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Abstract 

Background:  The ability to compare samples or studies easily using metabarcoding 
so as to better interpret microbial ecology results is an upcoming challenge. A grow‑
ing number of metabarcoding pipelines are available, each with its own benefits and 
limitations. However, very few have been developed to offer the opportunity to charac‑
terize various microbial communities (e.g., archaea, bacteria, fungi, photosynthetic 
microeukaryotes) with the same tool.

Results:  BIOCOM-PIPE is a flexible and independent suite of tools for processing data 
from high-throughput sequencing technologies, Roche 454 and Illumina platforms, 
and focused on the diversity of archaeal, bacterial, fungal, and photosynthetic microeu‑
karyote amplicons. Various original methods were implemented in BIOCOM-PIPE to (1) 
remove chimeras based on read abundance, (2) align sequences with structure-based 
alignments of RNA homologs using covariance models, and (3) a post-clustering tool 
(ReClustOR) to improve OTUs consistency based on a reference OTU database. The 
comparison with two other pipelines (FROGS and mothur) and Amplicon Sequence 
Variant definition highlighted that BIOCOM-PIPE was better at discriminating land use 
groups.

Conclusions:  The BIOCOM-PIPE pipeline makes it possible to analyze 16S, 18S and 
23S rRNA genes in the same packaged tool. The new post-clustering approach defines 
a biological database from previously analyzed samples and performs post-clustering 
of reads with this reference database by using open-reference clustering. This makes it 
easier to compare projects from various sequencing runs, and increased the congru‑
ence among results. For all users, the pipeline was developed to allow for adding or 
modifying the components, the databases and the bioinformatics tools easily, giving 
high modularity for each analysis.

Keywords:  Ecology, Metabarcoding, Bacterial, Archaeal, Fungal, Photosynthetic 
microeukaryotes, ReClustOR, France, Land-use
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Background
Interest in microbial ecology has been revived in the last 2  decades largely thanks to 
meta-omics approaches and more specifically to metabarcoding based on high-through-
put DNA sequencing. This has substantially improved knowledge on the interactions of 
microorganisms with their environment and also with one another. This approach has 
become a reference for characterizing biodiversity at a reasonable cost [1].

The “Big Data” phenomenon has emerged as a powerful informative source in micro-
bial ecology, but this field requires technical and financial support to be explored. Among 
others, the datasets generated by second- and now third-generation DNA sequencing 
require the ongoing development of algorithms, software, pipelines and standard operat-
ing procedures for data analysis, interpretation and reproducibility [1, 2]. Many popular 
(e.g., mothur, QIIME, FROGS) or new (sl1P, iMAP, ANCHOR) pipelines are currently 
dedicated to the analysis of ribosomal DNA sequence data and are becoming more and 
more accessible to scientists from various fields [3–8]. The choice to use one tool among 
others remains very variable and often constrained by different parameters (e.g., com-
puter infrastructure, available staff, clustering method, database availability). In fact, 
each pipeline provides a full set of tools often associated with its own chimera detection 
and/or OTU clustering methods, and with only one or a few reference taxonomy data-
bases available. One of the key steps is the detection of chimeric sequences, and various 
methods exist that may impact on the downstream analysis [9]. The story is the same for 
clustering sequences into OTUs, another key step: microbial structure or diversity can 
be impacted depending on the chosen approach [10, 11]. However, one of the upcoming 
challenges is to make it easier to compare datasets from different projects. Otherwise it 
is not reliable to compare the results of a given study with those of other studies [12]. We 
propose a new user-friendly pipeline called BIOCOM-PIPE (initially referred to GnS-
PIPE in previous studies [13]), developed to be used by biologists as well as computer 
scientists. More precisely, BIOCOM-PIPE also relies on the expertise of the GenoSol 
platform1 to conduct biological validations for defined bioinformatic steps. BIOCOM-
PIPE performs diversity analysis of prokaryotic (archaea, bacteria) and eukaryotic (fungi, 
photosynthetic microeukaryotes) organisms and is particularly effective for large data-
sets such as the RMQS, Tara Oceans and Earth or Human Microbiome projects [14–16]. 
BIOCOM-PIPE is completely modular, as the user can choose one or several available 
modules, tools, or programs, with default or expert parameters. Moreover, this pipeline 
integrates ReClustOR, an innovative approach aimed at defining a biological reference 
database from a set of analyzed samples, relying on a post-clustering tool that improves 
the reliability of OTU-based results and analyses [17]. Lastly, a comparison of differ-
ent pipelines dedicated to analyze amplicon sequence data (mothur and FROGS) and 
ASV definition was performed using several datasets (a simulated, an artificial and a real 
dataset) to highlight differences in terms of chimera detection, clustering method and 
consistency, and taxonomic assignment.

