of clinical treatment with potent protease inhibitors. It 
combines our highly effective representation of structure and sequence with well-under-
stood algorithms for building minimum spanning trees (MSTs) to estimate the evolu-
tionary properties of HIV response to drugs. Since this measure is linear or nearly linear 
and possesses metric properties, it should be an effective proxy for evolutionary dis-
tance. MSTs will serve as a first approximation to the gene tree.

The development of “super-resistance” is a related question. Naive selection theory 
suggests the “first past the post” mutations, those that are sufficiently resistant to allow 
HIV to reproduce in the presence of inhibitors, will be a majority of those selected. If 
drug resistance alone is sufficient for evolutionary selection, why should new mutations 
accumulate in the protease? Yet there are many examples of highly resistant proteases 
bearing different sets of multiple mutations which are believed to enhance viral repli-
cation [23]. The pattern of resistance acquisition and loss along branches of the MSTs 
sheds light on the selective pressures for drug resistance. The virus must not just become 
resistant, but must retain resistance and effective replication in the presence of a high 
mutation rate.

Genotype–phenotype data from the Stanford HIVdb

The collated data in the Stanford database [24] is a valuable resource for computational 
analyses. The data consist of the sequences of HIV drug targets, including HIV protease, 
and resistance measures. The database is curated and updated regularly to reflect the 
current status of drug resistance in HIV. We used the filtered phenosense data for this 
paper [25].

Results
Resistance classification and regression

The linear SVM was used to classify if the HIV protease sequence is resistant or not 
based on the threshold of 3.0 as defined in the Stanford database (shown in Table  1). 
The data are well-balanced for all inhibitors with the exception of Darunavir. Both the 
SWED and RSWED were used to train two different models with threefold cross valida-
tion. The quality of the prediction shows that our data were successfully updated. Table 2 

Table 1  Classification statistics for HIVpr

Fraction of resistant vs non-resistant inhibitors for all inhibitors. Other than for Darunavir, the datasets are well-balanced. 
The threefold cross-validated accuracy and F-scores are shown for the count vectors using a linear SVM

Inhibitor Fraction resistant Fraction susceptible Accuracy F-score

FPV 36.4 63.6 99.5 99.5

ATV 21.5 78.5 99.7 99.8

IDV 33.8 66.2 99.6 99.7

LPV 34.5 65.5 99.6 99.6

NFV 27.3 72.7 99.6 99.7

SQV 68.3 31.7 99.6 99.6

TPV 60.4 39.6 99.7 99.8

DRV 97.1 2.9 99.92 99.93
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shows the classification accuracy for pairs of inhibitors. Note that while there is some 
correlation between different inhibitors, there are significant differences between them. 
Table  3 shows the results for triples of inhibitors. Only a subset (those with ATV) is 
shown to conserve space, but the results are similar for all triples with both the RSWED 
and SWED metrics.

In addition to single inhibitors, classification of the resistance for all pairs and tri-
ples of inhibitors was done. In all cases, a high classification accuracy ( > 98% ) was 
seen. Therefore, it was important to examine regression, where the magnitude of the 
observed effect is predicted. This is a more difficult measure than binary classifica-
tion. Regression was preformed using random forest regression. Figure 1 shows the 
RMSE as a function of the training fraction for cross-validation. A training fraction 
of 0.66 corresponds to threefold cross validation (2:1 ratio) and 0.2 is an inverted 
fivefold cross validation (1:4). Since the range of observed values for the data is 
between 0 and 100, an RMSE <  0.1 corresponds to a high degree of accuracy. Fig-
ure  2 shows the distribution of RMSE for regressions over each pair and triple of 
inhibitors. The correlation coefficients were in the high range from 98 to 99%.

