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Background
Over 170 chemical modifications have been discovered in both coding and non-cod-
ing RNAs to date [1–3]. 5-cytosine-methylation is one of the most common post-
transcriptional modifications (PTCM) and has been found in almost all types of RNA 
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that m5CPred-SVM offered substantially higher prediction accuracy than previously 
published methods. It is expected that our method, m5CPred-SVM, can become a use-
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Conclusion:  In this study, by introducing position-specific propensity related features, 
we built a new model, m5CPred-SVM, to predict RNA m5C sites of three different spe-
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[4, 5]. This modification can regulate nuclear mRNA output and RNA variable splic-
ing, increase RNA stability, regulate protein translation and RNA–protein interac-
tion, and maintain the normal structure of RNA [6–14]. Under the catalysis of RNA 
methyltransferase, methylation occurs on the carbon atom in the fifth position of a 
cytosine to generate 5-methylcytosine (m5C). Therefore, accurate identification of 
m5C sites in RNA is of great importance for understanding the mechanism and func-
tion of this modification.

Both experimental and computational methods have been developed to determine 
and predict m5C sites in RNA. Experimental methods such as bisulfite sequencing [5, 
12], m5C-RIP [15], Aza-IP [16], mi-CLIP [17] and RBS-seq [18] have been somewhat 
successful in identification of m5C sites in RNAs of different species. However, these 
experimental methods are time-consuming and expensive, and they are not able to keep 
pace with the explosive increase of RNA sequences revealed by the rapid development of 
sequencing technology. Instead, computational methods can be able to provide a faster 
and more cost-effective way for m5C site identification.

So far, eight computational methods for predicting m5C site have been reported, 
which were summarized in Table  1 according to the datasets, algorithms, webservers, 
evaluation strategies and features employed. Feng et  al. [19] built their model using a 
support vector machine based on PseKNC features extracted from RNA segments, and 
a balanced dataset with 120 m5C sites and 120 non-m5C sites was used to build this 
model. In addition, nine other datasets with 120 non-m5C sites were randomly selected 
to demonstrate their model is not sensitive to the selection of non-m5C sites. Later, Qiu 
et  al. [20] have developed a model called iRNAm5C-PseDNC to predict m5C sites by 
using random forests. Differently, this model was built on an imbalanced and redundant 
dataset with 475 m5C sites and 1425 non-m5C sites. Then, by using ensemble learning 
methods, Zhang et al. [21] have developed a model called m5C-HPCR. A new heuristic 
algorithm was introduced to reduce the number of physical and chemical properties of 
nucleotides. The m5C-HPCR was benchmarked on both Feng et  al.’s dataset and Qiu 
et al.’s dataset. Sabooh et al. [22] have developed a model by fusing composite encod-
ing features including Di-Nucleotide Composition (DNC), Tri-Nucleotide Composi-
tion (TNC) and Tetra- Nucleotide Composition (TetraNC). The same dataset as that of 
Feng et al. [19] and Zhang et al. [21] was again used to build this model by using SVM. 
Recently, Fang et al. [23] compared the balanced dataset used in Feng et al.’s work and 
the imbalanced dataset used in Qiu et al.’s work, and developed a model named RNAm-
5CPred to predict m5C sites of H. sapiens. The model was built by SVM and an inde-
pendent test set was used to evaluate different methods. A new predictor (PEA-m5C) 
developed by Song et al. [24] mainly focused on predicting m5C sites in A. thaliana. The 
model was built by using random forests on an imbalanced dataset but was tested on 
three balanced independent datasets. Li et al. [25] had collected data from GEO data-
base and developed a web server RNAm5Cfinder based on random forest algorithm, 
which can be used to predict m5C sites in eight kinds of cells or tissues of mouse and 
human. All the m5C sites recorded in three GEO records and all other non-m5C sites in 
the genomes were collected to train their models, however, the redundancy of the data-
sets was not well dealt with. More recently, Lv et al. [26] developed a server called iRNA-
m5C to predict m5C sites of four types of species. Their models are built with random 
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forests with features of PseKNC, MNBE (mono-nucleotide binary encoding), KNFC(K-
tuple nucleotide frequency component) and NV (natural vector).

Although these reported methods performed well in the recognition of m5C sites in 
animal and plant RNA sequences, it is possible that the performance can be improved 
by introducing position specific related features such as position specific nucleotide pro-
pensity (PSNP), position specific dinucleotide propensity (PSDP). The effectiveness of 
these features has been proved in previous works [27, 28] for predicting m6A of RNA, 
however, the use of these features to predict m5C sites has not been explored in these 
methods mentioned above. It is expected that the performance of computational meth-
ods can be further improved by mining position specific related features and composi-
tion related features.

In this study, we have developed a new method, m5CPred-SVM, to predict m5C sites 
in RNA sequences of three different species, H. sapiens, M. musculus and A. thaliana. 
First, we generated six kinds of features based on RNA sequences, namely k-nucleotide 

Table 1  Summarization of the existing methods for predicting m5C sites of RNA

a  The numbers in the parentheses are the ratios between m5C and non-m5C sites of that dataset
b  Although the ratio between m5C and non-m5C sites is 120:1320, but the final model is based on a balanced dataset with 
120 m5C and 120 non-m5C sites

Methods Datasetsa Algorithms Webserver 
availability

Evaluation 
strategy

Features Species

iRNA-m5C 
[26]

120 m5C + 120 non-
m5C

97 m5C + 97 non-
m5C

6289 m5C + 6289 
non-m5C

211 m5C + 211 non-
m5C

RF Yes (1) Jackknife 
test

(2) independ-
ent test

PseKNC
MNBE
KNFC
NV

H. sapiens
M.musculus
A. thaliana
S.cerevisiae

RNAm-
5Cfinder 
[25]

All m5C sites 
recorded in 
GSE90963

GSE93749
GSE83432

RF Yes (1) Fivefold 
cross valida-
tion

(2) Independ-
ent test

MNBE H. sapiens
M. musculus

PEA-m5C [24] DatasetCV 
(1196:11960)

DatasetHT (100:100)
DatasetT1 (79:79)
DatasetT2 (73:73)

