
SAlign–a structure aware method for global 
PPI network alignment
Umair Ayub1,2, Imran Haider1,2 and Hammad Naveed1,2* 

Abstract 

Background:  High throughput experiments have generated a significantly large 
amount of protein interaction data, which is being used to study protein networks. 
Studying complete protein networks can reveal more insight about healthy/disease 
states than studying proteins in isolation. Similarly, a comparative study of protein–pro-
tein interaction (PPI) networks of different species reveals important insights which 
may help in disease analysis and drug design. The study of PPI network alignment can 
also helps in understanding the different biological systems of different species. It can 
also be used in transfer of knowledge across different species. Different aligners have 
been introduced in the last decade but developing an accurate and scalable global 
alignment algorithm that can ensures the biological significance alignment is still 
challenging.

Results:  This paper presents a novel global pairwise network alignment algorithm, 
SAlign, which uses topological and biological information in the alignment process. 
The proposed algorithm incorporates sequence and structural information for com-
puting biological scores, whereas previous algorithms only use sequence information. 
The alignment based on the proposed technique shows that the combined effect of 
structure and sequence results in significantly better pairwise alignments. We have 
compared SAlign with state-of-art algorithms on the basis of semantic similarity of 
alignment and the number of aligned nodes on multiple PPI network pairs. The results 
of SAlign on the network pairs which have high percentage of proteins with available 
structure are 3–63% semantically better than all existing techniques. Furthermore, it 
also aligns 5–14% more nodes of these network pairs as compared to existing aligners. 
The results of SAlign on other PPI network pairs are comparable or better than all exist-
ing techniques. We also introduce SAlignmc , a Monte Carlo based alignment algorithm, 
that produces multiple network alignments with similar semantic similarity. This helps 
the user to pick biologically meaningful alignments.

Conclusion:  The proposed algorithm has the ability to find the alignments that are 
more biologically significant/relevant as compared to the alignments of existing align-
ers. Furthermore, the proposed method is able to generate alternate alignments that 
help in studying different genes/proteins of the specie.

Keywords:  Protein–protein interaction, Global network alignment, Sequence 
similarity, Structure similarity, Monte–Carlo algorithm
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Background
Proteins are large biomolecules that perform their functions by interacting with other 
biomolecules. We can represent the proteins of a particular specie as a network, where 
nodes in the network represent the proteins and edges show the interactions between 
these proteins. The amount of protein interaction data has increased significantly in 
recent years due to the advancement in high throughput experiments. PPI networks of 
two species can be compared to detect evolutionary conserved interactions. This com-
parison highlights the structurally and functionally conserved parts of the two networks. 
It can also be helpful in finding unidentified interactions [1, 2] and in drug design [3, 4]. 
Hence, it is crucial that the methods used by researchers to align PPI networks are pre-
cise and accurate.

The term pairwise network alignment is used for the comparison of two PPI networks. 
The mapping of a smaller network over the portion of a larger network is known as an 
alignment. There are two types of network alignments - (i) Local Network Alignment 
and (ii) Global Network Alignment. Local aligners use many-many mapping between 
the nodes [5, 6]. A single node of network A can align with multiple nodes of network B 
and vice versa. Local aligners can generate multiple sub-alignments. In contrast to local 
aligners, global aligners use one-one mapping between nodes. A single node of network 
A can align to a single node of network B. The primary goal of such global aligners is to 
match the maximum number of functionally similar nodes [1, 7–9].

Existing studies use network topology and/or sequence information to align the PPI 
networks. Different types of measures are used to calculate the topology. For example, 
HubAlign use minimum degree heuristic for calculating topology [1]. ModuleAlign 
develop a novel method for using topological information that is based on hierarchical 
clustering [7]. IBNAL develop a clique based index to measure the topology of the pro-
teins [10]. NETAL and PROPER use local topological measures to calculate the topology 
[8, 9]. Similarly, previous studies use different types of heuristics to align the network. 
For example, HubAlign, NETAL and IBNAL use different forms of greedy algorithm for 
alignment. ModuleAlign uses the Hungarian algorithm while PROPER uses percolation-
graph-matching algorithm for alignment. MAGNA uses genetic algorithm for align-
ment [11]. UAlign thoroughly investigates the different aligners and combined them to 
align the network pairs. UAlign conclude that the use topology does not result in high 
semantic similarity while prioritizing biological information may result in high semantic 
similarity [12]. Table 1 shows the comparison of different studies on the basis of features, 
topological measures, alignment heuristics, datasets, advantages and limitations.

Several studies have achieved significant success in the field of global PPI network 
alignment. However, new methods are required to generate alignments with better 
semantic similarity. Moreover, the results of some of the existing studies (IBNAL and 
PROPER) are inefficient in terms of the number of aligned nodes.

