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Background
Many biological processes display oscillations that are under the control of different bio-
logical clocks. For example, circadian clocks display daily oscillations, i.e., with a perio-
dicity of approximately 24 h [1], and may regulate nearly half of all genes in a genome of 
an organism [2, 3]. Disrupted circadian rhythms might have several health implications, 
such as cardiovascular diseases, diabetes, and immune deficiencies [4]. Analysis of circa-
dian data, especially in the combination with different -omics approaches, thus increases 
our understanding of disease occurrence and progression. A vast amount of research has 
been devoted to the analysis of circadian rhythms in recent years [5]. We should as well 
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strive towards the integration of such analyses into the clinical work for disease diagnos-
tics, treatment, and prevention [6].

Detection and analysis of rhythmicity requires designated computational approaches. 
These approaches are focused on the identification of rhythmic datasets that correspond 
to specific biological entities (e.g., genes) and evaluation of their rhythmicity parame-
ters. Several non-parametric methods for circadian data analysis have been proposed 
recently, such as JTK CYCLE and its extensions [7–9] and RAIN [10]. Even though non-
parametric methods have several benefits, e.g., robustness to noise in the data, classical 
harmonic regression should still be used when rhythmicity parameters, such as oscilla-
tion amplitudes and acrophases, need to be evaluated, or when the noise in the data is 
non-Gaussian [10]. Moreover, non-parametric methods often fail or do not perform well 
when data are (1) collected at irregular intervals, (2) without replicates, (3) unbalanced 
(i.e., more samples are collected at one time of a day compared to others), (4) full of 
outliers, and (5) very large. However, cosinor has been successfully applied even in such 
cases (see, e.g., [11–13]).

Cosinor presents a fundamental method for rhythmicity detection and analysis using 
cosine curve fitting [14, 15]. It is based on a trigonometric regression model

where t corresponds to the observed time points in the time series, N is the number of 
components in the model, namely number of cosine curves, and Ai,1 , Ai,2 , C and P are 
the parameters of the model, with M being the MESOR (Midline Statistic Of Rhythm), 
P the period of the observed rhythm, and e(t) the error term [15]. When the period is 
known the model can be converted to a linear regression model

where xi,1 = sin

(

t
P/i · 2π

)

 and xi,2 = cos

(

t
P/i · 2π

)

 . When the period is not known, dif-

ferent periods within the feasible period ranges can be tested, or period detection meth-
ods such as periodograms, can be used for period estimation [14].

Cosinor has been widely applied to the analysis of rhythmicity detection and evalu-
ation of rhythmicity parameters in time series data. Different software packages for 
cosinor-based rhythmometry, such as cosinor [16], cosinor2 [17], and DiscoRhythm 
[18], have been introduced in recent years. However, these packages lack certain func-
tionalities, such as multi-component cosinor regression and analysis, and do not sup-
port automatic identification of the best regression model. Moreover, the user must 
format the input data for each of these tools in a different manner. Herein, we describe 
CosinorPy, a Python package that merges and extends the functionalities of existing 
software packages. CosinorPy can as well be used to generate synthetic data, and sup-
ports different input and output formats compatible with other software packages for 
rhythmicity detection and analysis. It provides all functionalities required for the analy-
sis of rhythmic data from data import and preprocessing to removal of outliers, identifi-
cation of oscillation periods, assessment of the most suitable models and their statistics, 
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analysis of differential rhythmicity, and data plotting, reporting, and export. Moreover, it 
implements functions to estimate the required number of samples to obtain the results 
with a predefined statistical significance and can thus as well be used to guide experi-
mental work [19]. CosinorPy is currently the only cosinor package that is implemented 
in Python, which has become increasingly important in data science, as well as in the 
field of bioinformatics in recent years. A comparison of features of currently available 
cosinor-based software packages is provided in Table 1.

Implementation
CosinorPy is implemented in Python and relies on the state-of-the-art Python pack-
ages for data management, scientific computing, visualisation, and statistical modelling, 
namely pandas, NumPy, SciPy, Matplotlib, and statsmodels. CosinorPy is comprised of 
three Python modules, namely file_parser, cosinor, and cosinor1. The file_
parser module implements reading and writing of xlsx and csv files and generating 
synthetic data. The cosinor module implements the functionalities based on a sin-
gle- or multi-component cosinor model that include model fitting, identification of the 
most suitable model, and analysis of differential rhythmicity. The cosinor1 module 
implements similar functionalities, which are adapted to a single-component cosinor 
model, and thus provide more exhaustive results and additional statistics such as the 
significance of acrophase shifts within the differential rhythmicity analysis. The imple-
mentation of specific functionalities within the package are described below. Thorough 
documentation of the package is available at https​://githu​b.com/mmosk​on/Cosin​orPy/
blob/maste​r/docs/docs.md.

