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Abstract 

Background:  Hi-C and its variant techniques have been developed to capture the 
spatial organization of chromatin. Normalization of Hi-C contact map is essential for 
accurate modeling and interpretation of high-throughput chromatin conformation 
capture (3C) experiments. Hi-C correction tools were originally developed to normal-
ize systematic biases of karyotypically normal cell lines. However, a vast majority of 
available Hi-C datasets are derived from cancer cell lines that carry multi-level DNA 
copy number variations (CNVs). CNV regions display over- or under-representation of 
interaction frequencies compared to CN-neutral regions. Therefore, it is necessary to 
remove CNV-driven bias from chromatin interaction data of cancer cell lines to gener-
ate a euploid-equivalent contact map.

Results:  We developed the HiCNAtra framework to compute high-resolution CNV 
profiles from Hi-C or 3C-seq data of cancer cell lines and to correct chromatin contact 
maps from systematic biases including CNV-associated bias. First, we introduce a novel 
‘entire-fragment’ counting method for better estimation of the read depth (RD) signal 
from Hi-C reads that recapitulates the whole-genome sequencing (WGS)-derived 
coverage signal. Second, HiCNAtra employs a multimodal-based hierarchical CNV call-
ing approach, which outperformed OneD and HiNT tools, to accurately identify CNVs 
of cancer cell lines. Third, incorporating CNV information with other systematic biases, 
HiCNAtra simultaneously estimates the contribution of each bias and explicitly corrects 
the interaction matrix using Poisson regression. HiCNAtra normalization abolishes 
CNV-induced artifacts from the contact map generating a heatmap with homogene-
ous signal. When benchmarked against OneD, CAIC, and ICE methods using MCF7 
cancer cell line, HiCNAtra-corrected heatmap achieves the least 1D signal variation 
without deforming the inherent chromatin interaction signal. Additionally, HiCNAtra-
corrected contact frequencies have minimum correlations with each of the systematic 
bias sources compared to OneD’s explicit method. Visual inspection of CNV profiles and 
contact maps of cancer cell lines reveals that HiCNAtra is the most robust Hi-C correc-
tion tool for ameliorating CNV-induced bias.

Conclusions:  HiCNAtra is a Hi-C-based computational tool that provides an analytical 
and visualization framework for DNA copy number profiling and chromatin contact 
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map correction of karyotypically abnormal cell lines. HiCNAtra is an open-source soft-
ware implemented in MATLAB and is available at https​://githu​b.com/AISKh​alil/HiCNA​
tra.

Keywords:  Chromosome conformation capture (3C), Hi-C normalization tool, 
Read depth, Copy number variation (CNV), Generalized linear model (GLM), Poisson 
regression, Cancer

Background
3C-related methods are a collection of molecular techniques to analyze three-dimen-
sional (3D) chromatin interactions inside the cell nucleus [1]. Since its inception, the 3C 
technique [2] has been modified and combined with next-generation sequencing (NGS) 
to interrogate chromatin interactions of genomic loci at different length scales [1, 3, 4]. 
The genome-wide adaptation of the 3C technique, Hi-C, confirmed the chromosome 
territory hypothesis and revealed the hierarchical organization of our genome into A/B 
compartments [3] and topologically-associating domains (TADs) [5, 6]. Subsequently, 
the 3C-sequencing (3C-seq) technique was introduced as a simplified Hi-C method by 
combining conventional 3C library preparation protocol and NGS [4, 7, 8].

There is an abundance of Hi-C datasets generated using cancer cell lines. Cancer 
genomes generally exhibit abnormal karyotypes and carry pervasive genomic altera-
tions, including large-scale and focal CNVs [9–13], with pathological consequences [14]. 
It has been reported that CNV results in the rewiring of chromatin connectivity lead-
ing to alterations in the long-range control of gene expression [15]. CNVs can directly 
modulate gene-regulatory mechanisms by altering the copy number (CN) of regula-
tory elements or indirectly by modifying the higher-order chromatin structure [16]. 
For example, prostate cancer cell lines have been shown to harbor smaller-sized TADs 
compared to the normal prostate epithelial cells, with new TAD boundaries coinciding 
with the CNV regions [17]. Similarly, multiple myeloma (MM) cells, with whole/partial 
chromosomal gains or losses, exhibit an increment of 25% in the number of TADs and a 
significant decrease in their average size compared to normal B cells [18]. Additionally, 
CN-amplified regions in MM cells manifest in higher interaction frequencies than CN-
neutral (normal) regions. This is expected as regions with CN gains or losses will have 
relatively greater or lower chances of being captured during the Hi-C pull-down step, 
respectively, which in turn will affect interaction profiles of CNV regions [15, 18, 19]. 
Taken together, these observations provide evidence that chromatin interaction signal 
is adversely impacted by CNVs in cancer cell lines with abnormal karyotypes. There-
fore, the apparent CNV effect on contact frequency must be masked/corrected to obtain 
a euploid-equivalent contact map for correct interpretation of genome-wide chromatin 
interaction data.