Existing studies measure the performance of the global aligners on the basis of seman-
tic similarity and number of align nodes. Semantic similarity is used to compare the 
genes/proteins based on their context. In PPI context, the semantic similarity between 
the proteins can be measured by calculating the similarity between the functions of the 
proteins instead of their sequence or structure. It is also important to note that most 
previous studies have used topology as pseudo measure to calculate functional/semantic 
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similarity. A previous study has noted that topological similarity does not guarantee 
functional similarity and that functional similarity is best measured using a seman-
tic similarity measure [12]. Similarly most of the previous studies have not tested their 
methods robustness by testing on multiple datasets. Datasets have different compilation 
strategies, bias and completeness level. BioGrid is a public database that archives and 
disseminates genetic and protein interaction data collected from over 70,000+ publica-
tions in the primary literature [13]. HINT is a public curated compilation of high-quality 
protein-protein interactions from 8 resources (BioGRID, MINT, iRefWeb, DIP, IntAct, 
HPRD, MIPS and the PDB). Interactions are filtered to remove erroneous and low-qual-
ity interactions [14].

Ideally, an aligner should align maximum number of nodes while making sure that the 
aligned nodes are semantically related and be tested across different datasets. This paper 
presents a novel method, SAlign, which in contrast to existing aligners, uses structure 

Table 1  The comparison between the existing studies is presented

The features used by the existing aligners, topological measures, alignment heuristics, datasets, advantages and limitations 
are compared

Method Features Topological 
method

Alignment 
heuristic

Datasets Advantages Limitations

HubAlign Sequence + 
topology

Min. degree 
heuristic

Greedy algo-
rithm

IntAct Scalable better 
alignment in 
terms of no. 
of aligned 
nodes

AFS is not better 
as HubAlign 
prioritises 
topology

ModuleAlign Sequence + 
topology + 
clustering 
based scores

Min. degree 
heuristic + 
cluster simi-
larity scores

Hungarian 
algorithm

HINT Module based 
(clustering) 
scoring 
matrix helps 
in producing 
quality align-
ment

Complexity is 
high

PROPER Sequence + 
topology

Local network 
topology

Percolation 
graph 
matching 
algorithm

IntAct Takes less 
resources 
and time

Align few no. of 
nodes

IBNAL Functional 
similarity + 
topology

Clique-degree 
signature 
similarity

Greedy Algo-
rithm (based 
on clique 
size)

IsoBase Uses less 
resources

Go-annotations 
are required 
in alignment 
phase

MAGNA Sequence only – Genetic algo-
rithm

BioGRID Efficient for 
align-
ments that 
required high 
topological 
quality

1-optimize the 
results w.r.t 
topology only 
that results in 
low semantic 
similarity 
2-exponential 
complexity 
time

NETAL Topology only Local topologi-
cal measure 
with iterative 
updates

Greedy-algo-
rithm

IntAct High speed Performance 
is measured 
using topologi-
cal measures 
only

UAlign Sequence + 
topology

UAlign unifies the alignments of eight aligners which include Natalie, SPINAL, 
PISwap, MAGNA, HubAlign, L-GRAAL, OptNetAlign and ModuleAlign. The 
best features of all aligners are used to optimize the alignment w.r.t different 
measures
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and sequence information to calculate biological scores instead of only sequence infor-
mation. SAlign also uses the topological information of the network. The results of 
SAlign are compared with several existing aligners on multiple PPI networks based on 
the percentage of total nodes aligned and the semantic similarity of the aligned nodes. 
For the network pairs with high percentage of proteins with experimentally resolved 3D 
structures, SAlign on average achieves 3–63% higher semantic similarity than existing 
aligners. Moreover, it aligns 5–14% more nodes than existing aligners.

All the existing aligners and SAlign are deterministic in nature and always produce the 
same alignment for multiple runs. There are several cases where alternate options with 
very similar functional similarity are available that might be biologically more relevant. 
To address this issue, we presents a variant of SAlign, SAlignmc , that is based on Monte 
Carlo (MC) algorithm. SAlignmc has the ability to generate multiple global alignments of 
the two networks with similar average semantic similarity by aligning the networks on 
the basis of probabilities (generated by MC) instead of the highest alignment scores.

Results
The results of SAlign and its variant, SAlignmc , are compared with prominent existing 
aligners on BioGRID (three network pairs) and HINT (five network pairs) datasets. 
Existing prominent techniques include HubAlign [1], ModuleAlign [7], NETAL [8], 
PROPER [9], IBNAL [10] and Magna++ [15]. The performance of IsoRank [16], PISwap 
[17], GHOST [18], PINALOG [19], L-GRALL [20], Great [21] and SPINAL [22] have 
been shown to be lower than most of the above mentioned algorithms, so we did not 
include these algorithms in our analysis. The results of all the aligners including SAlign 
are validated by calculating AFS using Wang method [23]. There are two main types of 
validation methods – the first type is of Information Content (IC) based methods like 
Lin [24], Resnick [25] and Schlicker [26]. The second type is of graph based methods 
which include GOGO [27] and Wang [23]. IC based validation gives the semantic simi-
larity between two nodes by counting the number of children and/or distance between 
the term and the closet common ancestor of both terms. IC based methods are depend-
ent on the annotation database which is biased towards the proteins or genes which are 
more studied by the researchers [23]. The graph based methods use only the graph of 
Gene Ontology (GO). Wang is provided by several online tools (GoSemSim [28], G-SES-
AME [29] and NaviGo [30], etc.). The results of the tools vary due to the implementation 
differences and due to the usage of different versions of the GO database. GoSemSim is 
used by most recent studies for semantic similarity calculation as it uses the latest ver-
sion of GO database [31–33]. Therefore, we also use GoSemSim for semantic similarity 
calculation.