Single‑component cosinor

When the observed data can be accurately described with a single harmonic component, 
a single-component cosinor model can be used:

Using this model, amplitude (A) and acrophase ( φ ) can be estimated directly from the 
assessed parameter values as:

(3)y(t) = A1 · x1 + A2 · x2 +M + e(t).

Table 1  Currently available software packages for  rhythmicity detection and  analysis 
based on cosinor method and its extensions

Package: package name; language: the programming language that is used in a combination with a specific package; 
differential rhythmicity: support for the assessment of a differential rhythmicity among two groups of measurement; linear 
regression and non-linear regression: what kind of regression the package supports; multiple components: support for multi-
component cosinor analysis; count data: support for count data analysis; population-mean: support for population-mean 
cosinor analysis; design of experiments: support for design of experiments to approximate the minimal number of required 
samples; reference: reference to the package

Package Language Differential 
rhythmicity

Linear 
regression

Non-linear 
regression

Multiple 
components

Count 
data

Population-
mean

Design 
of experiments

References

CosinorPy Python Yes Yes Yes Yes Yes Yes Yes

Cosinor R Yes Yes No No No No No [16]

Cosinor2 R Yes Yes No No No Yes No [17]

DiscoRhythm R No Yes No No No No No [18]

LimoRhyde R Yes Yes No No No No No [22]

CircaCompare R Yes No Yes No No No No [23]

https://github.com/mmoskon/CosinorPy/blob/master/docs/docs.md
https://github.com/mmoskon/CosinorPy/blob/master/docs/docs.md
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and

The statistical significance of the model is assessed with an F-test on the basis of the 
model sum of squares and sum of square residuals [15]. The significance of rhythmicity 
is evaluated with the zero amplitude test, which is as well based on the F-statistic [15, 
19]. Moreover, period and acrophase significance and confidence intervals are assessed 
directly from the model and its underlying data [19]. The adequacy of the model can 
be assessed using different regression diagnostic tests. When replicates are available or 
when the measurements are performed for several periods, the goodness of fit of the 
model is evaluated with an F-test comparing the pure error and the lack of fit sum of 
squares [15].

When collecting circadian data, experimentalists should follow specific guidelines 
to obtain statistically significant results [20]. However, if certain requirements regard-
ing the precision of the assessment of rhythmicity parameters, e.g. a maximal accept-
able length of a confidence interval, can be specified in advance, we can approximate the 
minimal sample size necessary to achieve such precision [19]. CosinorPy implements 
these functionalities and can thus be used as well during a design of experiments.

Multi‑component cosinor

When a single-component cosinor model is not able to describe our data satisfactorily, 
e.g., when the goodness of fit test rejects the model, a multi-component cosinor model 
can be considered [15]. A multi-component cosinor model is able to describe more com-
plex oscillatory dynamics, e.g. peak asymmetry or multiple peaks within one period, 
which cannot be described with a single harmonic component. Rhythmicity param-
eters cannot be calculated analytically from this model, but are evaluated from the fitted 
curve.

Additional components will always increase a model’s accuracy, but on the account of 
a reduced number of degrees of freedom. This might cause the over-fitting of a model to 
the observed data. Automatic selection of the best model regarding the number of com-
ponents is performed using the extra sum-of-squares F-test:

where SSR1 and SSR2 present the sum of squared residuals (SSR) for a simpler and a more 
complex model, respectively, and where DoF1 and DoF2 present the degrees of freedom 
(DoF) of a simpler and a more complex model, respectively. The more complex model, 
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i.e., the model with a smaller DoF, is selected as more appropriate when the obtained 
p-value is lower than a predefined threshold. Moreover, the model selection process can 
be guided with the goodness of fit measures as for a single-component cosinor model.

Additional advantage of our implementation of the multi-component cosinor 
regression is that it allows the user to fit a cosinor model to count data. Here, a gen-
eralised Poisson model with a logarithmic link can be used in a combination with 
a cosinor model to handle over- as well as under-dispersed data [21]. Moreover, 
CosinorPy allows the user to as well select Poisson or negative-binomial models for 
the analysis of rhythmicity of count data.