Nevertheless, for correcting the raw contact map from CNV effects, it is a prerequisite 
to collect information about genome-wide DNA copy number profile. Hi-C sequencing 
reads can be successfully utilized to estimate the RD signal and discovery of CNVs with-
out the additional cost of performing WGS. HiCnv is the first tool to identify CNVs from 
Hi-C reads [20]. However, it can only identify large CNVs (> 1 Mb size). Recently, HiNT 
[21] has been developed for detecting CNVs of smaller sizes from Hi-C data. HiNT 
utilizes a generalized additive model (GAM) based on unimodal Poisson distribution, 
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introduced earlier in BIC-seq2 [22], to normalize the read counts. This leaves plenty of 
room for improvement for identifying CNVs from Hi-C/3C-seq reads by using a multi-
modal RD signal distribution which is particularly suited for cancer cell lines [23].

Hi-C contact maps are affected by different kinds of biases [24–26]. Several Hi-C 
normalization procedures have been developed over the years to correct the effects of 
these biases, which can be broadly divided into implicit- and explicit-based methods. 
Implicit methods correct the Hi-C contact map as a matrix-balancing problem assuming 
that genomic regions binned at equal size would yield similar coverage [27–31]. On the 
other hand, explicit methods, that require a priori knowledge of the biases, normalize 
the contact matrix by modeling the relationship between the contact frequencies and 
the known sample-independent systematic biases introduced primarily by GC-content, 
effective (restriction) fragment length, and mappability biases [24, 32].

ICE (Iterative Correction and Eigenvector decomposition) method [27] has been com-
monly used to implicitly correct the contact maps of most Hi-C datasets without the 
requirement of a priori knowledge of the bias sources. Though the ICE method may 
indirectly account for the effects of CNV-driven bias on the interaction matrix, recent 
evidence demonstrated that ICE method is not optimum to correct Hi-C data of can-
cer cells that are plagued with widespread CNVs [26, 30]. These studies showed that 
ICE normalization results in overcompensation of original CNV bias leading to distor-
tion of the interaction frequency signal. A crude attempt to normalize CNV bias was 
first presented by caICB, a chromosome-adjusted iterative correction method [33]. The 
caICB applies a uniform copy number for individual chromosomes ignoring the copi-
ous presence of segmental aneuploidy and focal CNVs. Two methods have been recently 
introduced to address the CNV bias effects on Hi-C contact maps. First, the explicit-
based approach of OneD [26] normalizes the contact map sequentially for the sample-
independent systematic biases (GC-content, effective fragment length, and mappability) 
followed by dividing the contact frequencies between two genomic loci by the product 
of their copy numbers, estimated by a Hidden Markov Model (HMM). On the other 
hand, the implicit-based approach of CAIC (CNV-Adjusted Iterative Correction) [30] 
first performs a local iterative correction. Then, it normalizes the CNV-bias by modeling 
the raw interaction count between two CNV loci as the product of their copy numbers, 
which are estimated using a pruned dynamic programming algorithm [34]. However, 
our analysis showed that the performance of OneD and CAIC tools is not optimum for 
the removal of CNV-induced artifacts from the Hi-C contact maps of cancer cell lines.

Here, we developed HiCNAtra (Hi-C Normalization Approach through read depth 
analysis) framework, which can (1) estimate DNA CN profile and detect CNVs from 
Hi-C/3C-seq data and, (2) apply this CN information for normalization of chro-
matin contact map. HiCNAtra utilizes all types of raw Hi-C reads using a novel 
‘entire-fragment’ counting approach for computing RD signal, while genomic reads 
are exclusively used in the case of 3C-seq data. RD signal computed by HiCNAtra 
from Hi-C/3C-seq data successfully recapitulates the WGS-derived RD signal of the 
corresponding cell line. Our RD-computing approach can extract the RD signal at 
high resolution that allows precise detection of both large-scale and focal CN altera-
tions using the multimodal distribution-based hierarchical CNV calling approach of 
CNAtra [23]. Benchmarking of HiCNAtra’s CNV caller module against OneD and 
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HiNT showed that HiCNAtra is the only tool to accurately estimate the CN profiles 
of karyotypically abnormal cell lines. For contact map normalization, HiCNAtra uti-
lizes a generalized linear model (GLM) to correct the interaction matrix from the 
sample-dependent CNV bias along with sample-independent systematic biases (GC-
content, effective fragment length, and mappability). We evaluated the contact-map 
correction performance of HiCNAtra against ICE, OneD, and CAIC methods using 
Hi-C data of MCF7 breast cancer cell line. Comparative results showed that the 
HiCNAtra-corrected contact map achieved the least 1D signal variation with no sig-
nal inversion effects, unlike implicit-based approaches. Besides, HiCNAtra normali-
zation successfully removed the CNV-induced artifacts from the contact map which 
results in a heatmap with homogeneous signal. Further, head-to-head comparison of 
explicit-based Hi-C correction tools, HiCNAtra and OneD, using Hi-C/3C-seq data-
sets of five cancer cell lines established the superiority of HiCNAtra in ameliorating 
the effects of CNV-induced bias and other systematic biases on chromatin contact 
maps.