RF Yes (1) Tenfold 
cross valida-
tion

(2) Independ-
ent test

PseDNC
KNFC
MNBE

A. thaliana

RNAm5CPred 
[23]

Met935 (127:808)
Met240 (120:120)
Met1900 (475:1425)
Test1157 (157:1000)

SVM Yes (1) Jackknife 
test

(2) Tenfold 
cross valida-
tion

(3) Independ-
ent test

KNF
KSNPF
PseDNC

H. sapiens

pM5CS-
Comp-
mRMR [22]

120 m5C and 120 
non-m5C

SVM No Jackknife test DNC,
TNC, Tetra-NC

H. sapiens

M5C-HPCR 
[21]

Met1320(120:1200)b

Met1900 (475:1425)
Ensemble of 

SVM
No Jackknife test PseDNC H. sapiens

iRNAm5C-
PseDNC 
[20]

Met1900 (475:1425) RF Yes Jackknife test PseDNC H. sapiens

m5C-PseDNC 
[19]

Met1320(120:1200)b SVM No Jackknife test PseDNC H. sapiens
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frequency (KNF), pseudo dinucleotide composition (pseDNC), K-spaced nucleotide pair 
frequency (KSNPF), position-specific nucleotide propensity (PSNP), K-spaced position-
specific dinucleotide propensity (KSPSDP) and Chemical Property with Density (CPD). 
Then, the sequential forward feature selection strategy was used to select a compact fea-
ture subset from these six kinds of features. Based on this selected feature subset, our 
method was built using a support vector machine (SVM). At last, the performance of 
our method was compared with several existing methods. The results showed that our 
method can offer substantially better performance than these existing methods on the 
independent test sets.

Results
Performance of each type of feature

By using SVM over the ten folds cross-validation, we have evaluated the performances of 
the six types of extracted features for the three species, namely H. sapiens, M. musculus 
and A. thaliana. As shown in Table 2, PSNP, KSPSDP, CPD are the three features show-
ing the best performances among the six types of features for H. sapiens. The cross-vali-
dation AUROCs for these three features are 0.879, 0.862 and 0.850, respectively. Table 3 
shows that CPD, KSPSDP and PSNP are the three features providing the best perfor-
mances for M. musculus. The cross-validation AUROCs are 0.812, 0.803 and 0.794 for 
these three features, respectively. As for A. thaliana, Table 4 shows that the top three 
models with the best performances were based on PseDNC, 4NF and CPD, and the 

Table 2  The results of feature selection for H. sapiens 

Feature subset KS BC Sn (%) Sp (%) Pre (%) Acc (%) Mcc F1score AUC​

PSNP 1 32 81.5 81.0 81.1 81.3 0.625 0.813 0.879

5SPSDP 0.25 8 82.5 77.5 78.6 80.0 0.601 0.805 0.862

CPD 8 0.25 81.0 76.5 77.5 78.8 0.576 0.792 0.850

5SNPF 0.25 4 73.5 79.5 78.2 76.5 0.531 0.758 0.802

PseDNC 1 4096 74.0 73.0 73.3 73.5 0.470 0.736 0.790

4NF 0.125 0.5 55.5 88.5 82.8 72.0 0.466 0.665 0.783

PSNP + 4NF 1 16 83.5 80.0 80.7 81.8 0.635 0.821 0.893

PSNP + 5SNPF 1 32 81.0 80.5 80.6 80.8 0.615 0.808 0.882

PSNP + 5SPSDP 2 32 82.5 81.0 81.3 81.8 0.635 0.819 0.885

PSNP + PseDNC 0.5 0.25 87.5 70.5 74.8 79.0 0.589 0.806 0.854

PSNP + CPD 8 0.25 82.0 75.5 77.0 78.8 0.576 0.794 0.850

PSNP + 4NF + 5SNPF 1 16 85.5 79.5 80.7 82.5 0.651 0.830 0.897

PSNP + 4NF + 5SPSDP 1 8 82.5 82.5 82.5 82.5 0.650 0.825 0.895

PSNP + 4NF + CPD 8 0.25 82.0 75.5 77.0 78.8 0.576 0.794 0.850

PSNP + 4NF + PseDNC 1 16 80.5 78.5 78.9 79.5 0.590 0.797 0.873

PSNP + 4NF + 5SNPF + 5SPSDP 1 8 81.5 80.5 80.7 81.0 0.620 0.811 0.896

PSNP + 4NF + 5SNPF + CPD 64 16 84.0 73.0 75.7 78.5 0.573 0.796 0.854

PSNP + 4NF + 5SNPF + PseDNC 1 16 85.5 80.0 81.0 82.8 0.656 0.832 0.899

PSNP + 4NF + 5SNPF + PseDNC 
+ CPD

64 16 84.0 73.0 75.7 78.5 0.573 0.796 0.854

PSNP + 4NF + 5SNPF + PseDNC + 
5SPSDP

1 8 81.5 81.5 81.5 81.5 0.630 0.815 0.897
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Table 3  The results of feature selection for M. musculus 