1  The GenoSol platform initially developed GnS-PIPE, devoted to the conservation and analysis of the genetic resources 
of soil microbial communities [46].
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Methods
Workflow: a brief description of the BIOCOM‑PIPE pipeline

BIOCOM-PIPE is a bioinformatic pipeline defined to characterize various amplicon 
sequence datasets from 16S, 18S and 23S marker genes. It includes steps dedicated 
to clean the raw data files, pre-process the raw reads to reduce sequencing and PCR 
errors, and process the cleaned reads to define OTUs and classify all sequences with a 
taxonomic assignment (Fig. 1). Many tools and methods were included, such as PRIN-
SEQ [18], FLASH [19], Usearch [20], FastTree, Infernal [21], RDP Bayesian Classifier 
[22], UniFrac [23] and ReClustOR [17]. The main results are available through a local 
website with arrays and dynamic graphics for better scalability and usability (Addi-
tional file 1: Doc S1). The complete pipeline with associated taxonomic databases can 
be downloaded from the Zenodo repository (10.5281/zenodo.3678129).

Implementation

BIOCOM-PIPE was mainly developed in PERL (v5.16.0), except some specific com-
ponents of the workflow written in Python (v2.7) or in C language and encompass-
ing various tools (Additional file  2: Figure S1). These third-party programs must be 
installed (and potentially compiled for some of them) in specific folders. Dedicated 
links to these tools with validated versions and specific installation procedures are 
also directly available from the Zenodo repository (10.5281/zenodo.3678129). A vir-
tual machine encompassing the complete pipeline into an UBUNTU system is also 
available (10.5281/zenodo.3945964).

A dataset example is made available to understand BIOCOM-PIPE and check 
the installation process (Additional file  1: Doc S1, see Tutorial section). Moreover, 
all input and expected output files for this example are also available (https​://doi.
org/10.5281/zenod​o.39477​84). All steps are optimized and/or parallelized, and auto-
matically integrated in BIOCOM-PIPE. It is noteworthy that amplicon reads from 
both Roche 454 or Illumina sequencing technologies can be treated (Fasta reads from 
other sources too). Moreover, this pipeline is completely modular, so that amplicon 
reads can be in paired ends or not, with or without multiplex identifiers (managing 
single or dual index) and/or primers, and in dereplicated reads or not. The integrated 
taxonomic databases were filtered based on standards detailed in supplementary 
materials (Additional file 1: Doc S1).

Bioinformatics analysis: robustness and reproducibility

For better flexibility of the setting-up analysis, this pipeline was designed to be used 
with command lines in UNIX environments, but it can also run on POSIX-compatible 
platforms, such as MacOS/X. However, to facilitate its use for scientists unfamiliar 
with command lines, it can be used by completing a project file (project.csv, (Addi-
tional file  1: Doc S1)) and by running the pipeline. The information in the project 
file is then retrieved to launch the pipeline with default parameters. For traceability 
reasons of current projects but also for manageability, this project file is mandatory 
to have the configuration file generated (Input.txt) (Additional file  1: Doc S1). The 

https://doi.org/10.5281/zenodo.3947784
https://doi.org/10.5281/zenodo.3947784
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project file is a simple tabulated file located in the Project_file subfolder (which will 
also contain the generated summary files and the local website) (Additional file 3: Fig-
ure S2).
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Fig. 1  Schematic illustration of the BIOCOM-PIPE pipeline. The initial step in the analysis consists in 
checking uniqueness and preparing the files required to run the pipeline (light blue box). It is followed by 
a pre-processing step to check the quality of reads. Read pairs are demultiplexed if necessary, merged, and 
primers are trimmed (green box). The next key step consists in processing the clean reads by aligning them 
with a reference structure, hunting-recovering chimeras, clustering and post-clustering, and ending with 
diversity analysis (red box). The last step consists in generating a complete website providing all the results to 
be presented in tabular and graphics forms (purple box)
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It is also mandatory to define the steps to be performed (an example is available in 
Additional file 1: Doc S1). This Input.txt file lists all the available steps, with associated 
parameters, and can be handled easily, even for users not fluent in bioinformatic. For 
example, to manage the workflow definition easily, all steps have one common param-
eter represented by one question, “Step to do [yes–no]?” (Additional file 1: Doc S1). Each 
parameter can be defined using an answer to a question asked in this configuration file. 
For each step, the user has access to one or several text file reports integrating both user 
choices and results, also provided by the local website. Consequently, when the analysis 
is complete, the user can choose between two alternatives, either by retrieving the sum-
mary files from the folder tree "Summary_files" or by using the local website generated 
in the “website” folder (Additional file  3: Figure S2). This way the user can effectively 
access to results and parameters with tables or interactive charts (Additional file 1: Doc 
S1).

Step 1: preparation files

As detailed above, the preparation files represent a first step. Although this step is not 
systematically required, it is strongly recommended to run it to: (1) clean the project 
directory, if previous analyses have been performed but not deleted, (2) extract the raw 
data if datasets were compressed, and (3) create the default configuration file depending 
on the molecular marker (16S, 18S or 23S) and the used sequencing technology (Roche 
or Illumina).

Step 2: data pre‑processing

Pre-processing includes several components that can be combined or launched indepen-
dently (Fig. 1). Firstly, the initial trimming of raw reads can be performed using PRIN-
SEQ [18]. It permits to efficiently check and prepare datasets prior downstream analyses, 
and obviously improve the merging of paired-end reads using FLASH [19]. Following 
this merging (if necessary), the demultiplexing tool can be applied, and all reads without 
an existing multiplex identifier will be deleted for further steps. Then, all selected raw 
reads can be preprocessed, and low-quality reads can be deleted based on their mini-
mum length, their number of ambiguities (Ns), and their primer sequences depending 
on user choices selected in the configuration file. The last step of data pre-processing is 
automatically applied to save computing time and consists in rigorous dereplication (i.e., 
clustering of strictly identical sequences).