Results
Overview of HiCNAtra framework

HiCNAtra pipeline comprises of three modules: RD calculator, CNV caller, and contact 
map normalization (Fig. 1a). The RD calculator module accomplishes the computation 
of the RD signal from NGS reads of Hi-C or 3C-seq datasets (default bin size = 5 kb). 
In the case of Hi-C data, both ‘informative’ as well as ‘non-informative’ reads, are uti-
lized to compute the RD signal employing a novel entire-(restriction) fragment counting 
approach (Fig. 1b, left). The informative reads constitute valid pairs that represent inter-
actions between genomic loci, whereas non-informative reads include all other types of 
reads (dangling-end, extra dangling-end, self-circle, and single-sided reads).

In this approach, we count the reads for each restriction fragment based on the 
assumption that each continuous DNA-sequence read represents a particular restric-
tion fragment and contributes to the abundance of that fragment. So, for a particular 
restriction fragment, the fragment count is calculated as the sum of the number of reads 
located within a distance of maximum molecule length (MML) from the restriction 
site (see “Methods” section). In the case of 3C-seq datasets, genomic reads are distrib-
uted uniformly along the genome and represent the majority of reads (Fig.  1b, right). 
Therefore, the RD signal is exclusively computed from the paired-end genomic reads in 
an unbiased manner similar to RD analysis of paired-end WGS reads (see “Methods” 
section).

The CNV caller module identifies CNVs in cancer cell lines using the RD signal com-
puted by the RD calculator module. It incorporates the multimodal RD signal modeling 
approach of CNAtra [23] to hierarchically identify large-scale and focal CN-altered seg-
ments. These CN events are integrated to generate the CNV track that is used as an 
explicit bias source for correcting chromatin interaction matrix.

Finally, the contact map normalization module utilizes a Poisson-based GLM to simul-
taneously normalize the contact matrix for GC-content, effective fragment length and 
mappability biases, as well as biases introduced by CN gains/losses. This simultaneous 
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approach allows HiCNAtra to estimate the accurate contribution of each bias source 
on the contact frequencies and correct them. HiCNAtra also performs pre-processing 
of Hi-C/3C-seq data and generates the pre- and post-normalization chromatin contact 
maps for visual inspection.

Fig. 1  HiCNAtra pipeline and RD signal computation. a Block diagram of the HiCNAtra software showing 
different computational modules. b Schematic illustration of the RD signal computation methods using Hi-C 
(left) and 3C-seq (right) reads. Left: For Hi-C data, informative and non-informative (only dangling-end reads 
are shown) reads (top panel) mapped within the restriction fragment-end windows (second panel) are used 
for RD calculation. Then, the number of reads is counted for each window (third panel). Base counts are then 
estimated for each restriction fragment as the summation of the counts of its two fragment-end windows 
(bottom panel). Right: For 3C-seq data (top panel), genomic reads (middle panel) are exclusively used to 
compute the RD signal in an unbiased manner similar to WGS paired-end reads (bottom panel)
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HiCNAtra computes high‑resolution RD signal by utilizing all types of Hi‑C reads