Feature subset KS BC Sn (%) Sp (%) Pre (%) Acc (%) Mcc F1score AUC​

CPD 4 1 74.0 73.1 73.3 73.6 0.461 0.737 0.812

1SPSDP 16 8192 73.0 72.6 72.7 72.8 0.456 0.728 0.803

PSNP 8 8192 75.2 69.1 70.9 72.2 0.444 0.730 0.794

4NF 0.125 0.5 68.0 66.1 66.8 67.1 0.341 0.674 0.730

PseDNC 0.5 256 65.1 66.2 65.8 65.7 0.313 0.655 0.715

1SNPF 1 8 65.5 64.2 64.7 64.9 0.298 0.652 0.702

CPD + 1SPSDP 4 1 74.1 73.1 73.3 73.6 0.472 0.737 0.813

CPD + PSNP 4 1 74.2 73.0 73.3 73.6 0.472 0.738 0.813

CPD + 4NF 32 256 75.1 72.7 73.3 73.9 0.478 0.742 0.815

CPD + PseDNC 64 4096 75.4 72.4 73.2 73.9 0.478 0.743 0.813

CPD + 1SNPF 8 2 74.8 72.3 73.0 73.6 0.471 0.739 0.811

CPD + 4NF + 1SNPF 32 256 75.3 72.7 73.4 74.0 0.480 0.743 0.816

CPD + 4NF + PSNP 32 256 75.2 72.7 73.3 73.9 0.479 0.742 0.815

CPD + 4NF + 1SPSDP 64 4096 75.7 72.8 73.6 74.3 0.486 0.746 0.822

CPD + 4NF + PseDNC 32 256 75.4 72.7 73.4 74.0 0.48 0.744 0.816

CPD + 4NF + 1SPSDP + 1SNPF 64 2048 76.0 72.9 73.8 74.5 0.490 0.749 0.822

CPD + 4NF + 1SPSDP + PSNP 64 4096 75.7 72.8 73.6 74.2 0.485 0.746 0.822

CPD + 4NF + 1SPSDP + PseDNC 64 4096 75.7 72.8 73.6 74.2 0.485 0.746 0.822

Table 4  The results of feature selection for A. thaliana 

Feature subset KS BC Sn (%) Sp (%) Pre (%) Acc (%) Mcc F1score AUC​

PseDNC 0.125 0.25 59.4 80.6 75.4 70.0 0.410 0.665 0.760

4NF 0.125 1 62.3 76.3 72.4 69.3 0.389 0.670 0.759

CPD 16 16 61.1 78.4 73.9 69.8 0.401 0.669 0.753

1SNPF 0.25 0.125 57.7 81.0 75.2 69.4 0.398 0.653 0.753

PSNP 0.5 32 55.8 78.1 71.8 66.9 0.347 0.628 0.724

3SPSDP 0.0625 1 58.2 72.4 67.8 65.3 0.309 0.626 0.694

PseDNC + 1SNPF 0.25 0.25 61.5 78.8 74.4 70.1 0.409 0.673 0.759

PseDNC + PSNP 1 64 60.0 80.6 75.7 70.5 0.419 0.672 0.769

PseDNC + 3SPSDP 0.25 2 63.4 78.7 74.9 71.1 0.426 0.686 0.773

PseDNC + 4NF 0.25 1 61.0 79.7 75.0 70.3 0.414 0.673 0.763

PseDNC + CPD 16 16 61.0 78.7 74.1 69.7 0.404 0.669 0.753

PseDNC + 3SPSDP + 4NF 0.25 1 65.1 77.3 74.2 71.2 0.427 0.693 0.777

PseDNC + 3SPSDP + 1SNPF 0.25 0.5 65.2 77.3 74.1 71.2 0.428 0.694 0.776

PseDNC + 3SPSDP + PSNP 0.25 1 64.1 76.8 73.4 70.4 0.412 0.684 0.768

PseDNC + 3SPSDP + CPD 16 16 61.0 78.8 74.2 69.9 0.404 0.670 0.753

PseDNC + 3SPSDP + 4NF + 1SNPF 0.5 2 64.9 78.1 74.7 71.5 0.433 0.695 0.779

PseDNC + 3SPSDP + 4NF + PSNP 0.5 2 63.5 78.5 74.7 71.0 0.424 0.686 0.772

PseDNC + 3SPSDP + 4NF + CPD 16 16 61.0 78.8 74.2 69.9 0.404 0.670 0.755

PseDNC + 3SPSDP + 4NF + 1SNPF 
+ PSNP

0.25 0.5 68.1 75.5 73.5 71.8 0.437 0.707 0.782

PseDNC + 3SPSDP + 4NF + 1SNPF 
+ CPD

16 16 61.1 78.9 74.3 70.0 0.406 0.670 0.756

PseDNC + 3SPSDP + 4NF + 1SNPF + P
SNP + CPD

16 16 61.1 78.9 74.3 70.0 0.406 0.670 0.756
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corresponding cross-validation AUROCs are 0.760, 0.759 and 0.753. The ROC curves of 
the six types of features for H. sapiens, M. musculus and A. thaliana are shown in Fig. 1.

Feature subsets selected by SFS

Considering the fact that different features may be complementary, combination of the 
six generated features may improve the predictive performance. However, there are also 
redundancy between these features, and a high dimensional input feature can make the 
model training very time-consuming and easily over-fitting. In order to solve the prob-
lem, we have used the sequential forward feature selection (SFS) strategy to select a 
compact feature subset from these features to build our final models.

As shown in Table 2, the cross validation accuracy was convergent at the fourth round 
in the SFS process for training the model of H. sapiens. The highest AUROC is 0.899, 
and the corresponding feature subset includes PSNP, 4NF, 5SNPF and PseDNC.

For M. musculus, the cross validation accuracy was convergent at the third round in 
the SFS process (Table 3). The highest AUROC is 0.822 and the corresponding feature 
subset includes CPD, 4NF and 1SPSDP.

As for A. thaliana, Table 4 shows that the cross validation accuracy is convergent at 
the fifth round in the SFS process. The highest AUROC is 0.782 and the corresponding 
feature subset includes PseDNC, 3SPSDP, 4NF, 1SNPF and PSNP.

Model sensitivity to the selection of negative samples

To evaluate if the selection of the negative samples affects the predictive performances 
of the models, we built other nine models based on positive samples and other nine 
negative subsets for both H. sapiens and M. musculus with the optimal feature subsets. 
Additional file 1: Tables S1 and S2 show cross-validation performances of the 10 models 
built on the positive samples and the 10 negative subsets for H. sapiens and M. musculus, 
respectively. The means and the standard errors of the ROC AUCs of the ten models 
are 0.843 and 0.029, and 0.822 and 0.003, for H. sapiens and M. musculus, respectively. 
Additional file 1: Tables S3 and S4 show the performances of the ten models on the inde-
pendent test sets of H. sapiens and M. musculus, respectively. The means and the stand-
ard errors of the ROC AUCs of the ten models are 0.834 and 0.024, and 0.776 and 0.007, 
for H. sapiens and M. musculus, respectively. The results indicate the performance of the 
models is affected a little for H. sapiens by the selection of negative samples, however, 

Fig. 1  The ROC curves that show the performances of the six type of features for H. sapiens, M. musculus and 
A. thaliana, respectively. a H. sapiens; b M. musculus; c A. thaliana 
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the performance is barely affected for M. musculus by the selection of negative samples. 
The main possible reason is that the dataset for H. sapiens is smaller compared with that 
of M. musculus. The distribution is easily fluctuated for small samples.