The results of SAlign and SAlignmc on mouse‑human, human‑yeast and mouse‑yeast pairs

As we integrate the structural information of the proteins in our methodology, we 
divided our dataset into 2 parts: i) species for which significant number of proteins have 
resolved 3D structures ii) species for which 3D structure information of enough proteins 
is not available. The results of the pairs which have high percentage of proteins with 
experimentally resolved 3D structures (Mouse-Human, Human-Yeast and Mouse-Yeast 
pairs) are analyzed in this section. We first compare SAlign with other aligners on the 
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HINT database, which contains high quality PPI interactions from 8 different databases. 
The results of SAlign on the basis of average percentage of aligned nodes and average 
AFS w.r.t MF and BP are better than all existing aligners (Table 2a).For MF, the AFS of 
SAlign is 48–63% higher than ModuleAlign, IBNAL, NETAL and Magna++ aligners. 
Moreover, it aligns 7–14% more nodes than these aligners. Similarly, for BP, the AFS of 
SAlign is 40–52% higher and it aligns 5–10% more nodes than ModuleAlign, IBNAL, 

Table 2  Comparison between  the  results of  SAlign (SA) and  existing techniques 
on network pairs which have high percentage of proteins with experimentally resolved 3D 
structures on the basis of AFS and percentage of aligned nodes w.r.t MF and BP

The particular results of the best aligners are differentiated from other aligners by italic text

For HINT datasets, the average AFS of SAlign w.r.t. MF and BP is 0.49 and 0.35 respectively

SAlign on average aligns 73% and 84% node in MF and BP respectively. SAlign outperforms all other aligners on the given 
evaluation criteria. For BioGRID datasets, the average AFS w.r.t. MF and BP is 0.53 and 0.38 respectively. SAlign on average 
aligns 81% and 94% node in MF and BP respectively. ‘*’ shows that the results are statistically significant

Pairs Evaluation criteria SA SA
mc HA MA IBN NET M++ PRO

Results on HINT datasets (a)

Mouse human AFSMF 0.58 0.55 0.48 0.42 0.35 0.33 0.36 0.58

AFSBP 0.43 0.41 0.34 0.30 0.26 0.24 0.26 0.45

NodesMF 82 82 78 74 72 73 76 82

NodesBP 85 86 84 81 83 82 82 84

Mouse yeast AFSMF 0.40* 0.39 0.36 0.31 0.29 0.31 0.29 0.36

AFSBP 0.27* 0.26 0.25 0.23 0.21 0.22 0.21 0.25

NodesMF 72 73 71 71 63 64 67 53

NodesBP 92 91 90 88 76 83 83 69

Human yeast AFSMF 0.48* 0.46 0.46 0.26 0.30 0.26 0.26 0.42

AFSBP 0.35* 0.33 0.34 0.22 0.24 0.22 0.22 0.32

NodesMF 64 63 63 60 58 60 59 57

NodesBP 76 76 76 72 70 72 70 68

Avg. AFSMF 0.49 0.47 0.43 0.33 0.31 0.30 0.31 0.45

AFSBP 0.35 0.33 0.31 0.25 0.24 0.23 0.24 0.34

NodesMF 73 73 71 68 64 66 67 64

NodesBP 84 84 83 80 76 79 78 74

Results on BioGRID datasets (b)

Mouse human AFSMF 0.64 0.63 0.57 0.46 0.35 0.33 0.36 0.63

AFSBP 0.48 0.47 0.43 0.35 0.27 0.26 0.28 0.48

NodesMF 89 89 88 85 80 83 86 83

NodesBP 96 96 95 93 90 93 96 93

Mouse yeast AFSMF 0.47 0.46 0.44 0.37 0.28 0.27 0.33 0.47

AFSBP 0.32 0.32 0.29 0.27 0.22 0.22 0.22 0.32

NodesMF 82 82 80 80 76 77 80 58

NodesBP 96 96 94 97 88 92 97 67

Human yeast AFSMF 0.53* 0.52 0.48 0.42 0.34 0.28 0.29 0.49

AFSBP 0.39* 0.38 0.35 0.33 0.27 0.23 0.24 0.38

NodesMF 74 74 73 74 63 72 70 67

NodesBP 91 91 91 91 77 91 90 82

Avg. AFSMF 0.55 0.54 0.50 0.42 0.32 0.29 0.33 0.53

AFSBP 0.40 0.39 0.36 0.32 0.25 0.24 0.25 0.39

NodesMF 82 82 80 80 73 77 79 69

NodesBP 94 94 93 94 85 92 94 79
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NETAL and Magna++ aligners. When we compare SAlign with PROPER, we observe 
that SAlign performs better albeit moderately in terms of AFS w.r.t. to BP and MF (3% 
and 8% respectively). However, it significantly outperforms PROPER in terms of number 
of nodes aligned (13% and 14% respectively for BP and MF). Furthermore, HubAlign’s 
performance is close to SAlign in terms of number of align nodes, but SAlign outper-
forms HubAlign in terms of AFS with a significant margin (13% w.r.t BP and 14% w.r.t 
MF).
SAlignmc , a variant of SAlign with the ability to generate several global alignments 

with similar semantic similarity shows perfomance similar to SAlign in terms of aver-
age percentage of aligned nodes and average AFS w.r.t MF and BP. The average standard 
deviation for SAlignmc is found to be ≈ 5e−5 and ≈ 2e−5 for HINT and BioGRID data-
sets, respectively.