Data coverage (number of reads) is an important determinant for detecting CNVs, 
especially the focal alterations. Although valid pairs are the main target of Hi-C/3C-seq 
analysis for capturing the chromatin interactions, other non-informative reads can be 
additionally utilized for estimation of the RD signal at a higher resolution. Based on our 
analyses of six Hi-C datasets that we used in this study, valid pairs represent 39–64% of 
the total mapped reads that include single-sided and double-sided mapped reads (Addi-
tional file 2: Table S1). Other reads, which represent a significant proportion (36–61%), 
are usually filtered out during Hi-C downstream analysis. However, these reads are still 
‘informative’ and can potentially contribute to the estimation of the genome-wide RD 
signal. Therefore, we computed the RD signal from all Hi-C reads (both informative and 
non-informative reads) or utilizing valid pairs only. We found that the addition of non-
informative reads increases the resolution of the RD signal by 22–44% for different Hi-C 
datasets (Additional file 2: Table S1). In order to substantiate the validity of incorporat-
ing non-informative reads for estimating the RD signal, we compared “read counts per 
restriction fragment” from all Hi-C reads versus valid pairs only using the same num-
ber of randomly-selected reads (Additional file 3: Table S2). We found that read counts 
from all Hi-C reads and valid pairs are highly correlated (Spearman correlation 80–91%) 
(Additional file 3: Table S2). These findings confirm that the inclusion of non-informa-
tive Hi-C reads productively adds toward the computation of a high-resolution RD sig-
nal without introducing any undesired bias in the read counts.

On the other hand, the 3C-seq technique results in a majority of genomic reads among 
the double-sided mapped reads (percentage of genomic reads ranges from 66% in K562 
to 77% in H69AR data). Therefore, similar to WGS datasets, RD signals can be con-
veniently computed from these genomic reads in an unbiased manner. Each mapped 
paired-end genomic read is used to calculate the fragment length (side1-start to side2-
end), which helps to compute the RD signal at high coverage (14.26 × for K562 with 117 
million paired-end genomic reads and 12.37 × for H69AR with 120 million paired-end 
genomic reads). Altogether, HiCNAtra maximally utilizes the Hi-C/3C-seq reads for 
computing RD signal in contrast to other Hi-C tools (HiCnv, HiNT, OneD, and CAIC) 
that use valid pairs only [20, 21, 26, 30].

Entire‑fragment counting approach successfully extracts copy number‑associated features 

of RD signal

Accurate estimation of the RD signal from Hi-C reads is the primary key for the identi-
fication of CNV regions. Generally, most Hi-C analysis tools [20, 21, 24–32, 35] assign 
the Hi-C reads to the midpoint of the corresponding restriction fragment (midpoint 
approach) or map reads to their exact-cut coordinates (exact-cut approach). These 
approaches are suitable for interaction frequency calculation since Hi-C matrices are 
usually generated using a larger bin size (usually one-order of magnitude larger) com-
pared to the average length of the restriction fragments. However, smaller bins are nec-
essary for a  better  identification of change points at high-resolution and detection of 
CNVs of different length scales. The microscopically detectable large-scale copy number 
variations (LCVs) and sub-microscopic focal alterations (FAs) coexist in cancer genomes 
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[36–38]. While LCVs are Mb-scale chromosomal abnormalities, such as segmental ane-
uploidy [38], FAs are CNVs of size ranging from kb to a few Mb, containing a single or 
few genes related to cancer or drug resistance [12, 37]. Therefore, we formulated a novel 
entire-(restriction) fragment counting method where we assign the count of mapped 
Hi-C reads of a particular restriction fragment to each base (nucleotide) of that fragment 
for RD signal calculation (Fig. 1b).

For illustrating the advantage of HiCNAtra’s entire-fragment method over the exact-
cut and midpoint approaches, we first visually compared their RD signals using MCF7 
Hi-C data generated using the HindIII enzyme (Fig. 2a). We calculated the RD signal at 
5-kb bin using Hi-C reads, which is comparable to the experimental resolution (average 
4096 bases for 6-bp cutter). Interestingly, we found that the entire-fragment counting 
method can credibly capture LCVs in MCF7 cells as evidenced by two main peaks in 
the RD signal distribution (Fig. 2a right, bottom panel). Besides, FAs are visually con-
spicuous using our entire-fragment counting method viz. FA1 and FA2 in the RD signal 
plot (Fig.  2a left, bottom panel). In comparison, RD signals generated using the other 
two approaches show high signal variability and make the distribution more skewed 
toward bins with low reads (Fig.  2a, top and middle panels). Overdispersion can be 
observed in the genome-wide RD signal in both karyotypically normal lymphoblastoid 
cells (GM12878) and LNCaP prostate cancer cells with an abnormal karyotype (Addi-
tional file 1: Fig. S1). As a visual illustration, the RD signal of chromosome (chr) 3 (which 
is devoid of LCVs in both GM12878 and LNCaP), computed by the entire-fragment 
method, showed minimal variation level compared to other approaches as indicated by 
the height of the red arrow in the Additional file 1: Fig. S1.