Comparison with other classifiers

Studies above has showed that support vector machine performed well in predicting 
m5C sites for different species. In order to further investigate and compare the perfor-
mance of other classifiers, we used other five classifiers, namely KNN [29], Adaboost 
[30], random forests [31], decision tree [32], logistic regression [33] and XGBoost [34] 
to build models based on the selected feature subsets for all the three species. The hyper 
parameters for KNN, Adaboost, random forests and XGboost were also optimized with 
grid search. The k of KNN is set from 1 to 10 with a step 1. The ntree of 10 to 1000 with 
a step 20 is set for both Adaboost and random forests. The learning rate, max depth 
and nrounds of XGboost are set between 2−4 and 2−1, 2 and 10, and 23 and 210, respec-
tively. Table 5 shows the cross validation results of the six classifiers. For H. sapiens, the 
AUCROC value of SVM is 0.899, which is higher than those of XGBoost, RF, KNN, Ada-
Boost, decision tree and LR at 0.020, 0.050, 0.049, 0.039, 0.221 and 0.282, respectively. 
Moreover, the SVM model achieved the highest values in all other metrics. For M. mus-
culus, the AUCROC value of SVM is 0.822, which is again higher than those of RF, KNN, 
AdaBoost, decision tree and LR at 0.008, 0.093, 0.010, 0.207 and 0.011, respectively, but 
a little bit less than XGBoost (0.823). For A. thaliana, SVM again gave the highest AUC 

Table 5  Comparison of  different classifiers based on  the  cross-validation results 
on the training datasets for the three species

Bold numbers indicate the highest values in each column for different species

Species Classifiers Sn (%) Sp (%) Pre (%) Acc (%) Mcc F1score AUROC

H. Sapiens SVM 85.5 80.0 81.0 82.8 0.656 0.832 0.899
XGBoost 82.5 79.5 80.1 81.0 0.620 0.813 0.879

RF 77.5 77.0 77.1 77.3 0.550 0.773 0.849

KNN 84.5 72.5 75.5 78.5 0.574 0.797 0.850

Adaboost 79.5 73.5 75.0 76.5 0.530 0.772 0.860

DT 68.0 65.0 66.1 66.5 0.330 0.670 0.678

LR 62.0 61.5 61.7 61.8 0.235 0.618 0.617

M. musculus SVM 75.7 72.8 73.6 74.3 0.486 0.746 0.822

XGBoost 76.1 73.6 74.3 74.9 0.498 0.752 0.823
RF 75.9 71.6 72.8 73.7 0.476 0.743 0.814

KNN 67.3 67.5 67.5 67.4 0.349 0.674 0.729

Adaboost 74.2 72.6 73.0 73.4 0.468 0.736 0.812

DT 62.6 62.3 62.4 62.5 0.250 0.630 0.615

LR 73.3 73.2 73.2 73.2 0.465 0.733 0.811

A. thaliana SVM 68.1 75.5 73.5 71.8 0.437 0.707 0.782
XGBoost 65.1 76.3 73.3 70.7 0.417 0.690 0.770

RF 66.1 76.8 74.1 71.5 0.432 0.699 0.778

KNN 58.0 78.6 73.1 68.3 0.375 0.647 0.734

Adaboost 65.2 74.2 71.6 69.7 0.395 0.683 0.756

DT 59.5 60.0 59.8 59.8 0.200 0.600 0.587

LR 64.4 69.8 68.1 67.1 0.342 0.662 0.730
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value at 0.782, which is higher than those of XGBoost, RF, KNN, AdaBoost, decision tree 
and LR for 0.012, 0.004, 0.048, 0.026, 0.195 and 0.052, respectively. For other metrics, 
KNN has the highest Sp value and RF has the highest Pre value, while the Sn, Acc, MCC 
and F1 score value of SVM offered the highest values for all the remaining 4 metrics. The 
fact that SVM has outperformed all other six classifiers for both H. sapiens and A. thali-
ana and is comparable to XGBoost for M. musculus further confirms that SVM is a sta-
ble and robust classifier. As a result, SVM was selected as the final classifier in this study.

Comparison with other existing methods

In this study, we have also compared our methods with some other existing m5C site 
prediction methods [19–26]. Because different benchmark datasets have been used for 
building different methods, independent test sets were used to ensure the objectiveness 
of the comparison. These independent test sets were only used for comparison and not 
for building our models. At present, four methods are available to identify m5C sites of 
H. sapiens, namely RNAm5Cfinder [25], iRNA-m5C [26], iRNAm5C-PseDNC [20] and 
RNAm5CPred [23]. Two methods are available for predicting m5C sites of M. musculus, 
namely RNAm5Cfinder [25] and iRNA-m5C [26]. Two methods are available for detect-
ing m5C sites of A. thaliana, namely PEA-m5C [24] and iRNA-m5C. Table 6 shows the 
predictive results of these methods on the independent test sets for the three species, 
and Fig. 2 shows the relevant ROC curves and PRC curves. For H. sapiens, iRNAm5C-
PseDNC has the highest Sp value (0.971), while our method gives significantly higher 
values for Sn, Pre, Acc, MCC, F1 score and AUROC when compared with other meth-
ods. For M. musculus, other than Sp and Pre, again our method has the highest values for 
all the remaining metrics (Sn, Pre, Acc, MCC, F1 score and AUROC). For A. thaliana, 
our method gives the highest value for all the metrics. All these results have indicated 
that our methods performed better than other existing methods in predicting m5C sites.