Step 3: “hunting–recovering” concept: chimera detection and filtering process

The “hunting–recovering” process encompasses four different steps (global alignment, 
clustering, hunting, and recovering). It is devoted to efficiently identify and delete reads 
with high-error rates as well as potential chimeric reads (Fig.  1). This step relies on 
the clustering of reads to define OTUs and then check for chimeras in low-abundance 
OTUs.

The clustering step of BIOCOM-PIPE relies on global alignment of all reads with 
Infernal [21], a program developed to create multiple sequence- and structure-based 
alignments of RNA homologs using covariance models. Then, all reads are clustered 
into OTUs using a homemade de novo clustering approach similar to CrunchClust [17, 
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24]. Briefly, this clustering is based on a greedy strategy in which OTUs are constructed 
incrementally by comparing an abundance-ordered list of input reads against a repre-
sentative set of already chosen sequences. An OTU is defined by the most abundant 
read, known as the centroid, and each read in the OTU must display similarity (com-
puted using Levenshtein distance) above the pre-defined identity threshold with the 
centroid. Moreover, global alignment provides a more intuitive handling of sequenc-
ing errors, such as homopolymer errors (from 454 pyrosequencing reads for example) 
that are easily detected thanks to the secondary-structure-aware aligner. Therefore, such 
homopolymer errors can be easily ignored during the clustering step if needed. A step 
is dedicated to the filtering of sequences based on the quality of alignment against the 
chosen rRNA structure.

In order to identify the chimeras produced during PCR amplification [25], various 
tools based on reference or de novo approaches (e.g., ChimeraSlayer [26], Perseus [27], 
UCHIME [28] or VSEARCH [29]) have already been developed.

In BIOCOM-PIPE, an alternative approach was implemented, named “Hunting–
Recovering”. The “Hunting” step removes the rarest OTUs according to a defined thresh-
old. For example, if an OTU is represented by 0.01% of reads or less (1 read out of 10,000 
reads in total), it will be deleted only if it is unique (defined as a single singleton). It is 
noteworthy that all OTUs with one read will always be deleted during this step. Then, 
the “Recovering” step can be applied to check the quality of all discarded reads after the 
“Hunting” step, based on their taxonomic assignments. More precisely, all discarded 
reads are compared with a dedicated reference database (e.g. SILVA, RDP) [30, 31] using 
similarity approaches with USEARCH [20], and kept only if their identity is higher than 
the defined threshold at one specific taxonomic level. The user can choose to (1) keep 
all non-clustered singleton reads (no hunting-recovering step), or (2) delete them (only 
the hunting step is computed), close to some filters advised [32], or (3) carefully check 
singleton reads using the “Hunting–Recovering” process (both steps are selected). The 
stringency of this chimera detection can be completely optimized by each user, depend-
ing on used steps, chosen taxonomic databases and/or defined parameters.

Lastly, a rarefying step can be applied to standardize the numbers of high-quality reads 
per sample, based on user choice. This step is recommended before subsequent analyses, 
to compare the community composition (alpha-diversity) of various samples efficiently 
[33].

Taxonomic analysis

The BIOCOM-PIPE taxonomic affiliation strategy is based on the complete classifica-
tion of all high-quality reads, not just one representative read for each OTU. This step 
is performed using either the RDP classifier tool [22] or USEARCH [20] against SILVA 
(16S/18S) [30], Greengenes (16S) [34] or µgreen (23S) [35] (https​://zenod​o.org/recor​
d/33872​14#.Xk5eA​BrQjU​I) databases (Fig.  1). For the Archaea and Bacteria domains 
(16S rRNA) and the Fungi kingdom (18S rRNA), two releases of SILVA (r114 and r132) 
are available. These databases were filtered based on standards detailed in supplemen-
tary materials (Additional file  1: Doc S1). For photosynthetic microeukaryotes (23S 
rRNA), µgreen-db r1.1 is also available (https​://zenod​o.org/recor​d/33872​14#.XZdIH​
OnVLU​J).

https://zenodo.org/record/3387214#.Xk5eABrQjUI
https://zenodo.org/record/3387214#.Xk5eABrQjUI
https://zenodo.org/record/3387214#.XZdIHOnVLUJ
https://zenodo.org/record/3387214#.XZdIHOnVLUJ
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Step 4: global analysis

Global analysis is an essential step to fully analyze the treated dataset. It consists in 
performing multiple sequence alignment based on sequence similarities and rRNA 
secondary structure from previous steps. This makes it possible to compute (1) a 
global OTU matrix, (2) the taxonomic assignment of OTUs, (3) a de novo phyloge-
netic tree based on global alignment with all reads or the representative read for each 
OTU, and (4) UniFrac phylogenetic distances.