More importantly, we examined the impact of different RD-computing approaches 
on the CNV calling by HiCNAtra. For that, we applied HiCNAtra’s CNV caller mod-
ule on the RD signals of MCF7 and LNCaP cancer cell lines computed by the three 
approaches (Additional file  1: Figs. S2 and S3). Overall results showed that mid-
point and exact-cut approaches failed to capture RD signal amplitude change in 
many cases. Considering the CNVs identified by CNAtra [23] (ref ) using WGS data-
sets of MCF7 and LNCaP as ground truth, HiCNAtra’s CNV caller outputs using 
midpoint and exact-cut approaches resulted in several false negatives. For exam-
ple, in the MCF7 chr 1 (80–100  Mb) region, HiCNAtra’s CNV caller output using 
the entire-fragment counting method revealed high concordance with the CNAtra’s 

(See figure on next page.)
Fig. 2  RD signal computed from entire-fragment counting approach recapitulates WGS-derived coverage 
signal. a The coverage plot (left) at 5-kb bin and the RD frequency distribution (right) of MCF7 chr16:56-88 Mb 
region computed from Hi-C data using exact-cut (top), midpoint (middle), and HiCNAtra’s entire-fragment 
(bottom) counting approaches. Each red dot represents the copy number per bin. Focal alterations (e.g. 
FA1 and FA2) and LCVs are shown. b Box plot of centralization scores (5-kb bin) and zero scores (5-kb bin) 
computed from the Hi-C-derived RD signal of 6 cell lines (MCF7, LNCaP, PC3, GM12878, IMR90, and PrEC) 
using exact-cut, midpoint, and entire-fragment counting approaches at 5-kb and 100-kb bin sizes. c HiCNAtra 
gain (in percentage) of centralization and zero scores by utilizing the entire fragment counting approach, 
compared to exact-cut and midpoint approaches. d The genome-wide coverage plot (chr 1–chr X) of MCF7 
breast cancer cell line is computed from Hi-C (top) and WGS (bottom) data. Each dot represents the RD signal 
per bin computed from Hi-C data (red) or WGS data (grey). WGS data is obtained from the ‘input’ (control) 
data of MCF7 ChIP-seq experiment
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WGS-derived CNV output of the same cell line. On the other hand, the midpoint 
and exact-cut approaches could not detect any CNV (Additional file 1: Fig. S2). It is 
important to mention that the CNVs derived from WGS versus Hi-C data may not be 
exactly superimposable because of clonal/strain variations of the cell line as well as 
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differences in the depth of coverage of the datasets. Similarly, in the case of LNCaP 
chr 10 (85–120 Mb), the midpoint and exact-cut approaches detected few CNVs cor-
rectly, however, they missed/incorrectly called other CNVs (Additional file  1: Fig. 
S3). This discrepancy in CNV detection between exact-cut versus other counting 
approaches can be attributed to the visual observation that these CNVs are not con-
spicuous in the RD signal computed by the midpoint and exact-cut approaches.

As a quantitative comparison, we computed the centralization and zero scores for all 
the six Hi-C datasets (GM12878, IMR90, PrEC, MCF7, LNCaP, and PC3). The centrali-
zation score (CS) is computed as the percentage of bins that are near their integer CN 
states (CN = 1, 2, 3, and so on):

where i is the bin number, CNi is the copy number of the bin, Si is the CN state of the 
bin, and Wi is the bin size. CS can be used as a measure for the allocation of genomic 
loci at or near integer CN states. Next, we defined the zero score (ZS) as the percent-
age of bins with CN = 0. ZS can be used as a measure of the sparseness of the RD signal. 
Therefore, in a nutshell, high CS implies that the RD signal is distributed near distinct 
CN states which aids in the identification of CNVs, while low ZS is essential to avoid 
false detection of deleted regions, especially in large restriction fragments. We com-
pared the entire-fragment counting method against midpoint and exact-cut approaches 
using only valid read pairs as well as all Hi-C reads. In both settings, we found that the 
entire-fragment counting approach achieved the maximum CS and minimum ZS in all 
Hi-C datasets (Fig. 2b, Additional file 4: Table S3). Additionally, we found that incorpo-
rating other reads with valid pairs increases the CS and decreases the ZS with differ-
ent degrees (Fig. 2b, Additional file 3: Table S3). Notably, at 5-kb binning, the exact-cut 
approach reaped the maximum benefit of integrating other types of Hi-C reads (mean 
∆CS = 1.42% and ∆ZS = 3.6468%), compared to entire-fragment (mean ∆CS = 0.365% 
and ∆ZS = 0.076%) and midpoint (mean ∆CS = 0.0276% and ∆ZS = 0.129%) approaches 
(Fig.  2b, Additional file  3: Table  S3). This suggests that other read types complement 
the valid pair reads as they are partially mapped to different genomic loci. The HiC-
NAtra gain (in percentage) of CS and ZS is computed as the absolute difference in score 
between the entire fragment counting approach (using all Hi-C reads, default settings) 
and other approaches (using valid pairs, default settings) (Fig.  2c, Additional file  5: 
Table S4). HiCNAtra gain of CS ranges from 6.1 to 13.4% with respect to the midpoint 
and 7.28–14.9% compared to the exact-cut approach. Similarly, ZS gain ranges from 
11.6 to 14.2% compared to the midpoint approach, and 13.65–17.7% over the exact-cut 
approach. This quantitative comparison further strengthens the utility of the entire-frag-
ment counting method and conforms to the conclusions derived from visual inspection 
of coverage plots and CNV profiles derived from these three approaches (Fig. 2a, Addi-
tional file 1: Figs. S1–S3).