Table 6  Comparison with existing methods on the independent test sets

Bold numbers indicate the highest values in each column for different species
a  There are no predicted scores of iRNA-m5C, iRNAm5C-PseDNC and PEA-m5C, so the AUROCs for these methods were not 
available

Species Model Sn (%) Sp (%) Pre (%) Acc (%) Mcc F1-score AUROCa

H. sapiens RNAm5Cfinder 37.7 88.4 76.5 63.1 0.303 0.505 0.635

iRNA-m5C 42.1 46.4 43.9 44.2 -0.116 0.429 –

iRNAm5C-PseDNC 4.35 97.1 60.1 50.7 0.039 0.081 –

RNAm5CPred 71.0 66.7 68.1 68.9 0.377 0.695 0.772

our method 75.4 79.7 78.8 77.5 0.551 0.77 0.858
M. musculus RNAm5Cfinder 38.6 78.9 64.5 58.8 0.191 0.483 0.593

iRNA-m5C 0.61 99.8 75.1 50.2 0.032 0.012 –

our method 67.9 74.9 73.0 71.4 0.429 0.704 0.775
A. thaliana iRNA-m5C 72.4 75.6 73.5 74.1 0.481 0.729 –

PEA-m5C 43.2 45.4 43.8 44.3 -0.114 0.454 –

our method 75.5 76.1 76.0 75.8 0.516 0.757 0.836
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Cross‑species verification

In this study, models were built for H. sapiens, M. musculus and A. thaliana individu-
ally. It will be of great interest to evaluate the species-specificity and transferability of 
these models using the cross-species verification. To achieve that, the three models built 
on the three species-specific m5C training data sets were further tested on the three 

Fig. 2  ROC curves and PRC curves for our model and other models on the independent test sets. Upper 
panel: H. sapiens; Lower panel: M. musculus 

Fig. 3  The heat map showing the cross species prediction accuracies. Once a species-specific model was 
established on its own training dataset in rows, it was validated on the data from the same species as well as 
the independent data from the other two species in columns
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independent test datasets. Figure 3 shows the test results. Firstly, all the three models 
performed well on its own independent test sets (see the diagonal of Fig. 3). Secondly, the 
models of H. sapiens and M. musculus both performed poorly on the independent test 
set of A. thaliana, and vice versa. One possible reason to explain this result is because 
H. sapiens and M. musculus are both mammals while A. thaliana is plant. This reason is 
supported by Fig. 4, which shows that the nucleotide distribution in the sequence of A. 
thaliana is different from that of H. sapiens and M. musculus. Thirdly, the M. musculus-
specific model performed well on the H. sapiens-specific independent test set, however, 
the H. sapiens-specific model performed poorly on the M. musculus-specific independ-
ent test set. It might be because the H. sapiens-specific datasets have smaller sizes than 
the M. musculus-specific datasets, and the smaller datasets sizes limit the variety of 
sequences which confines the transferability of the H. sapiens-specific model.

Web implementation

For the convenience of researchers, a user-friendly and publicly accessible web server 
was built to implement our method, which is available at https​://zhula​b.ahu.edu.cn/
m5CPr​ed-SVM. Users can predict the m5C sites on this server without complicated cal-
culation. The detailed procedure to use the web server is as below:

Fig. 4  The nucleotide distribution around m5C and non-m5C sites. The top panel of the x-axis is for m5C 
site containing sequence, while the down panel of the x-axis is for non-m5C site containing sequences. a H. 
sapiens; b M. musculus; c A. thaliana 

https://zhulab.ahu.edu.cn/m5CPred-SVM
https://zhulab.ahu.edu.cn/m5CPred-SVM
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To start with, users need to choose one from the three species, H. sapiens, M. muscu-
lus and A. thaliana. After that, users can type the query RNA sequences into the input 
box or upload a FASTA format file (Note that the input sequence should be in FASTA 
format and the length of each query sequence should be longer than 41 bp). Then, by 
clicking the ’submit’ button, the system will do the calculation and give the final result. 
In the backend, the server would find the cytosine in the query sequence. All cytosine-
centric RNA fragment would be extracted with flank size equals to 20 and the missing 
nucleotides would be filled by ‘N’. There might be lots of cytosines in a sequence, and our 
predictive model will reconstruct the sequence separately for each of them. The server 
home page also contains our contact information for users to contact us in case they 
have problems with the server or have suggestions.

Discussion
Our study shows that the position specific related features can be effective features for 
discriminating m5C sites from non-m5C sites. Theoretically speaking, the difference of 
nucleotide distribution between RNA sequences containing m5C sites and those without 
m5C sites determines how well we can discriminate them. In other words, the nucleo-
tide distribution around the m5C site may have a certain preference. In order to investi-
gate the nucleotide distribution preference for each sequence position, we adopted Two 
Sample Logo tool [35] to conduct visualization of the nucleotide site preference around 
m5C and non-m5C sites in the three species. Figure 4 clearly shows that significant dif-
ference does exist in nucleotide distribution around the m5C sites and the non-m5C 
sites for these three species, and the difference was found to descend in the sequence 
of H. sapiens, M. musculus and A. thaliana according to the depleted ratio (see Y axis of 
Fig. 4). It is shown that the depleted ratio of H. sapiens is from −28.6 to 28.6% and the 
depleted ratio of M. musculus is from −24.2 to 24.2%, which means the differences of 
nucleotide position preferences between positive and negative samples of the two spe-
cies are significantly different. However, the corresponding depleted ratio of A. thaliana 
is from −11.9 to 11.9%. This is in line with our results that the six types of features for 
H. sapiens performed better than those for M. musculus, and the features for A. thaliana 
performed worst. The sequence differences observed here may account for the perfor-
mance difference of the six types features observed before for the three species.

In addition, this figure can also explain why PSNP, KSPSDP performed well among 
the six types of features for both H. sapiens and M. musculus, while PseDNC and 4NF 
achieved best accuracy for A. thaliana. Among these six types of features, PSNP and 
KSPSDP are the two features that consider position preference information. As men-
tioned before, both H. sapiens and M. musculus have high position preferences of nucle-
otide in RNA sequences, thus it is not surprising that PSNP and KSPSDP performed 
best for these two species. On the contrary, the position preferences of RNA sequences 
of A. thaliana are not as significant as those of H. sapiens and M. musculus, so the two 
features, PSNP and KSPSDP, did not performed as well as they did for H. sapiens and M. 
musculus.