Step 5: OTU‑based analysis

For α-diversity analyses based on OTUs, a summary file can be generated with the 
most common metrics (e.g., Chao1, ACE, Bootstrap, Shannon, Simpson, Evenness). 
We also provide rarefaction (describing the number of OTUs observed as a function 
of the sampling effort) and rank abundance (describing the number of sequences dis-
tributed across the OTUs) curves.

For β-diversity measurements, one pairwise distance matrix (Bray–Curtis) is 
computed from the global analysis. It is also possible to use phylogenetic metrics 
(UniFrac) [23, 36]. To do this, BIOCOM-PIPE integrates the PycoGent package to 
compute UniFrac pairwise distances and phylogenetic distances (also called PD’s) 
[37]. For tree-based distance metrics, the phylogeny can be automatically generated 
with FastTree tool [38] based on global alignment from Infernal [21].

Benchmarking
Simulated and artificial datasets

To highlight the robustness and efficiency of BIOCOM-PIPE, two specific datasets 
were analyzed: a simulated dataset, and a defined microbial mock community. The 
simulated dataset was defined in silico with synthetic communities from three differ-
ent environments: the human gut, the ocean and the soil [39]. Representative genera 
were selected after identifying the 80 most abundant genera across publicly availa-
ble metagenomes from human gut, ocean, and soil. This dataset represents various 
regions (V1–V2, V3–V4, etc.) of the 16S rRNA gene and is composed of two subsets 
of sample for each environment with two levels of diversity (100 species, or 500 spe-
cies) and two levels of sequencing depth (10,000 or 200,000 reads). To be close to 
our environmental dataset, only the V3-V4 hypervariable regions of the bacterial 16S 
rRNA gene as if from Illumina platform, representing 24 different samples.

The artificial dataset is a microbial community from ZymoBIOMICS. More pre-
cisely, it is a mock community consisting of eight bacterial and two fungal strains. It 
includes three easy-to-lyse Gram-negative bacteria (e.g. Escherichia coli), five tough-
to-lyse Gram-positive bacteria (e.g. Listeria monocytogenes), and two tough-to-lyse 
yeasts (e.g. Cryptococcus neoformans). The 16S/18S rRNA sequences (FASTA format) 
and genomes (FASTA format) of these strains are available at: https​://s3.amazo​naws.
com/zymo-files​/BioPo​ol/ZymoB​IOMIC​S.STD.refse​q.v2.zip. The amplicon library 
construction is described in [13]. The V3–V4 regions of the 16S rRNA genes gener-
ated using Illumina MiSeq technology (4 and 3 replicates from two independent runs) 

https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip
https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip
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and were deposited into a specific ZENODO repository (https​://doi.org/10.5281/
zenod​o.39478​43).

The illustrative application

To achieve benchmarking and illustrate the different steps of the pipelines, we used 
also a recently released large dataset of soil samples originating from the RMQS project 
(French Soil Quality Monitoring Network) collected between 2000 and 2009, which cov-
ers the whole French territory [13].

For practical reasons linked to computing time, and for this work to be reproducible 
by the large majority of the scientific community, we used a subsampling of 180 soil sam-
ples out of a total of 1798. For each of the four main land use types and the “others” 
group (which contained various minor land use types), we randomly retrieved 10% of its 
samples to maintain the same representativeness as in the RMQS (crop systems: 74, for-
ests: 49, grasslands: 46, vineyards: 4, and others: 7) (Fig. 2). To check if this subsampling 
fully reflected the RMQS, soil texture was examined, and the samples were found homo-
geneously distributed across the soil textural triangle (Additional file 4: Figure S3). The 
amplicon library construction is described in [13]. The V3–V4 regions of the 16S rRNA 
genes generated using 454-pyrosequencing technology were downloaded from the EBI 
database system under project accession No PRJEB21351 (Fig. 2).

Metabarcoding benchmarking

Two pipelines were selected for benchmarking, i.e., mothur (v.1.42.3) and FROGS (r3), 
with distinct approaches to characterize the soil microbial communities (Fig.  2). Raw 
reads were cleaned with a common base and then clustered at: 97% and 95% for the 
simulated dataset, and at 95% only for other datasets for BIOCOM-PIPE based on a 
homemade clustering tool similar to CrunchClust [17] and on mothur based on opti-
clust algorithm [40]. Amplicon sequence variants (or ASV) were also used to describe 
the studied microbial communities. Indeed, the recent, simple and fast method called 
ASV or exact sequence variant (ESV) defines OTUs from a 100% sequence similarity 
threshold (zero-radius OTUs or ZOTUs), and provides the highest possible biological 
resolution. We chose to use the ASV from BIOCOM-PIPE and not from a dedicated tool 
like DADA2 [41], as the 180 samples selected from the real dataset were encompassed 
into 80 libraries of 454-sequencing, and DADA2 needs to learn the Error rates of the 80 
libraries, a quite time-consuming step. With FROGS clustering based on Swarm tool, 
a distance fixed to d = 15 was used for the RMQS dataset and the mock community, as 
close to the 95% identity threshold as possible typically assigned to the same genus [42, 
43]. For the simulated dataset, both distances (default and d = 15) were applied. Subsam-
pling and rarefying data are important steps, and we set subsampling to 8000 sequences 
per sample based on the smallest sample whatever the pipeline for the RMQS dataset. 
The subsampling was set to 10,000 sequences per sample for the simulated and artifi-
cial datasets. All commands specific to each pipeline are detailed in Additional file  5: 
Doc S2. All reads (or representatives of OTUs) were taxonomically assigned using the 
SILVA r132 database. The runs were processed using a Galaxy instance of the Tou-
louse Midi-Pyrenees GenoToul bioinformatics platform to run FROGS pipeline, and a 

https://doi.org/10.5281/zenodo.3947843
https://doi.org/10.5281/zenodo.3947843
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Ubuntu-based system (Ubuntu 18#04, Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz) to 
run both BIOCOM-PIPE and mothur pipelines.