Finally, we compared the RD signal derived from Hi-C reads with the WGS-derived 
coverage signal of the same cell line. We found that RD signal computed from Hi-C reads 
using the entire-fragment method has the highest correlation with the WGS-derived 
RD signal (Spearman’s ρ of 0.714 for MCF7 and 0.55 for LNCaP cells) (Additional file 6: 

CS =

∑

i Wi, |Si − CNi| ≤ 0.25
∑

i Wi
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Table S5). In comparison, exact-cut and midpoint approaches showed the Spearman’s ρ 
of 0.32 and 0.31 for MCF7, and 0.26 and 0.24 for LNCaP cells, respectively (Additional 
file 6: Table S5). Visual inspection of genome-wide RD signal computed by these three 
approaches (entire-fragment, exact-cut, and midpoint) versus the WGS-derived RD 
signal (Additional file 1: Fig. S4) further validates the supremacy of the entire-fragment 
method to correctly extract RD signal from Hi-C reads. As expected, we observed that 
the RD signal extracted from K562 3C-seq data correlated well with the WGS-derived 
coverage signal (Spearman’s ρ = 0.573) (Additional file  6: Table  S5). These data indi-
cate that the RD signal can be reproducibly extracted from Hi-C/3C-seq datasets (visu-
ally illustrated in Fig. 2d and Additional file 1: Fig. S5). Taking all results together, our 
analysis showed that HiCNAtra is the best estimator of the RD signal from Hi-C/3C-seq 
reads.

HiCNAtra outperforms OneD and HiNT tools for identifying CNVs from Hi‑C/3C‑seq data 

of cancer cell lines

All computation tools that identify CNVs from Hi-C data, such as HiCnv, HiNT, and 
OneD, adapted their CNV calling algorithm from different WGS-derived CNV detection 
tools. HiCnv [20], the first tool developed for detecting CNV from Hi-C data, computes 
the RD signal (30-kb bin) from the interaction matrices. It employs an HMM-based 
segmentation and utilizes the global average of RD signal as CN reference to identify 
CNVs. However, HiCnv was tuned to identify only large-scale CNVs with size > 1 Mb. 
Recently, HiNT [21] has been developed for detecting CNVs of smaller sizes from Hi-C 
data. Similar to HiCnv, HiNT computes the RD signal as the row summation of the Hi-C 
interaction matrices in cooler format [35]. HiNT adapted the pipeline of BIC-seq2 [22] 
for identifying CNVs from the Hi-C-derived RD signal. BIC-seq2, a WGS-based CNV 
detection tool, inferred the CN of a genomic region as the ratio between the observed 
mapped reads and the expected mapped reads, estimated using Poisson-based GAM, 
in that region. On the other hand, OneD’s CNV detection module utilizes an HMM of 
eight states to estimate the copy number of genomic segments [26]. Therefore, all CNVs 
with CN ≥ 8 are assigned the same state which may impact the CNV-driven bias correc-
tion of regions with high copy number gain.

HiCNAtra’s CNV caller module adapted the CNAtra approach [23] to identify CNVs. 
CNAtra introduced a novel hierarchical CNV detection method based on multimodal 
distribution to identify both LCVs and FAs in cancer cell lines regardless of the com-
plexity of structural variations. We found that RD frequency distributions of cancer cell 
lines (MCF7, LNCaP, PC3, H69AR, and K562) derived from Hi-C/3C-seq reads exhib-
ited multimodal distribution (Additional file  1: Fig. S6a), whereas normal cell lines 
(GM12878, IMR90, and PrEC) showed unimodal RD frequency distribution of (Addi-
tional file 1: Fig. S6b). Additionally, Hi-C/3C-seq experiments are performed on cancer 
cell lines which generally do not have normal counterparts to serve as the reference con-
trols. Hence, we adapted the CNAtra approach which uses a single sequencing sample 
as input to identify CNVs in cell lines with abnormal karyotypes. This approach is also 
applicable to karyotypically normal cell lines exhibiting unimodal RD signal distribu-
tions since unimodal is a special form of multimodal distribution.
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After successful extraction of RD signals from Hi-C/3C-seq reads that are consistent 
with the WGS-derived RD signal, we analyzed the CNV profiles of six Hi-C and two 
3C-seq datasets using the CNV caller module of HiCNAtra (Additional file 7: Table S6). 
Results show that all cancer cell lines (MCF7, LNCaP, PC3, K562, and H69AR) are 
enriched for LCVs (45–131 regions) with a median width of 5.2–38.9 Mb, whereas nor-
mal cell lines (GM12878, IMR90 and PrEC) are almost free of LCVs (1–3 regions) (Addi-
tional file 1: Fig. S7a). On the other hand, FAs are pervasive in both cancer (172–259 
regions) and normal cell lines (21–102 regions) with median width of 155–235 kb (Addi-
tional file 1: Fig. S7b).