Table 2  Classification statistics for pairs of inhibitors HIVpr using the SWED metric

The Pearson R is between the resistance of the two inhibitors. The threefold cross-validated accuracy is shown for random 
forest

Inhibitor Inhibitor Pearson R Accuracy

ATV DRV 0.6444 99.8577

ATV IDV 0.6139 99.7566

ATV LPV 0.3535 99.8217

ATV NFV 0.8655 99.808

ATV SQV 0.9175 99.796

ATV TPV 0.3837 99.808

FPV ATV 0.617 99.8168

FPV DRV 0.8092 99.8715

FPV IDV 0.8215 99.8682

FPV LPV 0.8694 99.8907

FPV NFV 0.7385 99.8156

FPV SQV 0.4485 99.8219

FPV TPV 0.4229 99.894

IDV DRV 0.4766 99.6974

IDV LPV 0.8671 99.7512

IDV NFV 0.8189 99.6915

IDV SQV 0.4657 99.6959

IDV TPV 0.4373 99.8133

LPV DRV 0.3024 99.8013

LPV NFV 0.6433 99.7536

LPV SQV 0.1664 99.7166

LPV TPV 0.3573 99.8534

NFV DRV 0.527 99.7646
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Spanning trees

Figure 3 represents the spanning trees of a random 10% split of data with ATV. The 
nodes in these graphs represent the vectors generated by the upper triangular matrix 

Table 3  Classification statistics for  a  subset of  the  triples of  inhibitors HIVpr using 
the SWED metric

The threefold cross-validated accuracy is shown for random forest

Inhibitor Inhibitor Inhibitor Accuracy

ATV DRV FPV 99.8152

ATV DRV IDV 99.8365

ATV DRV LPV 99.8519

ATV DRV NFV 99.8358

ATV DRV SQV 99.8283

ATV DRV TPV 99.8183

ATV FPV IDV 99.7601

ATV FPV LPV 99.7686

ATV FPV NFV 99.7516

ATV FPV SQV 99.7658

ATV FPV TPV 99.7919

ATV IDV LPV 99.8149

ATV IDV NFV 99.8037

ATV IDV SQV 99.7727

ATV IDV TPV 99.842

ATV LPV NFV 99.7905

ATV LPV SQV 99.8075

ATV LPV TPV 99.8272

ATV NFV SQV 99.7558

ATV NFV TPV 99.8016

ATV SQV TPV 99.7983

Fig. 1  The dependence of RMSE on the fraction of data used to train a regression analysis for one inhibitor 
based on the SWED encoding
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with average distance and count, respectively. These spanning trees are calculated 
with respect to l2 distances when the nodes are represented by distance and count 
vectors, respectively. The nodes that are resistant with value bigger than 3 for inhibi-
tor are represented as green, and the non-resistant nodes are represented as red. 
Empirically, the spanning trees for all splits with respect to all the inhibitors have 
similar visualizations. The centers of these trees are the nodes whose sequences 
differ at most in two places from the standard wild type HIV-1 protease sequence 
of the group B sub-type M. Consistent with the high mutational rate of HIV, both 
resistant and susceptible strains develop differences from the standard sequence in a 
similar manner.

Path statistics in the spanning trees

Since the paths or branches in Fig. 3 appear to show the selection for resistance early in 
mutational history, followed by its conservation over time, it is necessary to examine the 
behavior of resistance along the branches of the tree. The sequences at the roots of the 
tree are close to the reference sequence and the branches, both resistant and non-resist-
ant, show increasing numbers of mutations as they move from away from the center. The 
paths fall into five general categories, those that: remain below the resistance threshold, 
gain resistance, lose resistance, remain above resistance threshold, or cross the threshold 
multiple times, creating a spiking pattern.

Due to the density of the data, we summarized the gain, loss and spike patterns by 
plotting the mean value of resistance against the fraction of the path which is above the 
resistance threshold. Figures 5, 6 and 7 represent the scatter plots of paths that gain, lose 
or spike in resistance. Each dot in these figures corresponds to an individual path. Fig-
ure 8 shows the histogram of the variance of paths above the resistance threshold. Most 
of the paths that are resistant have low variance,s which indicates that the magnitude of 
the resistance is stable, and therefore there is selection for stable resistance in the pres-
ence of high mutational rates.