Statistical analyses

Statistical analyses were performed with R software (v.3.5.1). Alpha-diversity (OTU rich-
ness, Shannon diversity and Inverse Simpson indexes) and beta-diversity (Bray–Curtis 
dissimilarity index) were calculated. The microbial beta-diversities were estimated from 
the abundance of OTU-based Bray–Curtis distances and visualized using non-metric 

Raw 454 sequencing data - 16S rDNA
Metabarcoding-RMQS (1,798 soil samples)

Forests (n=49) Crop systems (n=74) Vineyards (n=4) Others (n=7)Grasslands (n=46)

Forests (n=492) Crop systems (n=740) Vineyards (n=36) Others (n=66)Grasslands (n=464)

Subsampling Raw 454 sequencing data - 16S rDNA
Metabarcoding-RMQS-Subsampling
(180 soil samples)

Preparation of a common base: clean raw reads
- Minimum length threshold (350 bp)
- Number of ambiguities tolerated (0)
- Detection of proximal primer sequence (Complete and perfect)
- Detection of distal primer sequence
  (Incomplete with a maximum of two mismatches)

Strategy involving processing of reads: key steps
Using the recommended parameters with clustering at 95% similarity 
and taxonomic assignment with SILVA r132 (cutoff=80).

FROGS (r3.0-1.4) mothur (v.1.42.3)BIOCOM-PIPE (v.1.18)

Chimera
detection

Clustering
method

VSEARCH (v.2.13.3) 

OptiClust algorithm

VSEARCH (v.2.6.2) 
with de novo UCHIME 

method and  
cross-sample validation

Swarm (v.2.1.1)
with d=15

Homemade approach

Custom CrunchClust
algorithm and 

ReClustOR (v.1.0)

Taxonomy
assignment

Concensus taxonomy
for each OTU

Concensus taxonomy
for each OTUAll sequences

Benchmarking: ecological interpretation
- alpha-diversity
- beta-diversity
- zeta-diversity
- taxonomy

Fig. 2  Schematic overview of the different steps of the metabarcoding study, with soil samples from the 
RMQS project as an example
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multidimensional scaling (NMDS) with the metaMDS function from the vegan package 
(v2.5–6) [44]. To determine the relationship between the global microbial community 
structures based on Bray–Curtis matrices, Mantel tests were performed with 999 per-
mutations for the tests of significance based on Pearson’s rank correlation. Non-para-
metric PERMANOVA tests were run with adonis function (permutations fixed to 999) 
present in the vegan package, and also multilevel pairwise comparisons between land 
use with the wrapper function pairwise Adonis (https​://githu​b.com/pmart​ineza​rbizu​/
pairw​iseAd​onis) [45]. To check the homogeneity of dispersions (variances) when com-
paring land use groups, a multivariate test was applied using betadisper, and supple-
mented with a permutational test to get a test statistic using permutest [46].

Results
Analysis of simulated and artificial datasets

The simulated dataset was constructed to be close to a realistic scenario [39], this 
is why they randomly mutated 2% of positions of each 16S rRNA sequence retrieved 
after extracting the needed sub-region. Firstly, it is noteworthy that some samples did 
not pass all filters with FROGS, mainly due to its approach for chimera detection (Addi-
tional file 6: Figure S4 A). The results after chimera detection, normalization and OTUs 
definition are close for the majority of samples, whatever the pipeline (Additional file 6: 
Figure S4 A), except FROGS, with a higher richness with a clustering threshold at 95%. 
For example, the total number of OTUs for samples with low diversity are close to 100 
OTUs, whatever the defined similarity threshold. Taxonomic assessment results indi-
cated also that the pipeline type had little influence (Additional file 6: Figure S4 B), what-
ever the sequencing depth, the clustering threshold, or the sample origin. Altogether, the 
observed diversity pattern reflects the two levels of diversity defined in silico for each 
environment, whatever the pipeline.

The artificial dataset composed of eight bacterial and two fungal strains, encompassed 
179 sequences of 16S, for a total of 10 OTUs at 95% of similarity expected (data not 
shown). Firstly, a high number of chimeras are detected, whatever the pipeline (Addi-
tional file 7: Figure S5 A). Mothur detected the highest number of chimeras, followed 
by FROGS, and BIOCOM-PIPE (with the hunting step only). After normalization and 
removal of singletons, the observed richness was higher than the expected one, whatever 
the pipeline (Additional file 7: Figure S5 B). More precisely, the number of OTUs was 
close to 30 for FROGS, followed by mothur (ranging from 60 to 90 OTUs) and BIO-
COM-PIPE (ranging from 100 to 127 OTUs). Taxonomic assessment results indicated 
firstly differences between the two independent runs, and secondly that FROGS was 
unable to detect some strains (from Listeria and Enterococcus genera), contrary to BIO-
COM-PIPE and mothur (Additional file  7: Figure S5 C). Moreover, some genera were 
more detected with BIOCOM-PIPE and mothur (i.e. Bacillus or Lactobacillus) and with 
FROGS (i.e. Staphylococcus), or detected with a very low abundance compared to the 
theoretical one (i.e. Salmonella or Escherichia).