Next, we benchmarked the HiCNAtra CNV caller module against HiNT as well as 
OneD’s CNV detection module using five Hi-C/3C-seq datasets of cancer cell lines 
(MCF7, LNCaP, PC3, K562, and H69AR). We applied HiNT on these datasets using 
interaction matrices binned at 50-kb (default bin size in HiNT) as well as 5-kb (default 
bin size in HiCNAtra) for a fair comparison. OneD uses 500-kb binning (heatmap reso-
lution) for both CNV profiling and contact map correction. Our results demonstrated 
that HiNT and OneD failed to estimate the accurate copy number of genomic segments 
(Fig. 3, Additional file 1: Figs. S8–S12). For example, we generated the CNV profiles of 
chr 3 from Hi-C data of LNCaP, a hypotetraploid prostate cancer cell line with a modal 
chromosome number of 76–91 [39], using all three tools (Fig. 3a). Both HiNT and OneD 
failed to estimate the CN of most chromosomal regions of chr 3 and designated them 
as CN-neutral regions. In contrast, HiCNAtra correctly estimated the copy numbers 
of most ‘large’ segments in chr 3 as 4  N which corroborates well with hypotetraploid 
karyotype of LNCaP. More importantly, HiNT and OneD failed to detect a few visually-
conspicuous CNVs, large regions with apparent amplitude-shift in the RD signal (Fig. 3a, 
CNV1–CNV8). In other cases, they merged genomic regions of different read counts 
into a single CN event (Fig.  3a, CNV1–CNV8). Similarly, OneD and HiNT could not 
detect the chr 4 CNV3 and chr 5 CNV4 regions, respectively (Fig.  3b). This may be 
attributed to the assumption of unimodal distribution and/or wrong estimation of CN 
reference (CN = 2). On the other hand, the multimodal model of HiCNAtra accurately 
fitted the copy number (normalized RD) frequency distribution of LNCaP cells (Fig. 3c) 
leading to accurate estimation of CN reference (CN = 2) and precise identification of 
change points of the RD signal as CN events (Fig. 3a, b). We witnessed similar obser-
vations on the CNV profiles of the MCF7 and PC3 cancer cell lines (Additional file 1: 
Fig. S8, S9). Further analysis of the CNV profiles derived from 3C-seq data of H69AR 
and K562 cell lines showed that OneD and HiNT failed to identify most of the CNV 
events (Additional file 1: Figs. S10, S11). In these examples, apart from the multimodal-
ity-associated problems, higher variability of RD signals was observed for these 3C-seq 
datasets. OneD and HiNT derive their RD signal from contact matrices represented 
by valid pairs only that constitute 13–15% of the total 3C-seq reads. This results in the 
generation of low-resolution RD signal, which adversely affects their performance in 
CNV detection. To further validate our conclusions, we visually examined the genome-
wide RD signals that are generated as output files by the HiNT tool (Additional file 1: 
Fig. S12). We found that HiNT can correctly extract the RD signal from Hi-C datasets 
(MCF7 and LNCaP), but failed to capture the same in the case of 3C-seq data (H69AR). 
Taken together, the multimodal assumption of RD signal distribution is an essential key 
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Fig. 3  Visual comparison of the copy number profiles of LNCaP cancer cell line generated by OneD, HiNT 
and HiCNAtra. a Coverage plots showing genome-wide CNV profiles estimated by OneD (first panel), 
HiNT (second panel) and HiCNAtra (third panel) derived from LNCaP Hi-C data. The last panel shows the 
CNAtra estimated CNV profiles derived from WGS data of LNCaP. Note: The centromeres and telomeres of 
chromosomes are filtered out in CNAtra output. b Zoom-in view of the CNV profiles of chr 4 and 5 show that 
CNV3 and CNV4 are not detected by OneD and HiNT, respectively. Each grey dot represents the copy number 
of a bin. The black line represents the copy number track where any amplitude transition indicates a new 
CNV region. For HiCNAtra, the copy number track shown here is computed from the LCVs only. The red blocks 
indicate CNVs that are missed or incorrectly called by OneD or HiNT. c The CN frequency distribution exhibits 
the multimodality feature of the LNCaP cancer genome with most genomic segments having a copy number 
of 4. The vertical black line denotes the copy number reference (CN = 2)
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for accurate detection of CNVs in cancer cell lines. Additionally, in the case of 3C-seq 
data, it is imperative to utilize the genomic reads, which constitute the bulk of 3C-seq 
reads, to estimate the RD signal.