Population‑mean models

When dealing with at least three individuals, and when each individual produces a 
series of dependant measurements which can be used to establish the individual’s 
cosinor model, a population-mean cosinor should be used [15]. In this case a cosinor 
model is fitted to each individual. The response of the whole population is described 
and analysed as a mean of all individual cosinor models (population-mean cosinor). 
When using a single-component population-mean cosinor, confidence intervals of 
rhythmicity parameters are assessed as described in [19]. Moreover, a p-value for the 
null hypothesis of the amplitude of oscillations being zero is evaluated with an F-test 
for a single-component population-mean cosinor as described in [15]. The statistical 
significance and the goodness of fit of a single- or multi-component population-mean 
cosinor model are assessed in a similar way as for the basic cosinor models [15].

Analysis of differential rhythmicity

Cosinor models can be used to assess the difference in the rhythmic response of two 
groups of measurements. Each group either corresponds to a different variable (e.g., 
two different genes) or to the same variable in different conditions (e.g., the same gene 
before and after a perturbation). We are usually interested in amplitude changes and 
acrophase shifts between the groups. Several different methods, which we use in our 
implementation, have been proposed to assess these differences.

If the data describing both groups can be modelled with single-component cosinor 
models, a single-component cosinor can as well be used to assess the differential 
rhythmicity of these two groups. This model is implemented as

where g equals 0 if the data belong to the group a, and 1 if the data belong to the group b. 
Based on the assessed parameter values, we can estimate the acrophases and amplitudes 
of each of the groups, as well as the differences between these values and their signifi-
cance [19]. Moreover, a population-mean single-component cosinor model is adapted to 
analyse the differential rhythmicity in a similar way [17, 19].

LimoRhyde [22] presents a similar approach that uses a cosinor model and can be 
adapted to use an arbitrary number of components in the following form

(7)y(t) =
(

A1,a + g · A1,b

)

· x1 +
(

A2,a + g · A2,b

)

· x2 +Ma + g ·Mb + e(t),
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The significance of each parameter in this model is assessed using a T-test, where the 
null hypothesis is that a parameter equals zero. When this hypothesis is rejected for any 
of the rhythmicity parameters of the group b, namely Ai,1,b or Ai,2,b , these two groups 
should reflect differential rhythmicity. While a single-component cosinor can be used to 
assess the significance of acrophase shift and amplitude change, LimoRhyde is only able 
to assess whether the difference in rhythmicity between the groups is significant or not.

Non-linear regression might as well be used to evaluate the differential rhythmicity 
parameters and their confidence intervals as described in CircaCompare [23]. This is 
implemented as the following model

where Aa , φa and Ma present the amplitude, acrophase, and MESOR of the group a, 
respectively, and Aa + Ab , φa + φb and Ma +Mb present the amplitude, acrophase, and 
MESOR of the group b, respectively. CosinorPy as well implements differential rhyth-
micity assessments based on non-linear regression. However, this approach does not 
provide any additional information to the approach described in Equation 7.

Results
We demonstrate the application of selected CosinorPy functionalities on two typical 
case studies using four groups of synthetically generated time series data with the attrib-
utes presented in Table 2. The whole analysis is available as interactive Python notebooks 
(IPYNB) at https​://githu​b.com/mmosk​on/Cosin​orPy.

Case study 1: independent measurements

In our first case study, we presume that the measurements in each group are inde-
pendent. This scenario complies with a transcriptomics data analysis or an analysis 
of qPCR data. CosinorPy successfully identifies the most suitable model, namely a 
1-component model in the first two scenarios and a 3-component model in the last 
two scenarios. If the rhythmicity period is not known, the user could as well use 
the automatic identification of the best fitting period together with the best fitting 
model, or could rely on the period values assessed using periodograms (see https​://

(8)
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N
∑
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((
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)

· xi,1 +
(
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)

· xi,2
)

+Ma + g ·Mb + e(t).

(9)y(t) = (Aa + Ab · g) · cos

(

t

P
· 2π − (φa + φb · g)

)

+Ma +Mb · g + e(t),

Table 2  Parameters for synthetically generated data

Rhythmicity periods of the generated data were set to 24 h in all scenarios. Each scenario had three replicates.

Name Components Sampling time Sampling 
period

Acrophase Noise 
amplitude

Test1 1 48 h 2h 0 0.5

Test2 1 48 h 2h π 0.5

Test3 3 48 h 1h 0 0.5

Test4 3 48 h 1h π 0.5

https://github.com/mmoskon/CosinorPy
https://github.com/mmoskon/CosinorPy/blob/master/demo_independent.ipynb
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githu​b.com/mmosk​on/Cosin​orPy/blob/maste​r/demo_indep​enden​t.ipynb​). Results 
obtained with the multi-component cosinor regression are presented in Fig. 1.