Fig. 2  The distribution of RMSE between calculated and observed resistance values in 2 and 3 inhibitor 
regression analyses. For two inhibitors the RMSE ranges from 0.04 to 0.1 and for three inhibitors from 0.1 to 
0.22
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Discussion
This paper demonstrates three points. First, it shows that SWED and RSWED measures 
still work well for classification and regression of resistance. This result is important 
since the sequence-structure representation was recalculated when the database was 
updated. Second, it shows that these representations, when used to generate an MST, 
appear to be valid proxies for evolutionary or mutational distances. Finally, the trajec-
tory of resistance along individual branches of the trees suggests that the selection pres-
sures for resistance are more complicated than would be naively thought.

Fig. 3  l2 norm spanning trees of ATV resistance. The upper panel shows the distance based sums (SWED) 
and the lower panel shows the count based sums (RWSED). Resistant and non-resistant nodes are 
represented by green and red colors respectively
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Classification and regression

With an elegant encoding, in this case the SWED and RSWED, even simple shallow 
learning algorithms like the SVM can achieve high accuracy. The accuracy in this paper 
is better than we achieved earlier, and we hypothesize that this is due to using better and 
more complete data. Including features of the geometry (amino acid positions), along 
with the labels (the sequence), results in an encoding for a physical object that captures 
most of the essential information.

A proxy for evolutionary distance

Defining the evolutionary distance between two individual genomes is an open problem. 
Obviously, the distance must reflect mutations, but in a highly mutable system like HIV, 
straightforward counts of mutations can be misleading because the probability of a revert-
ing mutation is relatively high. Therefore, including structural or biochemical information 
to assess the importance of individual mutations should improve accuracy. The SWED and 
RSWED measures include structural information. Figure  3 shows a visualization of the 
MST derived with both measures. The sequences at the roots of the tree are close to the 
reference sequence, while the branches, both resistant and non-resistant, show increas-
ing numbers of mutations as they move away from the center. Interestingly, many of the 
branches maintain resistance or non-resistance during evolution. Quite often an initial sin-
gle or double mutation becomes resistant and the resistance evolves further with additional 
mutations.

Behavior of the branches

Analysis of the branches shows several interesting results. Most importantly, it shows that 
selective pressure for resistance is complicated. Figures  5,  6 and 7 show the relationship 
between path length and resistance for both paths that gain resistance and those that lose 
it. The naive model of selection would expect that viruses would evolve to be just resist-
ant enough to replicate in the presence of inhibitors. Resistance along a branch or path 
shows significant differences from this naive model. Paths that maintain resistance tend to 
increase resistance to high levels. However, some paths may demonstrate “spiking” where 
they become highly resistant and then approach lower resistance levels. Paths that lose 
resistance inevitably are never highly resistant. This result strongly suggests that there is an 
additional selective pressure to become highly resistant. In the presence of high mutation 
rates, molecules that are “just resistant enough” will readily lose resistance. Proteases that 
are highly resistant could require many mutations to lose resistance.

It is clear in Figs. 5, 6 and 7 that there is some structure to the relationship between resist-
ance and path length. The structure could reflect paths that have the same root and diverge 
at some time during viral evolution. As a first pass at analyzing this relation ship, we clus-
tered paths using the dbscan [26] algorithm as implemented in python scikit learn [27] 
library. The similarity of paths starting from the same root is shown for a representative 
sample in Fig. 4. That these points appear to lie on smooth curves suggests that the struc-
ture seen in Figs. 5, 6 and 7 is due to paths that diverge during evolution.
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Fig. 4  Grouping paths with the same root together in a sample of SEWD shortest paths for ATV. The y axis 
shows the number of paths in each cluster and the x axis shows the fraction of those paths that are above 
the resistance threshold