Computational resource requirement and processing time of the real dataset

In terms of resource requirements and processing time, it is obvious that the ASV defini-
tion was the most efficient, compared to mothur or BIOCOM-PIPE. Then, as FROGS 

https://github.com/pmartinezarbizu/pairwiseAdonis
https://github.com/pmartinezarbizu/pairwiseAdonis
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was available using a Galaxy specific instance of the Toulouse Midi-Pyrenees GenoToul 
bioinformatics platform, it was faster to treat the whole dataset, but difficult to compare 
its processing time to other pipelines. Mothur needed less processing time (10 h) than 
BIOCOM-PIPE (30  h), mainly due to the INFERNAL alignment and the ReClustOR 
post-clustering steps.

Chimera detection, clustering and OTU composition of the real dataset

The 180 selected samples contained 3,052,229 total sequences after the preparation of 
raw sequences for further benchmarking analysis (Figs. 2, 3). The results of the chimera 
detection step indicated that the mothur approach removed more sequences (5–6% of 
the total dataset) than the homemade approach from BIOCOM-PIPE (around 1% of 
total sequences). For the FROGS pipeline, the clustering step was performed before chi-
mera deletion, and around 30% of OTUs were removed (Fig. 3a).

The total clusters differed depending on the clustering approach. The ASV defini-
tion produced the highest number of clusters (746,732), followed by FROGS (461,708), 
mothur (315,950) and BIOCOM-PIPE (38,666) (10 times less than FROGS) (Fig. 3a).

Following the various steps specific to each pipeline and the subsampling step to nor-
malize the samples based on the smallest sample, OTU richness greatly varied depending 
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on the tools. It is important to note that the smallest sample would have enabled us to set 
subsampling to 10,000 sequences per sample with BIOCOM-PIPE. However, we could 
only set it 8000 sequences with the other two pipelines, so we kept that value to compare 
the pipelines. OTU richness was greatest with mothur (211,146 OTUs), then FROGS 
(133,901 OTUs) and finally BIOCOM-PIPE (38,666 OTUs) (Fig. 3a). The mean number 
of OTUs per sample was 2289 (min = 1448; max = 3257; delta = 1809) with mothur, 2182 
(min = 1418; max = 2908; delta = 1490) with FROGS, and 1641 (min = 858; max = 2293; 
delta = 1435) with BIOCOM-PIPE. We also studied the number of singletons among 
total OTUs. BIOCOM-PIPE had the lowest number of singletons after the ReClus-
tOR step, (around 45% of total sequences) versus around 70% and 75% for FROGS and 
mothur, respectively (Fig. 3a). Indeed, a high number of singletons defined with FROGS 
and/or mothur were reassigned to higher OTUs with BIOCOM-PIPE (Fig.  3b). Only 
9% of singletons were shared between FROGS and BIOCOM-PIPE, and 2% between 
mothur and BIOCOM-PIPE. Furthermore, BIOCOM-PIPE found more shared OTUs 
than mothur, FROGS or the ASV did when the number of samples increased (Fig. 4).

Alpha‑diversity analysis of the real dataset

A significant difference between land uses was observed between the pipelines regard-
ing OTU richness and Inverse Simpson metrics, whereas no difference was observed 
between FROGS and mothur regarding the Shannon index metric (Fig.  5, Additional 
file  8: Figures  S6–S7). Land uses were compared independently within each pipeline 
in order to identify their potential effects (Fig. 5, Additional file 8: Figures S6–S7). The 
number of OTUs was smaller in BIOCOM-PIPE, but it allowed for a better discrimi-
nation of groups (forests < grasslands < crop systems < vineyards ≤ “others”) compared to 
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other pipelines (Fig.  5). The Shannon index showed no significant difference between 
land use whatever the pipeline (Additional file  8: Figure S6). Lastly, as regards the 1/
Simpson index, only FROGS and ASVs discriminated some of the defined groups (Addi-
tional file 8: Figure S7).

Beta‑diversity analysis of the real dataset

The NMDS stress values ranged between 0.109 (BICOM-PIPE) and 0.174 (ASV); there-
fore, it was possible to use community structure results to compare land use groups 
whatever the pipelines. The resulting NMDS ordination highlighted that bacterial com-
munity samples were more scattered and discriminated the land use gradient better 
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under BIOCOM-PIPE (Fig.  6a–d). Mantel tests indicated that all microbial structures 
were strongly correlated, with r values ranging between 0.87 and 0.94 and P value < 0.01, 
except with the ASV definition (Additional file 9: Table S1). The permutational multivar-
iate analysis of variance using distance matrices showed a significant difference between 
land use types whatever the pipeline (ADONIS, P value < 0.001) (Fig.  6). More pre-
cisely, all three pipelines highlighted significant differences between crop systems and 
grasslands, crop systems and forests, and crop systems and “others”, as well as between 
grasslands and forests (Additional file 10: Table S2). The ASV definition demonstrated 
the lowest differences between land uses (Additional file 10: Table S2). BIOCOM-PIPE 
distinguished significant differences between grasslands and vineyards (adjusted P 
value < 0.05) (Additional file 10: Table S2). Furthermore, significant differences and iden-
tical hierarchy between land use groups were observed for the distance-to-centroid vari-
ance with all pipelines (Fig. 6e–h).