KNF, KSNPF and pseDNC are three features related to nucleotide composition of 
RNA segments. KNF can describe the local sequence-order information of nucleotide 
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sequences. The idea of KSNPF is to calculate the frequency of sixteen pairs of nucleo-
tides spaced by K-length polynucleotides. With increasing of K, KSNPF feature takes the 
position correlation information into account within the nucleotide sequence. PseDNC 
feature contains both local and global sequence-order information. The performances of 
these three features are determined by the composition difference between positive and 
negative samples.

The CPD feature contains nucleotide information at each position of the RNA seg-
ments and it also contains the nucleotide composition information along the RNA 
sequences, so that it performs well for all these three species.

According to our results, models based on these selected feature subsets selected by 
SFS had made improvements of about two percents in performance when compared 
with models based on single feature. As all of these selected feature subsets are combina-
tions of the position specific features and the composition features, the improvements 
observed here can further confirm the complementarity between these two groups of 
features. It should be noted that we tried a large number of other types of features gener-
ated by iLearn [36] or Pse-in-One [37] toolkits when we designed the input features (data 
not shown). The sequence-based features generated by these two toolkits have been 
used widely for predicting both RNA post-transcriptional modification sites [38–40] and 
post-translational modification sites [41, 42]. Our experimental results demonstrated 
that our proposed feature combination in this study yielded satisfactory performance, 
which cannot be significantly improved when they were combined with other features.

We summarized the possible reasons for our method to outperform other existing 
methods. For the benchmark datasets, we used larger training sets for H. sapiens and M. 
musculus than iRNA-m5C which is the latest model for multiple species. Large datasets 
are helpful for improvement of the generalization of models. In addition, we added two 
types of position specific propensity features, PSNP and KSPSDP. Our results (Tables 2, 
3 and 4) demonstrate PSNP and KSPSDP have played key roles in improving method 
performance.

Conclusion
In this study, a new computational method, m5CPred-SVM, was developed for predict-
ing m5C sites in RNA sequences. Non-redundant large benchmark datasets were col-
lected for three species, namely H. sapiens, M. musculus and A. thaliana. A total of six 
types of features, including features related to composition, features related to posi-
tion specific and features related to physicochemical properties were used in building 
our models. Results have showed that the features related to position specific are effec-
tive in differentiating m5C sites from non-m5C sites for H. sapiens and M. musculus. 
Nucleotide distribution analysis reveals that nucleotide position preferences are signifi-
cant for both H. sapiens and M. musculus, which account for the effectiveness of the 
features related to position specific propensity. For the same reason, the features related 
to position specific propensity are not that effective for A. thaliana because the nucleo-
tide position preferences are less significant compared with that for the other two spe-
cies. Optimal feature subsets were selected from these six types of features using the 
sequential forward feature selection strategy. All the three subsets consisted of feature 
related position specific propensity and feature related to nucleotide composition which 
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indicate the complementarity between the features. The performance of our method 
m5CPred-SVM was objectively compared with other existing methods by using inde-
pendent test sets. The results showed that our method can offer significantly better per-
formances than all the other existing methods. Finally, a web server was built at https​
://zhula​b.ahu.edu.cn/m5CPr​ed-SVM to facilitate the access to our method by academic 
users to predict the m5C sites in RNA sequences.

Methods
Benchmark datasets

High quality benchmark datasets are extremely important for training and evaluating 
machine learning models. In this study, m5C data of three species have been collected 
from recently published literature. For A. thaliana, same datasets constructed by Lv et al. 
[26] were used for fair comparison. The positive RNA segments which contain m5C site 
in the center were collected from NCBI Gene Expression Omnibus (GEO) database with 
the accession number GSE94065 [43]. This dataset contains 6289 positive samples and 
6289 negative samples.

The positive samples in the datasets of M. musculus and H. sapiens were obtained from 
the works of Yang et al. [44] and Vahid Khoddami et al. [18], respectively. For H. sapiens, 
we collected the data from the work of Vahid Khoddami et al. [18]. The file “GSE90963_
Table_S1-m5C_candidate_sites.xlsx” was downloaded from GEO (https​://www.ncbi.
nlm.nih.gov/geo/query​/acc.cgi?acc=GSE90​963), which recorded both m5C sites infor-
mation by their RBS-seq work and the m5C sites information in other public datasets. 
Firstly, we collected the sites with high-threshold in their RBS-seq work. Secondly, we 
collected the sites both reported in their RBS-seq work and the public datasets. Totally, 
408 m5C sites were collected for H. sapiens. For M. musculus, we collected the data from 
Additional file 1: Table S3 of Yang et al.’s work [44]. The m5C sites detected in six differ-
ent tissues are all considered as positive examples, thus we obtained 13042 RNA seg-
ments centered with m5C. In order to avoid bias of the datasets, similar sequences in 
the datasets were removed using the CD-HIT program [45] with the sequence identity 
threshold set at 70%, through which we have obtained 5563 and 269 positive samples for 
M. musculus and H. sapiens, respectively. In machine learning, the model performance 
may be degraded and the prediction results may be out of balance due to the inconsist-
ency of the amount of data between the positive sample and the negative sample [46, 
47]. Therefore, we have randomly selected the same number of negative samples as that 
of positive samples for the establishment of the benchmark dataset. It is worth noting 
that the redundancy of the negative examples was also removed using CD-HIT with the 
sequence identity threshold set at 70%. To verify if the model is sensitive to the selection 
of negative samples, we conducted the same procedure to generate other nine negative 
subsets for both H. sapiens and M. musculus. We have not done the same thing for A. 
thaliana because we did not know the details about the generation of negative samples 
of A. thaliana which were obtained from Lv et al.’s work.