Fig. 5  SWED (left) and RSWED (right) shortest paths that gain resistance for ATV. The y axis shows the mean 
value for resistance along the path and the x axis shows the fraction of the path above the threshold for 
resistance
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Conclusion
A simple measure that combines structure and sequence is highly effective for classifica-
tion and regression of drug resistance in HIV protease. Unlike pure sequence features, 
shallow learning, even simple shallow learning algorithms like the linear SVM, produce 
accurate results with this representation. In addition to clustering and selecting sequences 
for experimental study, the measure can be used for calculations the probe the evolutionary 
relationship between isolates of HIV. Our results suggest two major points for evolution 
of resistance. First, there is a conservation of resistance. Isolates become resistant early on 
and then tend to stay resistant. Second, there is a selective pressure for isolates to become 

Fig. 6  SWED (left) and RSWED (right) shortest paths that lose resistance for ATV. The y axis shows the mean 
value for resistance along the path and the x axis shows the fraction of the path above the threshold for 
resistance

Fig. 7  SWED (left) and RSWED (right) shortest paths that fluctuate in resistance for ATV. The y axis shows the 
mean value for resistance along the path and the x axis shows the fraction of the path above the threshold 
for resistance
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highly resistant over time. Isolates that do not become highly resistant tend to lose resist-
ance. This suggests that robustness with respect to mutation and change is an important 
selection pressure in evolution.

Methods
The methods in this paper range from preparing the data (Data Expansion and Vec-
tor Generation) to machine learning (Classification and Regression) and the devel-
opment of models of evolution. A new expansion of the data was needed as the 
Stanford database was updated from the version used in previous work. This was a 
major update where the curators cleaned up the data. Because new data were gen-
erated it was necessary to show that our methods still worked. Classification and 
regression showed that the machine learning approaches are still highly effective. 
MSTs and analysis of the branches or paths in the trees was performed to inform 
hypotheses about selection due to drug pressure in HIV. Our software is avail-
able from a Github repository [28]. The expanded dataset, even when compressed, 
was too big for the repository and will be made available upon request to qualified 
researchers.

Data expansion

The Stanford dataset [24] for HIV protease is comprised of different protease sequences 
with the observed resistance in the Phenosense assay [25] for the 8 clinical protease 
inhibitors FPV, ATV, IDV, LPV, NFV, SQV, TPV and DRV. The sequence of the 99-amino 
acid protease monomer is presented, indicating those amino acids that are differ-
ent from the consensus sequence of HIV-1 Group M subtype B. Each position in the 
sequence data may have more than one possible amino acid mutation. These mutations 
are listed as multiple abbreviations along with insertion * and deletion # for the field 
of that position. Sequences with two or more alternate amino acids at a single position 
were expanded by constructing all possible sequences as described in [7, 8]. A total of 

Fig. 8  SWED (left) and RSWED (right) histograms of the shortest paths that are above resistance for ATV. 
1.16% of SWED and 6.8% of RSWED paths have variance greater than 100. The histogram of paths forming the 
first bin are depicted in the top right corner of each figure
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1951 genotype sequences were expanded to 414,010 single sequences. The expansion 
potentially could cause “cross talk” where one member of the expansion is in the test set 
and another in the training set. We have shown previously that this has an insignificant 
effect [7, 8].