Taxonomic composition of the real dataset

Taxonomic assessment results with the representation of phyla in sampling sites and 
their relative abundances indicated that the pipeline type had little influence (Fig. 7). The 
total numbers of phyla were around 54, 51 and 52 for BIOCOM-PIPE (similar to ASV 
definition, as all sequences were affiliated), FROGS and mothur, respectively (unclassi-
fied phylum excluded) (Additional file 11: Table S3). Alphaproteobacteria was the most 
abundant phylum for the three pipelines; as regards the major taxa, the very same phyla 
were found, but were ranked differently (Fig.  6). Mothur assigned no phylum to the 
medium group, while all sequences were assigned with FROGS, and 0.31% and 0.62% 
were left unclassified by BIOCOM-PIPE and mothur, respectively (Fig. 7).

Discussion
BIOCOM-PIPE is a new pipeline designed to characterize microbial diversity from envi-
ronmental DNA metabarcoding data. Faced with many tools already available, we chose 
to work closely with various stakeholders (biologists, computational scientists, statistics 
experts) to suggest alternative approaches to reduce errors and biases from metabarcod-
ing datasets. This expertise is based on 10 years of work aimed at developing standard 
operating procedures for molecular preparation and sequencing in close collaboration 
with the GenoSol platform [47]. BIOCOM-PIPE was designed to remain manageable for 
both beginners and advanced users. Once the fully completed “project file” and the raw 
datasets are placed in the appropriate folder, the pipeline can be run directly with all 
default parameters, or with specific parameters defined by an advanced user.

BIOCOM-PIPE incorporates both existing tools and homemade programs. For exam-
ple, chimera detection (called the "hunting-recovering" step) is based on the search of 
non-clustered low-abundance sequences, and checks their reliability based on taxo-
nomic assignment. The chimera formation from complex DNA amplification is not ran-
dom, as it is a function of many factors such as template abundance, sequence homology, 
enzyme accuracy, PCR conditions, etc. [26, 48, 49]. Moreover, chimeras are more often 
generated among richer, phylogenetically diverse samples [50], but co-extract products 
and inhibitors can also influence chimera formation. A mock community should be used 
to find the best bioinformatic parameters to minimize errors from the chosen procedure 
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(DNA extraction, PCR amplification, sequencing, etc.), but too stringent filters can lead 
to the loss of rare microorganisms [26, 48, 49, 51]. Here, FROGS seems to be the more 
efficient to form the lowest number of OTUs, but it was unable to detect some strains, as 
one representative sequence per OTU is selected and taxonomically assigned after clus-
tering, leading to biases in community composition [49]. BIOCOM-PIPE and mothur 
showed better results in terms of taxonomic affiliation. It is noteworthy that BIO-
COM-PIPE can be more flexible, as it is possible to optimize the "hunting-recovering" 
parameters to adapt the stringency of the detection, leading to the deletion of the “best” 
potential chimera.

Moreover, the latest taxonomic database updates for Archaea, Bacteria and Fungi are 
also available from SILVA r132, and µgreen-db for photosynthetic microeukaryotes and 
cyanobacteria. The classical approach for the clustering step is to first align sequences 
with the reference alignment. We propose to use both RNA structure and sequence 
similarities with an approach based on a covariance model. Sequence alignment using 
this method allows for better OTU assignment [52] and reduces computational time 
and required computer memory [53]. For data potentially containing a high number of 
homopolymers, global alignment based on the secondary structure showed better sen-
sitivity to detect homopolymer errors. The question of reproducibility and robustness in 
microbiota analyses is more and more significant in microbial ecology [54]. BIOCOM-
PIPE was specifically designed to tackle some of these challenges. Indeed, although the 
use of a “project file” may appear as a constraint at first sight, users are forced to start the 
analysis by supplementing it. This will make it easier for supervisors, colleagues or users 
themselves to choose the parameters of the analysis. Moreover, having a structured 
folder with all summary results and parameters allows for better archiving.

It is currently very difficult to compare studies carried out with different bioinformatic 
analyses [2]. To address this issue while providing great flexibility, a post-clustering step 
using ReClustOR was added to BIOCOM-PIPE, compared to classical pipeline analy-
sis [17]. In order to overcome the problems of OTU stability and reliability posed by 
the classical clustering methods, this post-clustering step was implemented to improve 
the quality of the reconstructed OTUs. Moreover, thanks to an available open-reference 
clustering method, ReClustOR can define and/or enrich a reference OTU database with 
analyzed projects without carrying out the complete analysis each time new sequences 
are added. As a consequence, such a post-clustering step is a clear benefit that increases 
the reproducibility and reliability of results among different clustering analyses, and also 
between samples and datasets [17].