Even though a 3-component model is more appropriate for the last two scenar-
ios, a good fit is obtained as well with a 1-component model with slightly higher 
SSR values than a 3-component model (see Additional file 1: Table 1 and Additional 
file 2: Table 2). We thus opted to perform a differential rhythmicity analysis using a 
1-component model to obtain more informative results, namely the significance of 
amplitude change and acrophase shift. CosinorPy is able to produce different plots 
visualising the difference between fits (see the upper part of Fig. 2), as well as acro-
phase shifts in a polar coordinate system (see the lower part of Fig.  2). Moreover, 
results of the analysis are reported in a tabular form, i.e., as a pandas DataFrame, 
which can be easily stored to Excel or CSV format. These results are available in Addi-
tional file 3: Table 3 and summarised in Table 3.

The same data were used in a combination with the cosinor and cosinor2 R pack-
ages [16, 17] to validate the obtained results. These two packages support only single-
component cosinor analyses. Moreover, the cosinor2 package builds upon the cosinor 
package, which unfortunately reports incorrect acrophase values [17]. Even though 
the cosinor2 package provides a function to correct these values, their correspond-
ing p-values are not updated accordingly. The analyses performed with the CosinorPy 
package produce the same results as cosinor and cosinor2 packages with the above 
mentioned exception (see Additional file 7: Table 7 and Additional file 8: Table 8).

Case study 2: population‑based measurements

In our second case study, we presume that measurements in each group belong to 
the same individual, which means that population-mean models should be used. This 
complies with, e.g., bioluminescence data, where the same cell is observed through-
out the whole experiment. We can also refer to such measurements as dependent 
measurements.

We again use CosinorPy to identify the most suitable model, and assess the rhyth-
micity parameters and significance of periodicity in the data (see https​://githu​b.com/
mmosk​on/Cosin​orPy/blob/maste​r/demo_depen​dent.ipynb​). As in the first case study, 
CosinorPy is able to identify the most suitable model for each dataset (see Fig.  3). 
Complete results of the fitting process are available as Additional file 4: Table 4 and 
Additional file  5: Table  5. We again opted to use a single-component cosinor to 

Table 3  Summary of the differential rhythmicity assessment for the first case study

The differential rhythmicity was assessed using a single-component cosinor. We are usually interested in the significance 
of amplitude changes, as well as acrophase shifts. When multiple tests are performed, CosinorPy adjusts the significance 
values using the false discovery rate (FDR) method (reported as q-values). The results here indicate that while the amplitude 
changes are not significant, acrophase shifts are ( q < 0.05)

Test q amplitude change) q 
acrophase 
shift)

Test1 vs. test2 0.372013 0

Test3 vs. test4 0.372013 0

https://github.com/mmoskon/CosinorPy/blob/master/demo_independent.ipynb
https://github.com/mmoskon/CosinorPy/blob/master/demo_dependent.ipynb
https://github.com/mmoskon/CosinorPy/blob/master/demo_dependent.ipynb
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perform the comparison analysis. Results of this analysis are available in Additional 
file 6: Table 6 and summarised in Table 4.

We validated the obtained results using the cosinor2 R package [17]. The population-
based tests implemented within this package do not rely on the cosinor R package. The 
reported acrophases and their corresponding p-values thus fully comply with the results 
obtained with the CosinorPy package (see Additional file  9: Table  9 and Additional 
file 10: Table 10).

Case study 3: additional benefits of the multi‑component cosinor

To additionally investigate the benefits of multi-component cosinor models we applied 
CosinorPy to a larger dataset downloaded from the JTK Cycle repository [7]. We ana-
lysed these data with both, single-component cosinor, as well as multi-component 
cosinor models with up to three components (see https​://githu​b.com/mmosk​on/Cosin​
orPy/blob/maste​r/multi​_vs_singl​e.ipynb​). Among 250 measurements 95 measurement 

Table 4  Summary of  the  differential rhythmicity assessment for  the  second case study 
(population-mean cosinor)

The differential rhythmicity was assessed using a single-component population-mean cosinor. When multiple tests are 
performed, CosinorPy adjusts the significance values using the false discovery rate (FDR) method (reported as q-values). The 
results of the analysis indicate that while the amplitude changes are not significant, acrophase shifts are ( q < 0.05)

Test q (amplitude change) q (acrophase shift)