Table  2b presents the results of different aligners on BioGRID datasets. BioGRID 
contains relatively dense networks as compared to HINT as it contains all interactions 
reported in literature. In contrast, HINT contains only high quality, manually reviewed 
interactions. Therefore, the noise level in BioGrid is relatively high. The AFS of SAlign is 
31–89% and 25–67% higher than ModuleAlign, IBNAL, NETAL, and Magna++ align-
ers w.r.t MF and BP, respectively. SAlign outperforms HubAlign with 10–11% margin in 
terms of MF and BP. The performance of SAlign is similar or slightly higher than existing 
aligners in terms of number of aligned nodes except PROPER and IBNAL. SAlign aligns 
11–12% higher number of nodes as compared to IBNAL. When we compare SAlign with 
PROPER, we observe that SAlign performs better albeit moderately in terms of AFS w.r.t. 
to BP and MF (2% and 4% respectively). However, it significantly outperforms PROPER 
in terms of number of aligned nodes (18% and 19% w.r.t MF and BP, respectively).

For global network alignment, the number of aligned nodes are as important as biolog-
ical similarity (AFS). PROPER aligned lower number of nodes as compared to all existing 
algorithms and SAlign. We have compared the results of PROPER and SAlign for equal 
number of nodes as PROPER shows similar AFS for lower number of aligned nodes. For 
Hint datasets, for equal number of aligned nodes, the margin between the performance 
of SAlign and PROPER has been increased to 21% and 22% from 3 and 8% w.r.t BP and 
MF, respectively. Similarly, for BioGRID datasets, the margin has been increased to 7% 
and 11% from 2 and 4% w.r.t BP and MF, respectively. These results show that the small 
alignments result in high AFS as the alignment of a smaller portion of a network is easier 
than the complete alignment. The detailed comparison between PROPER and SAlign for 
equal number of aligned nodes is given in Additional file 1: section 3.

Figure  1a represents the 2D position or performance of each aligner in terms of 
average percentage of aligned nodes and average AFS on HINT datasets. The graph-
ical results are shown in the form of multi-objective functions. Aligner that reaches 
the upper right portion is desired as this portion indicates that the aligner aligns 
the maximum number of biologically relevant nodes. The position of SAlign and 
its variant, SAlignmc , clearly highlight the effectiveness of the proposed technique. 
The performance of ModuleAlign, IBNAL, NETAL and Magna++ is inferior than 
PROPER, SAlign and HubAlign in both objectives (number of aligned nodes and 
AFS) as shown in Fig. 1a. HubAlign is inferior than SAlign and SAlignmc . PROPER 
performs relatively better as compared to previous aligners in terms of AFS but 
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its position along y-axis is not comparable to HubAlign and SAlign. Figure 1b rep-
resents the 2D position of each aligner in terms of average percentage of aligned 
nodes and average AFS on the datasets collected from BioGRID. Figure 1b depicts 
the similar trend to Fig. 1a except for PROPER and ModuleAlign. The performance 
of ModuleAlign is relatively better on BioGRID datasets. PROPER outperforms all 
other aligners in terms of average AFS but it is inferior among all aligners in terms of 
number of aligned nodes. The position of SAlgin is better than all aligners for both 
objectives on BioGRID datasets as well.

Comparison of SA with existing aligners on network pairs which have low percentage 

of proteins with experimentally resolved 3D structures

Table 3 represents the comparison of the proposed technique and existing aligners 
on the network pairs (HINT dataset) which have a low percentage of proteins with 
experimentally resolved 3D structures. The AFS of SAlign is 36–71% and 34–62% 
higher than ModuleAlign, IBNAL, NETAL and Magna++ aligners w.r.t MF and BP, 
respectively. Moreover, it also aligns 7–25% and 7–14% more number of nodes as 
compared to these aligners w.r.t MF and BP, respectively. SAlign outperforms HubA-
lign with 14–15% margin in terms of AFS and it aligns 4–7% more number of nodes 
as compared to HubAlign. When we compare the results of PROPER with SAlign, 
we observe that PROPER produces similar results to SAlign in terms of average AFS. 
However, SAlign outperforms PROPER with significantly high margin in terms of 
number of aligned nodes (15% and 17% w.r.t BP and MF, respectively). The results 
of SAlignmc are similar to SAlign on the basis of average percentage of aligned nodes 
and average AFS w.r.t MF and BP. The average standard deviation for SAlingmc is 
found to be ≈ 4e−5 for Mouse-Fly and Mouse-Worm pairs.

The average results of SAlign and PROPER in terms of AFS are similar, but SAlign 
significantly outperforms PROPER in terms of number of aligned nodes. We com-
pare the results of both aligners for equal number of aligned nodes. The results of 

Fig. 1  Results of all the aligners in terms of align nodes and AFS. The results of SAlign, SAlignmc and existing 
aligners on the basis of average AFS and average percentage of aligned nodes are presented. These results 
are the averages of Mouse-Human, Human-Yeast and Mouse-Yeast pairs collected from HINT a and BioGRID b 
databases. x-axis represents the average AFS score while y-axis represents the percentage of aligned nodes
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SAlign are 9% and 13% higher than PROPER w.r.t MF and BP, respectively. PROPER 
aligns few number of nodes to produce high AFS.