The benchmark dataset is usually divided into two parts. One is the training dataset 
and the other is the independent test set. The training dataset is used for model con-
struction, cross-validation and determination of hyper-parameters of the learning algo-
rithms. The independent test dataset is used to test the performance and generalization 

https://zhulab.ahu.edu.cn/m5CPred-SVM
https://zhulab.ahu.edu.cn/m5CPred-SVM
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90963
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90963
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ability of the model. In this study, 69 positive samples and 69 negative samples were ran-
domly selected as the independent test dataset and the remaining 200 positive samples 
and 200 negative samples were used as the training dataset for H. sapiens. For M. mus-
culus and A. thaliana, 1000 positive samples and 1000 negative samples were randomly 
selected as the independent test datasets, and the remaining samples (4563 positive sam-
ples and 4563 negative samples for M. musculus, 5298 positive samples and 5298 nega-
tive samples for A. thaliana) were used as the training datasets.

The fragment of each RNA in the datasets is represented as:

where N−� represents the upstream nucleotide of central cytosine and N� . rresents 
the downstream nucleotide of central cytosine. In most previous works [19–22, 26], the 
length of the input RNA segments was set to 41 and the m5C site is located in the cen-
tral position 21. In this study, we have also extracted features from the 41 bp long RNA 
segments.

The details of the training dataset and the testing dataset are shown in Table 7.

Feature extraction

K‑nucleotide frequency (KNF)

As a classic sequence coding feature, K-nucleotide frequency (KNF, also called NC 
(Nucleotide composition)) has been widely used to build bioinformatics models [48–50]. 
Suppose we have an RNA segment R of length L:

ni indicates the ith nucleotide of R, and it can be any one of the four nucleotide bases 
in RNA, i.e.ni ∈{A, C, G, U}. For a given K value, KNF represents the frequency of occur-
rence of each K-mer nucleotide component in the nucleotide sequence. It can be calcu-
lated by the formula (3).

where n1n2 . . . nK  indicates a K-mer nucleotide component. It is not difficult to find 
that the K-mer nucleotide composition of an RNA sequence is a 4K-dimensional vector 
consisting of frequency of each K-mer type. As the value of K increases, the dimension 

(1)R�(C) = N−�N−(�−1) . . .N−1CN1 . . .N+(�−1)N�

(2)R = n1n2n3 . . . ni . . . nL−1nL

(3)f (n1n2 . . . nk) =
N (n1n2 . . . nk)

L− K + 1

Table 7  The information of the datasets

a   ‘H’ represents H. sapiens, ‘M’ represents M. musculus and ‘A’ represents A. thaliana

Dataseta Length (bp) Positive subset Negative subset Total

H_train 41 200 200 400

H_test 41 69 69 138

M_train 41 4563 4563 9126

M_test 41 1000 1000 2000

A_train 41 5289 5289 10,578

A_test 41 1000 1000 2000
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of the feature vector increases exponentially. For example, when K = 1, four types of sin-
gle nucleotide frequencies can be obtained. We chose the K value of 4 to calculate the 
frequency at which 4 nucleotides appears (4NF) according to a previous work [23]. The 
RNA fragment can be encoded as:

K‑spaced nucleotide pair frequency (KSNPF)

K-spaced nucleotide pair frequency is another method for encoding RNA sequences 
[51]. This method mainly calculates the frequency of 16 pairs of nucleotides separated 
by k-length polynucleotides. We use n1 × {K}n2 to represent K-spaced nucleotide pairs. 
Since n1 and n2 have four possible values, so there are sixteen ( 42 = 16) possible combi-
nations. For example: AxxC is a two spacer nucleotide pair. The calculation formula of 
KSNPF is

In this work, we tried different K values in order to determine the best KSNPF features 
for different species. The selection of K for different species can be found in Additional 
file 1: Table S5.

Position‑specific nucleotide propensity (PSNP)

In several previous works [27, 28, 51], position-specific nucleotide propensity has been 
used to predict the post-transcriptional modification of RNA. This feature is obtained by 
calculating the difference in nucleotide frequencies at specific positions between posi-
tive and negative RNA fragments. It was first introduced in Li et al.’s work [28]. Accord-
ing to Eq. (1), the RNA fragment can be re-expressed as:

First, we calculated the frequency of the four nucleotides at the i-th position in the 
positive sample and the negative sample, respectively. After that, the 4-dimensional 
positive vectors and the 4-dimensional negative vectors were combined individually to 
obtain two 4 × (2�+ 1) position-specific occurrence frequency matrices for positive and 
negative samples, respectively. The two matrices were named as M+ and M−,M+ is for 
positive samples and M− is for negative samples. Through M+ and M−,we defined the 
position-specific nucleotide propensity matrix, denoted as XPSNP , as below:

K‑spaced position‑specific dinucleotide propensity (KSPSDP)

Position-specific dinucleotide propensity is defined using the similar procedure to define 
PSNP. To calculate this feature, we rewrite Eq. (6) as a dinucleotide:

(4)R(4NF) = [fAAAAfAAAC . . . fGCUU . . . fUUUGfUUUU ]

(5)f (n1x{K}n2) =
N (n1x{K}n2)
L− K + 1

(6)R� = N1N2 . . .Ni . . .N2�+1

(7)XPSNP = M+ −M−

(8)R� = D1D2 . . .Di . . .D2�



Page 16 of 21Chen et al. BMC Bioinformatics          (2020) 21:489 

where Di represents the dinucleotide at the i-th position of RNA and has 16 types 
of values. By using the similar way for calculating the PSNP feature, we can get the 
( 16× 2� ) position-specific dinucleotide propensity (PSDP) matrix.

To calculate K-spaced position-specific dinucleotide propensity, n1 × {K}n2 was 
used to represent K-spaced nucleotide pairs. PSDP is a specific case for KSPSDP when 
K equals 0. In this work, we tried different K values to determine the best KSPSDP 
features for different species. The selection of K values for different species can be 
found in Additional file 1: Table S6.

Pseudo dinucleotide composition (PseDNC)

The pseudo K-tuple nucleotide composition (PseKNC) has been used to represent an 
RNA sequence with a discrete model or vector which can keep considerable sequence 
order information, especially the global or long-range sequence order information 
[20, 26, 52, 53]. In this study, we used PseDNC (K = 2 for PseKNC) to encode the 
RNA segments. Three physicochemical properties, free energy, hydrophilicity and 
stacking energy were used to generate features of PseDNC. The values of these three 
physicochemical properties of 16 dinucleotides are shown in Table 8.