Test1 vs. test2 0.537841 0.000036

Test3 vs. test4 0.544973 0.000120
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Fig. 1  Multi-component cosinor models obtained with the automatic identification of the best fitting 
models. 1-component models are selected for test1 and test2 and 3-component models for test3 and test4. 
P values correspond to the statistical significance of each cosinor model. CosinorPy is able to produce 
publication-ready figures illustrating the fit of a cosinor model to time series data

https://github.com/mmoskon/CosinorPy/blob/master/multi_vs_single.ipynb
https://github.com/mmoskon/CosinorPy/blob/master/multi_vs_single.ipynb
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Fig. 2  Differential rhythmicity analysis performed with the 1-component cosinor analysis. While the 
amplitudes are not changed significantly, acrophases differ significantly in both tests (see Table 3). CosinorPy 
is able to produce publication-ready figures illustrating a comparative analysis of time series data (upper part 
of the figure), as well as an analysis of acrophase shifts (the lower part of the figure)
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Fig. 3  Multi-component population-mean cosinor models obtained with the automatic identification of the 
best fitting models. 1-component models are selected for test1 and test2 and 3-component models for test3 
and test4. P values correspond to the statistical significance of each cosinor model. Black lines represent the 
cosinor models of each individual and red lines population-mean cosinor models
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were identified to be circadian using multi-component cosinor models. Among these, 
11 measurement were not identified to be circadian using a single-component cosinor 
model. In all these 11 cases data reflected multiple peaks within a 24-hour period, which 
cannot be fitted with a single-component model. Multiple peaks were successfully incor-
porated into multi-component models. However, in some of these cases the statistical 
significance was marginal, and additional data should be collected to confirm the cir-
cadian nature of observed measurements. In the future, large-scale analyses that were 
performed with single-component cosinor models in the past should be revised using 
multi-component cosinor models. This could enable us to detect additional rhythmic 
genes and would thus provide novel insights into circadian dynamics of selected genes.

Conclusion
CosinorPy provides all the functionalities required for a rhythmicity analysis of experi-
mental data. Its features merge and extend the functionalities of existing cosinor-based 
software packages. These range from data import and pre-processing to identification of 
the most suitable models, evaluation of rhythmicity parameters and their significance, 
and assessment of differential rhythmicity between groups of measurements. Moreover, 
CosinorPy produces publication-ready figures, visualising the results of the fitting pro-
cess as well as assessed parameter values, e.g., acrophase values in a polar coordinate 
system. With the vast scope of functionalities, as well as ease of use, the package pre-
sents an attractive alternative to other software packages for rhythmicity detection and 
analysis.

Availability and requirements

Project name: CosinorPy
Project home page: https​://githu​b.com/mmosk​on/Cosin​orPy
Operating system(s): Platform independent
Programming language: Python
Other requirements: pandas, Matplotlib, NumPy, SciPy, statsmodels and openpyxl 
Python libraries
License: MIT license
Any restrictions to use by non-academics: none
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Additional file 1: Supplementary Table 1. Results of the fitting process for the first case study using 1-, 2- and 
3-component cosinor models with the cosinor module. The results are presented in a CSV format as reported by 
CosinorPy.

Additional file 2: Supplementary Table 2. Results of the fitting process for the first case study using 1-component 
cosinor models with the cosinor1 module. The results are presented in a CSV format as reported by CosinorPy.

Additional file 3: Supplementary Table 3. Results of the comparison analysis for the first case study using 1-com-
ponent cosinor models with the cosinor1 module. The results are presented in a CSV format as reported by 
CosinorPy.
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Additional file 4: Supplementary Table 4. Results of the fitting process for the second case study using 1-, 2- and 
3-component cosinor models with the cosinor module. The results are presented in a CSV format as reported by 
CosinorPy.

Additional file 5: Supplementary Table 5. Results of the fitting process for the second case study using 1-com-
ponent cosinor models with the cosinor1 module. The results are presented in a CSV format as reported by 
CosinorPy.

Additional file 6: Supplementary Table 6. Results of the comparison analysis for the second case study using 
1-component cosinor models with the cosinor1 module. The results are presented in a CSV format as reported by 
CosinorPy.

Additional file 7: Supplementary Table 7. Results of the fitting process for the first case study using cosinor and 
cosinor2 R packages.

Additional file 8: Supplementary Table 8 Results of the comparison analysis for the first case study using cosinor 
and cosinor2 R packages.

Additional file 9: Supplementary Table 9. Results of the fitting process for the second case study using cosinor2 R 
package.

Additional file 10: Supplementary Table 10. Results of the comparison analysis for the second case study using 
cosinor2 R package.
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