Vector generation

Vectors were generated for each sequence by obtaining the neighbors of each position 
of this sequence from the Delaunay triangulation as was done in [7–9, 11, 15, 17]. The 
coordinates of the αcarbon atoms were used, and all arcs of the triangulation were used. 
Earlier studies in our lab [7, 15] showed these were sufficient. The long arcs in the Delau-
nay triangulation, which correspond to distal surface contacts, are a small subset of the 
total set of arcs. Other coarse representations of amino acids, such as center of mass, can 
be highly variable with changes in the kind of amino acid. The first step in this process 
was to use the positions of each amino acid residue from a crystal structure of the HIV 
protease dimer with 198 residues (pdb entry 3oxc was used [29]). The Delaunay triangu-
lation was generated exactly once according to the position coordinates obtained from 
this file and then we obtained the neighbors for each sequence based on this adjacency 
matrix. A 20× 20 amino acid matrix was generated from this adjacency matrix in two 
different ways: average distance and count between neighboring amino acids. Since this 
matrix is symmetric, we take the upper triangular values of this matrix as a vector, which 
is of the size 1× 210 . The count defines a Structure-Weighted Edit Distance (SWED) 
and the average distance defines a Radial Structure-Weighted Edit Distance (RSWED).

Classification and regression

The Stanford database curators recommend a resistance value of 3 in the phenosense 
assay as the threshold for resistant/non-resistant proteases [24] and we used their rec-
ommendation. As a control, since we have recalculated the vectors with new data, the 
classification calculations were repeated. The values for threefold cross validation are 
shown in Table 1 and demonstrate that the data were generated successfully. The RMSE 
for regression for one inhibitor as a function of the size of the training set is shown in 
Fig. 1. This corresponds to a correlation coefficient of > 99%.

In addition to control calculations for single inhibitors, the same calculations were 
performed for all pairs and triples of inhibitors. The average classification accuracy is 
> 99% and the distribution of RMSE is shown in Fig. 2.

Calculations were performed in python using scikit-learn [27]. Regression was done 
with random-forest regression using two trees. Classification used a linear SVM. Accu-
racy and F-Score are reported. The F-Score controls for population effects.
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where TP is true positive, TN true negative, FP false positive, and FN false negative.

Spanning trees for evolution prediction

Minimum spanning trees were generated for both the SWED and RSWED vectors using 
Python networkX [30] 2.2 and visualized with Gephi [31] 9.2. However, the amount of 
data forced us to use a 10% subset of the data due to limitations of the networkX library. 
Therefore we repeated the calculation using 10 randomly selected 10% samples from the 
data to ensure that the results did not depend on the particular random sample. Nodes 
with ‘NA’ resistance values (which were not observed or determined) were removed 
while making the spanning tree for each inhibitor. Spanning trees were calculated for of 
each of these splits. Computing spanning trees of the complete graph is computationally 
expensive and time consuming, hence we used the spanning tree of each split with edges 
connecting 400 nearest neighbors for each node. Empirically we have observed that this 
method yields only up to 2% different edges of resulting spanning trees, when calculated 
400 nearest neighbors vs complete graphs on these splits.

Shortest paths from roots to leaves in the spanning trees

The roots of this spanning trees are the nodes representing sequences with low num-
bers of differences from the consensus “wild type” sequence of HIV-1 Group M sub-
type B protease. The root nodes are same as or differ by at most two changes from 
the consensus sequence. We then calculate shortest paths from these nodes to all the 
leaves in the spanning trees. The spanning trees created by Gephi [31] 9.2 where visu-
alized with Forced Atlas-2 [32] using a layout gravity of 35, node and edge size of 10. 
We have verified that the visualizations look very similar for all other inhibitors.

Shortest paths classification

As noted in the results, the majority of the shortest paths in these spanning trees have 
sequences with resistance levels that are not monotone from root to leaves. However, 
we are interested in the behavior of sequences that gain resistance. Hence we clas-
sify the shortest paths in four categories: paths that remain below, paths that remain 
above resistance level, paths that gain resistance, and paths that lose resistance. We 
use the direction from root to leaf as the progression for inhibitor resistance values.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-Score = 2
Precision ∗ Recall

Precision+ Recall
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Measurement of the resistance variance for resistant path segments

We are interested in the behavior of shortest path segments that are above resistance, 
namely, how does the resistance level vary when the nodes in the path are resistant. In 
order to understand this, we calculated the fraction of the path above resistance and 
the variance of the resistance values for these path nodes.
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