Figure  2 represents the 2D position or performance of each aligner in terms of 
average percentage of aligned nodes and average AFS for the datasets that have low 
percentage of proteins with 3D structures. The position of SAlign and its variant, 
SAlignmc is significantly better than other aligners w.r.t both axis except PROPER. 
The position of PROPER and SAlign along x-axis is close but the position of 
PROPER along y-axis is not comparable to SAlign. The relative position of SAlign 
and its variant, SAlignmc , is better than all existing aligners despite of low percentage 
of structure availability for worm and fly networks.

Table 3  Comparison between  the  results of  SAlign (SA) and  existing techniques 
on  network pairs which have low percentage of  proteins with  experimentally resolved 
structures on the basis of average AFS and average percentage of aligned nodes w.r.t MF 
and BP

The particular results of the best aligners are differentiated from other aligners by italic text

SAlign performs well in terms of average AFS w.r.t MF and BP and it also outperforms existing aligners in terms of average 
percentage of align nodes. ‘*’ shows that the results are statistically significant

Pairs Evaluation criteria Alignment algorithms

SA SA
mc HA MA IBN NET M++ PRO

Mouse fly AFSMF 0.50 0.49 0.42 0.36 0.33 0.32 0.37 0.55*

AFSBP 0.37 0.36 0.31 0.28 0.24 0.23 0.28 0.40*

NodesMF 73 72 67 66 58 57 63 61

NodesBP 80 80 76 74 58 60 62 56

Mouse worm AFSMF 0.56* 0.54 0.49 0.41 0.30 0.29 0.31 0.52

AFSBP 0.41* 0.40 0.37 0.30 0.25 0.24 0.25 0.39

NodesMF 76 74 73 71 62 62 64 64

NodesBP 70 68 67 66 70 72 76 73

Avg. AFSMF 0.53 0.52 0.46 0.39 0.32 0.31 0.34 0.53

AFSBP 0.39 0.38 0.34 0.29 0.25 0.24 0.27 0.40

NodesMF 74 73 70 69 60 59 64 63

NodesBP 75 74 72 70 66 66 69 65

Fig. 2  Results of all the aligners for Mouse-Worm and Mouse-Fly pairs. The results of SAlign, SAlignmc and 
existing aligners on the basis of average AFS and average percentage of aligned nodes are presented. These 
results are the averages of Mouse-Worm and Mouse-Fly pairs collected from HINT. x-axis represents the 
average AFS score while y-axis represents the average percentage of aligned nodes
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Monte Carlo based alignments

Although the results of SAlign, based on greedy alignment algorithm, are similar to 
SAlignmc , it has the limitation of fixed alignment for every run. Sometimes, subsets of 
the alignments generated by the existing aligners, including SAlign, are not biologically 
meaningful. SAlignmc , a variant of SAlign, can handle this situation as it incorporates 
MC based selection to select a protein out of the N most suitable proteins from network 
2 to align to a protein in network 1. It can generate alternate alignments with similar 
average AFS. Their is no existing study which supports such feature.

As SAlignmc has the ability to generate multiple alignments for different runs, it can be 
used in studying the networks of the species that are not well-studied. For most of the 
species, the PPI data is not complete and contains noisy interactions. In this particular 
case, alternate alignments are useful as one can pick the most biologically meaningful 
alignment. Alternate alignments can help in studying different interactions between the 
groups of proteins (of two different species).

For example, if we run the basic SAlign several times on Mouse-Human pair, it always 
aligns P09450 gene with Q13451 gene. The MF and BP scores for this pair are 0.35 and 
0.29, respectively. Conversely, SAlignmc aligns P09450 gene with different genes on every 
run. From the ten different alignments, we pick three genes (Q13485, Q96EC8 and P84077) 
which are aligned by SAlignmc with P09450 gene. The MF scores of these three genes are 
0.71, 0.66 and 0.39, respectively. The BP scores of these genes are 0.51, 0.48 and 0.29, respec-
tively. This shows that SAlignmc has the ability to align the more biologically similar genes.

Optimization of α and β

To maximize the semantic similarity score of PPI networks in terms of BP and MF, the 
values of α and β are tuned using grid search. α is used to assign the weights to topo-
logical and biological similarity scores. β is used to assign the weights to sequence 
and structure similarity scores while computing biological scores. Figure 3 shows the 
results of SAlign on different values of α and β for Mouse-Human pair. The values 
of α and β have a similar impact on MF and BP scores. SAlign achieves the best per-
formance for the species pairs that have high percentage of proteins with available 
3D structures when the values of α and β are set to 0.1 and 0.7, respectively. For the 
species pairs that have low percentage of proteins with available 3D structure, SAlign 

Fig. 3  α/β Tuning for Mouse-Human Pair. The AFS w.r.t MF on Mouse-Human pair is shown. AFS is scaled 
along y-axis while α is scaled along x-axis. Every line represents the MF scores for each value of α at some 
specific β . High value of α indicates the high contribution of topological measure while high values of β 
indicates the high contribution of sequence similarity
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best performs when the values of α and β are set to 0.1 and 0.9, respectively. We have 
tuned the values of α and β on Mouse-Human, Mouse-Yeast and Yeast-Human pairs 
that are collected from HINT database. BioGRID datasets are tested on these values 
to test the generality of SAlign. The Mouse-Worm and Mouse-Fly pairs tuned and 
produce better results on different set of values as worm and fly contain only 2% and 
3% proteins that have available 3D structures. All the results of SAlignmc are com-
puted using the same values of α and β.