Chemical property with density (CPD)

The four types of nucleotides in RNA (A (adenine), U (uracil), G(guanine) and 
C(cytosine)) can be divided into three categories according to their chemical struc-
tures and internal binding characteristics [54]. Considering the ring structure of the 
nucleotide, C and U are pyrimidines with one ring, while A and G are purines with 
two rings. As for the secondary structure, the hydrogen bonds of A and U are weak, 
while the hydrogen bonds of G and C are strong. In terms of chemical functionality, 

Table 8  Three types of physicochemical properties of dinucleotides in RNA

Dinucleotide Free energy Hydrophilicity Stacking energy

GG −3.260 0.170 −11.100

GA −2.350 0.100 −14.200

GC −3.420 0.260 −16.900

GU −2.240 0.270 −13.800

AG −2.080 0.080 −14.000

AA −0.930 0.040 −13.700

AC −2.240 0.140 −13.800

AU −1.100 0.140 −15.400

CG −2.360 0.350 −15.600

CA −2.110 0.210 −14.400

CC −3.260 0.490 −11.100

CU −2.080 0.520 −14.000

UG −2;.110 0.340 −14.400

UA −1.330 0.210 −16.000

UC −2.350 0.480 −14.200

UU −0.930 0.440 −13.200
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U and G are classified as keto groups, while A and C are in amino groups. These 
three aspects of chemical properties can be represented as a three-dimensional vec-
tor (x, y, z), where x, y, z represent the ring structure, the hydrogen bond, and the 
chemical functionality of the nucleotides respectively. In this way, each nucleotide 
ni =

(

xi, yi, zi
)

 in an RNA sequence can be encoded as:

Thus, the four types of nucleotide, A, U, G and C, can be encoded as (1,1,1), (0,0,1), 
(0,1,0), (1,0,0), respectively.

In order to better represent the distribution of each nucleotide in the RNA sequence, the 
density of a nucleotide, which describes the frequency of the nucleotide occurring before 
current position, is denoted as:

where di is the density of nucleotide, i is the current position of RNA sequence, |Ni| is the 
length of the ith prefix string {n1, n2, . . . , ni} in the sequence, and p is the symbol of {A, U, 
G, C}.

By integrating the nucleotide chemical property and the distribution of each nucleotide 
in the RNA sequence, a ( 4 × ξ)-dimensional CPD feature vector can be generated, where ξ 
is the length of the RNA segment.

Support vector machine

Support vector machine (SVM) is a popular statistical learning method and has been exten-
sively used to build bioinformatics models [23, 50, 55–58] because of its high efficiency 
and robust output. In this study, we used the MATLAB function FITCSVM to build our 
models. SVM uses kernel functions to project low-dimensional data into high-dimensional 
space. A few different kernel functions can be used in training. In this work, the radial basis 
kernel function was selected with two hyper parameters (box constraint and kernel scale) to 
be used with FITCSVM function. The two parameters were optimized by a grid search with 
box constraint from 2−5 to 215 and kernel scale from 2−10 to 26.

Evaluation criteria

Ten-fold cross-validation was used to evaluate the generalization performance based on 
the training dataset. For the ten-fold cross-validation, the training dataset was divided into 
ten roughly equal-sized subsets with a stratified sampling, and then one subset was used 
as a validation set whereas the remaining nine subsets were combined for training. This 
process was repeated ten times with ten models built and validated. Finally, the average 
performance was obtained. In this study, the ten-fold cross-validation was used for feature 
selection, parameter optimization and classifier comparison.

Different metrics were used to assess the model performance, namely accuracy (Acc), 
sensitivity (Sen), specificity (Spe), precision (Pre), Matthews correlation coefficient (Mcc) 
and F1-score. The specific formulas are as below:

(9)xi =
{

1ifniε{A, G}
0ifniε{U , C} , yi =

{

1ifniε{A, C}
0ifniε{U , G} , zi =

{

1ifniε{A, U}
0ifniε{C , G}

(10)di =
1

|Ni|

i
∑

j=1

f
(

nj
)

, f
(

nj
)

=
{

1 if nj = p
0 if ni �= p
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where, TP, TN, FP and FN represent the number of true-positive (m5C sites that were 
predicted as m5C sites), true-negative (non-m5C sites that were predicted as non-m5C 
sites), false-positive (non-m5C sites that were predicted as m5C sites) and false-negative 
(m5C sites that were predicted as non-m5C sites) samples, respectively.

In addition, we draw the receiver operating characteristic curve (ROC curve) [59] 
and precision recall curve (PRC curve) [60], to evaluate the performances of different 
models. ROC curve demonstrates the relationship between sensitivity and 1-specific-
ity at different thresholds, and PRC curve reflects the trend of precision changing with 
recall. These two curves can be used to evaluate the predictive capability of the pro-
posed method across entire range of decision values. The areas under these two curves 
(AUROC and AUPRC) were also calculated to quantify the model performance. AUROC 
and AUPRC have value ranging from 0 to 1. The closer the value approximate 1, the bet-
ter the model performance is.

Feature selection

There are three major methods for feature selection: Filter, Wrapper and Embedded. We 
have chosen the sequence forward selection algorithm (SFS) under Wrapper as the fea-
ture selection algorithm in this study. Six types of features are generated and constitute 
the high-dimensional feature vector of each sample. The following specific operations of 
SFS were used to achieve a compact and efficient feature subset: in the first round, the 
ten-fold cross-validation results were obtained for models built on each of the six types 
of features. The best performing feature type was selected according to the AUROC 
value and then proceeded to the next round of calculation. In the second round, the 
remaining five types of features were added to the best performing feature type selected 
in the first round. Similarly, the best performing feature combination was again selected 
according to the AUROC value and proceeded to the next round of calculation. This 
process continued until AUROC converged. The subset with the highest AUROC value 
was considered as the optimal feature subset.

The entire procedure of m5CPred-SVM is illustrated in Fig. 5.
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