To highlight BIOCOM-PIPE specificities compared to other pipelines, a subsampled 
dataset from the RMQS metabarcoding project was used [13]. The key steps to reduce 
the number of sequences vary between pipelines, especially during the chimera step. 
At the end of the analysis, BIOCOM-PIPE kept the highest number of sequences for 
the subsampling step, which made it possible to set this step to 10,000 sequences 
versus 8000 with FROGS or mothur. A higher number of OTUs was observed with 
mothur, in line with previous studies [7]. It is worth noting that BIOCOM-PIPE 
counted the lowest number of singletons thanks in particular to the use of ReClus-
tOR, which allowed for better sequence assignment. Moreover, some sequences con-
sidered to be rare in the biosphere by certain pipelines were not [17]. In the same line, 
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BIOCOM-PIPE showed that some OTUs were better represented in the samples, with 
more shared OTUs. Interestingly, the ASV definition did not show significant differ-
ences between land uses, contrary to other clustering methods. This can be explained 
by the high-diversity of analyzed samples. But, the use of the ASV definition, using 
dedicated tools such as DADA2 [41], in combination with OTUs computation can be 
especially informative to detect shifts in the microbial community that the OTU defi-
nition has overlooked. Altogether, clustering approaches are clearly complementary 
to the ASV definition, as different kind of information is given by both methods.

Regarding taxonomic assignment, BIOCOM-PIPE seemed to show a more detailed 
degree of information with more phyla. Nevertheless, it was somewhat reassuring to 
find almost the same phyla for the major groups representing 90% of relative abun-
dance. Chloroflexi was not in the major group for BIOCOM-PIPE and FROGS, but 
in the medium group. Furthermore, Deltaproteobacteria were present in the major 
group for FROGS and mothur but in the medium group for BIOCOM-PIPE. These 
differences could be explained by the divergent approaches of taxonomic affiliation 
used by the pipelines. Another positive aspect, although at first sight the commu-
nity structure seemed different with variable OTU distances to the centroid, was that 
Mantel test also showed good correlation for sample paired-comparison between 
pipelines.

From an ecological point of view, BIOCOM-PIPE discriminated land uses based on 
OTU richness much better than FROGS and mothur. Indeed, the land use hierarchy 
due to a gradient of practice intensity was similar to what was previously observed 
and described [17]. Altogether, even if the results were different depending on the 
bioinformatic pipeline, the same ecological interpretation was found. Different stud-
ies compared various pipelines and also concluded to the same trends [55, 56].

For future improvements, it would be important to add a new correction step based 
on the gene copy number, which differs between organisms [57]. This method is 
increasingly used, although controversial due to low predictive accuracy compared 
with completely sequenced genomes [58], and it has been reported to improve esti-
mates of microbial diversity [59]. Moreover, due to the growing number of complete 
microbial genomes available, this method can now be more accurate [60].

Another improvement can be achieved by providing an alternative method to charac-
terize fungal communities by analyzing the internal transcribed spacer (ITS). Therefore, 
it will be necessary to integrate another aligner than Infernal (e.g., MAFFT program [61]) 
for multiple sequence alignment since no covariance model for fungal ITS sequences 
exists. Finally, if we keep focusing on linking sequencing preparation and bioinformatic 
analysis more closely, it would also be interesting to integrate a component to check the 
validity of sequencing runs and the different pipeline steps. About run effectiveness, an 
upstream analysis of internal standards with various tests (e.g., richness, community 
structure, taxonomy) could be used to validate or not the sequenced samples. An inter-
nal standard reference database could be created, compared and enriched to highlight 
a drift. A second checking could be performed for each bioinformatic analysis to verify 
the proper functioning of the different steps with the previous analysis by using a mock 
community sample for example. This could be very useful when multiple updates are 
conducted on various components and by different developers.
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Conclusions
Although many complex questions remain unanswered concerning microbial ecology 
[62], tremendous advances have been made from a technical point of view, with the con-
stant emergence of new protocols or sequencers, but also better knowledge of micro-
bial diversity. This craze boosted scientists to develop algorithms and tools to analyze 
metabarcoding data over and over again. BIOCOM-PIPE is an interesting alternative 
for the scientists who wish to benefit from an efficient and flexible tool. This pipeline is 
robust, based on longstanding expertise, and can compare large datasets with great ease. 
Its original features use various rarely used methods or tools, not because there are not 
effective but likely due to a lack of hindsight. Like any tool, it is constantly evolving and 
may also contain errors. We thank readers and users for informing us about any errors 
or suggestions likely to improve this tool.

Availability and requirements
BIOCOM-PIPE package is available in Zenodo repository (https​://doi.org/10.5281/
zenod​o.36781​29).

A virtual machine encompassing the complete pipeline into an UBUNTU system is 
also available (https​://doi.org/10.5281/zenod​o.39459​64).

All raw datasets for the example are publicly available in the EBI database system (in 
the Short Read Archive) under project accession No. PRJEB21351.
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Project home page: Not defined.
Operating system(s): Linux and UNIX.
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License: CC.
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