Species‑wise tuning of α and β

The effect of α and β is analyzed on all species independently. Every pair is tested on all 
combinations of α and β . The best and worst performance for each specie is reported in 
Table 4. Max and min represents the maximum and minimum AFS score of each spe-
cie pair, respectively, on some specific values of α and β . Average-i presents the average 
results for the first three pairs (Mouse-Human, Mouse-Yeast, and Yeast-Human), while 
Average-ii presents the average results of Mouse-Worm and Mouse-Fly pairs. Gener-
ally, the maximum values in terms of AFS are achieved when the biological information 
is higher than topological information. The maximum performance of SAlign has been 
recorded when the sequential information is 70–90% for different species pairs. The mini-
mum values in terms of AFS are achieved when the topological portion is higher than the 
biological portion in the final alignment score. This analysis highlighted that the biologi-
cal relevance is not associated with topological measures, instead it is highly correlated 
with biological information (sequence and structure). Our results are consistent with the 
results of UAlign in terms of using topology to measure biological similarity [12].

After analyzing the results of SAlign on different set of values of α and β , we concluded 
that to achieve best performance of SAlign, the value of α should lie between 0.1 and 0.2 
while the value of β should be in range of 0.7 to 0.9. As the percentage of available 3D 
structures increases, the value of β should be decreased.

Discussion
This study presents a novel approach to align the two PPI networks by integrating topo-
logical, sequential and structural information. Combining the results from three specie 
pairs that have sufficient percentage of 3D resolved structures available, we show that 

Table 4  The Max–Min performance of  SAlign, on  HINT datasets, achieved on  the  basis 
of AFS w.r.t BP and MF

A combination of two values in parenthesis represents the combination of α and β for which the max-min performance is 
achieved

Species pairs MF: Max MF: Min BP: Max BP: Min

Mouse-human 0.59 (0.0,0.7) 0.38 (0.8,0.0) 0.45 (0.0,0.8) 0.27 (1.0,0.0)

Yeast-human 0.43 (0.0,0.8) 0.29 (0.9,0.0) 0.30 (0.0,0.9) 0.21 (0.9,0.0)

Mouse-yeast 0.49 (0.2,0.9) 0.27 (1.0,0.0) 0.36 (0.0,1.0) 0.22 (1.0,0.0)

Mouse-worm 0.57 (0.2,1.0) 0.35 (0.4,0.0) 0.42 (0.2,0.9) 0.25 (0.9,0)

Mouse-fly 0.52 (0.0,0.9) 0.32 (0.8,0.0) 0.39 (0.0,1.0) 0.24 (0.8,0.0)

Average-i 0.50 0.33 0.37 0.23

Average-ii 0.54 0.33 0.40 0.24
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the average AFS is increased by 8–63% and 3–52% in terms of MF and BP respectively. 
The average percentage of aligned nodes is increased by 7–14% and 5–13% in terms of 
MF and BP respectively.

The global alignment problem can be considered as a multi-objective problem. Ideally, 
the aligners should align the maximum possible number of nodes with high semantic 
similarity. The general trend among existing aligners is that they either perform better 
in terms of AFS or percentage of aligned nodes. For example, the results of PROPER on 
the basis of AFS w.r.t MF and BP are better than all techniques excluding SAlign for all 
pairs. However, PROPER aligns much fewer percentage of nodes. From Table 2b, we can 
see that the results of PROPER on the basis of average AFS are better than all existing 
aligners excluding SAlign and SAlignmc but it aligns 6–17% and 8–19% fewer nodes than 
other aligners w.r.t MF and BP, respectively. The results of ModuleAlign, NETAL and 
Magna++ are relatively higher than existing aligners in terms of average percentage of 
align nodes but these aligners do not perform well in terms of AFS. On average, the per-
formance of IBNAL is inferior among all aligners in terms of average AFS and percent-
age of align nodes. In contrast to the results of existing aligners, SAlign and SAlignmc 
produce accurate results in terms of AFS as well as percentage of aligned nodes. The 
model with few numbers of aligned nodes might fail to capture all the pathways or fail 
to capture the complete pathways. So, the global aligner that produces high number of 
nodes is better in terms of completeness/correctness as compared to the model that 
aligns a smaller number of nodes. The graphical representation of the above analysis is 
given by Figs. 1 and 2.
SAlignmc has the advantage of generating the several global alignments with similar 

AFS. This is advantageous as sometimes subsets of the alignments generated for a pair of 
PPI networks are not biologically meaningful, therefore generating alternate alignments 
can help in achieving biological meaningful network alignments. Moreover, alternate 
alignments can help in studying the interactions of the proteins of the species that are 
not well-studied in the literature.

One of the key hypothesis supported by UAlign was that the topological informa-
tion does not guarantee biological relevance. Different studies (ModuleAlign, IBNAL, 
NETAL and Magnaa++) used different types of topological methods to align the net-
works, but these aligners did not perform better in terms of semantic similarity (Tables 2 
and 3). We have tuned the topological, sequential and structural weights using grid 
search and observed that the highest semantic similarity has been achieved when the 
biological information was high. The lowest semantic similarity has been achieved when 
the topological information was high (Table 4). Furthermore, the behaviour depicted by 
Fig. 3 support the above analysis. As the topological information is getting high (towards 
right side of x-axis), the height of all the curves is falling down. All the lines decreased 
irrespective of β value.

We also noted that the AFS w.r.t MF is higher than the AFS w.r.t BP. This general trend 
among the values of MF and BP is due to the purity of their GO-terms. The GO-terms 
of the molecular functions are specific and well-defined (precise semantics). When we 
compare the GO-terms of the biological processes, the difference is high as biological 
process are large processes and they involve multiple molecular functions. The GO-
terms of biological processes are mostly generic and less-pure. The number of aligned 
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nodes are higher in case of BP as compared to MF due to the same reason as mentioned 
above. The GO-terms of MF are specific and less annotated (functions of the proteins 
are not completely known). In contrast, the generic activity of the proteins is mostly 
known (e.g. proteins are involve in metabolism process).

Conclusion
In this paper, we have proposed a novel method to align two PPI networks. Existing 
studies used topological and/or sequence information to align the networks. This paper 
presented a novel approach that integrated structure, sequence and topological infor-
mation. As the structural information can help inferring function better than sequence 
information therefore the inclusion of structural information results in more biologically 
relevant alignments. We have compared the results of the proposed approach with mul-
tiple prominent tools and found that our approach is significantly better than existing 
studies on majority of the PPI network pairs. The performance of SAlign in terms of 
average AFS is higher than the existing aligners (8–63% and 3–52% w.r.t MF and BP, 
respectively) for the specie pairs that have high percentage of proteins with experimen-
tally resolved 3D structures. It also aligns higher number of nodes than other aligners 
(7–14% and 5–13% w.r.t MF and BP, respectively) for above mentioned specie pairs. 
SAlignmc incorporates MC based selection to generate alternate alignments with similar 
average AFS.

Methods
Overview

Biological networks contain some proteins that are more important than others in terms 
of their topology or biological function. Proteins usually interact with many other pro-
teins. On the basis of these interactions, nodes of the network can be divided into sev-
eral types. The first type are bottleneck nodes (proteins/nodes with high betweenness 
centrality (measure of centrality of a node in a graph/network)), which have a low degree 
(number of direct connection of a node with its neighbours) but connect two clusters of 
nodes together [1, 34]. Removal of the bottleneck nodes causes distortion in the network 
and might split a network into multiple sub-networks. Biologically, these nodes can be 
essential for proper functioning of a pathway. The second type of nodes are hub nodes, 
which have a higher degree. These nodes are more conserved and their mutation rate 
is slow as compared to the normal nodes [1, 35]. The third type are peripheral nodes, 
which are less important and have a low degree. Removal of these nodes usually does not 
disturb the topology of a network.

The alignment process starts by computing topological and biological scores. Follow-
ing HubAlign, SAlign computes the topological score using recursive minimum degree 
heuristic algorithm, while the biological score is computed using protein sequence 
(amino acid) and structure (experimentally resolved 3D structure) similarity matri-
ces. The calculated biological and topological matrices are combined to produce the 
final alignment scoring matrix. Every node of the first network is compared with all the 
nodes of the second network and the best match in terms of alignment score is selected. 
SAlignmc , aligns the nodes on the basis of probabilities generated from alignment scores 
through MC instead of picking the highest-ranked pair. After alignment, SAlign uses 
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Wang method [23] to find the semantic similarity of the aligned nodes. Nodes which 
are similar in terms of biological process, molecular function and topology should have 
high semantic similarity value. We also report the percentage of total nodes aligned after 
the alignment process is complete. A flowchart of the proposed technique is shown in 
Fig. 4 and the pseudo-code of the proposed methodology is given in Additional file 1: 
Algorithm 1.

Topological scoring matrix

Topological score (TS), which represents the importance of a particular node in a net-
work, can be computed in two different ways: locally – by just counting the degree of the 
node and globally – by finding the importance of all the nodes with which that particular 
node is directly or indirectly connected. The global method ensures that bottleneck and 
hub nodes get higher weights than other nodes.

Minimum degree heuristic is a global method used for measuring topology. Mini-
mum degree heuristic deletes nodes with the lowest degree first, and then progressively 
deletes nodes of higher degrees. The algorithm keeps removing the nodes until the 
degree reaches set threshold d. Initially, all the nodes’ and edges’ weights are initialized 
to 0 and 1, respectively. The algorithm updates the weights using equations from Addi-
tional file 1: Equation 1 to Equation 6. The details of minimum degree heuristic method 
can be seen in [1].

Fig. 4  The flowchart of SAlign. Major contribution of the study includes the integration of structural 
information in the alignment process. A variant of SAlign, SAlignmc , is introduced which includes Monte Carlo 
based alignment algorithm
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Biological scoring matrix

The biological matrix in our methodology is an aggregate of sequence and structure sim-
ilarity matrices as shown in Eq. 1.

where i and j are the nodes of network G1 and network G2, respectively. SSi,j and SQi,j 
represent the structure similarity score and sequence similarity score of the nodes of the 
two networks. Bi,j represents the biological similarity score of nodes i and j. The param-
eter β , is used to assign weightage to structure and sequence while computing biological 
scores. If β is set to 0.7 it means that the sequence gets 70% weightage while the structure 
gets 30%.

To calculate the sequence similarity matrix, every node, u, of network G1 is compared 
with every node, v, of network G2 using the BLAST_p method [36]. To calculate the 
structure similarity matrix, we have aligned all the available protein structures of net-
work G1 with all the available protein structures of network G2 using TM-Align [37].

Final alignment score calculation

The topological and biological scores are combined to calculate the final alignment 
score (Eq. 2).

where i and j are the nodes of network G1 and network G2, respectively. Ti,j represents 
the topological similarity score between the nodes i and j. Bi,j represents the biological 
similarity scores between nodes i and j. Ai,j represents the final alignment score assigned 
to node pairs. α is the trade-off constant between topological and biological similarity 
score. α ranges between 0 and 1. If the value of α is set to 0.1, it indicates that the biologi-
cal score has 90% contribution in the final alignment score.

PPI network alignment

Greedy based alignment algorithm

Once the alignment score is computed for every pair of nodes of the two networks, 
the greedy algorithm is applied for network alignment. For every node u of network 
G1, all the nodes of network G2 are compared and the best matching node pairs in 
terms of alignment score are selected. Each node of network G2 can be aligned with 
the node of network G1 only once. Neighbors of the aligned nodes are prioritized 
during the alignment process. In this way, the algorithm maintains topological con-
sistency within the alignment. This procedure continues until all or maximum num-
ber of nodes of a small network are aligned.

Monte Carlo based alignment algorithm

One of the big limitations of the greedy algorithm is the fixed alignment. To cater to this 
limitation and generate multiple different alignments, we have designed a semi_greedy 
alignment algorithm based on MC. The greedy algorithm always picks the best matching 
node but MC based algorithm picks the node from top n nodes. The alignment scores 

(1)Bi,j = (1− β)× SSi,j + β × SQi,j

(2)Ai,j = α × Ti,j + (1− α)× Bi,j
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of the top n nodes are normalized using Eq. 3. These normalized scores are used by MC 
(Eq. 4) for generating the selection probabilities of top n nodes. The final node selection 
is based on these probabilities. All experiments are performed using n = 10 . The pseudo 
code of the proposed work is given in Algorithm 1.

where, s is the summation of the alignment scores of top n nodes while Tn is the list of 
top n nodes. NSi is the normalized score.

where, best is the node with maximum normalized alignment score and used as a refer-
ence for the MC model. K, and T are the constant used by MC algorithm. The product of 
KṪ  is set to 0.1. NSi is the normalized score of the ith node from the list of top n nodes.

(3)NSi = ni/s ∀ ni ∈ Tn

(4)Probi =
exp(−(best − NSi)/KT )∑n
i=1 exp(−(best − NSi)/KT )
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Evaluation of alignment

We have evaluated the final alignment on the basis of percentage of aligned nodes and 
Average Functional Similarity (AFS) which is further categorized into Molecular Func-
tion (MF) and Biological Process (BP). Molecular activity performed by the proteins is 
known as MF. The large biological processes in which proteins are involved is referred to 
as BP. AFS is computed in two stages. In the first stage, GO (gene ontologies) terms are 
extracted and the similarity between the extracted GO terms is calculated in the second 
stage. Different methods like average, max or Best-Matched-Average (BMA) can be used 
to combine multiple GO-terms of a single protein. We have used BMA method to com-
bine multiple GO-terms. The semantic similarity w.r.t MF and BP is calculated using a 
graph based method, Wang. The detailed working of Wang method can be seen in [23]. 
AFS is calculated using Eq. 5.

where sc is the semantic similarity of nodes u and g(u), calculated by Wang, for type c 
( cǫBPorMF  ). |V1| is the length of the alignment (number of pairs). The average of seman-
tic similarities of the complete alignment (pairs of aligned proteins) is referred to as AFS.

Dataset

We have tested our proposed method on HINT (5 network pairs) and BioGrid (3 net-
work pairs) datasets. The details of each network is given in Table 5. The first row of the 
table has the species names. Second and third rows have the number of nodes and edges, 
respectively. The fourth row represents the percentage of proteins with experimentally 
resolved 3D structures.
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Table 5  Data statistics: number of  nodes, edges, and  percentage of  proteins with  3D 
resolved structure is presented

HINT BioGRID

Species Mouse Human Yeast Worm Fly Mouse Human Yeast

Nodes 744 10791 5036 4486 7498 1584 8932 4036

Edges 1229 47427 19085 11496 25679 4574 125765 63161

Structure % 17 43 29 2 3 24 53 38
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