Finally, we analyzed the width of CNVs in MCF7, LNCaP, and K562 cancer cell lines 
estimated by HiNT with 5-kb and 50-kb binning, and OneD with 500-kb binning (Addi-
tional file 8: Table S7). We found that the median width of these CNVs ranges from 10.5 
to 43.1  Mb, similar to the size range of LCVs detected by HiCNAtra, suggesting that 
both HiNT and OneD are optimized to detect large-scale CN alteration events but failed 
to detect sub-Mb-scale focal alterations. However, visual inspection of the CNV pro-
files generated from MCF7 Hi-C data (Additional file 1: Fig. S9) and H69AR 3C-seq data 
(Additional file 1: Fig. S11) clearly illustrated that chromosomes are interspersed with 
both large-scale and focal alteration events. In summary, HiCNAtra outperforms the 
OneD and HiNT tools in estimating the correct copy number as well as in detecting 
CNV events from Hi-C/3C-seq data.

Explicit‑based normalization method is better equipped to normalize CNV‑driven bias 

on contact matrices of cancer cell lines

Several tools have been developed to remove the systematic biases and normalize the 
chromatin contact map using implicit- and explicit-based approaches. CNV is a hall-
mark of cancer cells. It is a well-established fact that the chromatin contact map is highly 
influenced by the CN change events [17, 18]. The copy number gains or losses result 
in apparent increment or decline in interaction frequencies creating visible artifacts on 
the chromatin contact map. This results in a fallacious interpretation of the higher-order 
chromatin conformations.

We, therefore, probed into the effects of CNV bias on chromatin contact map and 
evaluated the performance of HiCNAtra against different Hi-C correction tools in 
ameliorating their effects through visualization of pre- and post-corrected heatmaps 
and 1D signal variation. For performance evaluation, we compared HiCNAtra against 
the widely-used ICE method [27] as well as recently introduced, OneD [26] and CAIC 
[30] tools, that have been specifically developed to remove the CNV-driven bias from 
the contact map. It is important to note that CNV-targeted Hi-C correction tools, HiC-
NAtra, OneD, and CAIC, also remove other systematic biases (GC-content, effective 
fragment length, and mappability). On the other hand, the ICE method uses a matrix 
balancing approach to normalize all systematic biases with implicit assumptions and 
therefore expected to correct the bias introduced by CNVs as well. These four Hi-C cor-
rection tools can be mainly categorized into (1) implicit (ICE and CAIC) and (2) explicit-
based methods (OneD and HiCNAtra). For this analysis, we used Hi-C data of the 
commonly-used breast cancer cell line MCF7 as these cells show abnormal karyotype 
and carry pervasive chromosomal alterations [40]. Besides, both OneD and CAIC tools 
used MCF7 for performance evaluation in their respective studies.

Visualization of contact heatmap is a simple and effective way to qualitatively 
ascertain the effects of CNVs on interaction frequencies. Therefore, we visu-
ally inspected the raw and corrected heatmaps generated by Hi-C correction tools 
(ICE, CAIC, OneD, and HiCNAtra) and evaluated their performance in ameliorat-
ing CNV-induced signal artifacts. Cancer cell lines, which typically carry widespread 
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amplifications and deletions, create visible artifacts in the raw contact matrices 
(uncorrected heatmaps) (Fig. 4a, Additional file 1: Fig. S13). For instance, in MCF7 
chr 1 heatmap, highly-amplified regions, CNV1 and CNV2, resulted in two off-
diagonal block patterns with signal strength higher than their surrounding regions 
(Fig. 3a, shown by arrowhead). These blocks indicate the overrepresented cis inter-
actions between these amplified regions with other genomic regions. As intended, 
HiCNAtra ameliorates CNV-induced artifacts as evidenced by the removal of off-
diagonal blocks (artifacts) from the corrected heatmap without distorting the inher-
ent chromatin conformation landscape, such as domain-like structural organization 
(Fig.  4a, Additional file  1: Fig. S13). Though the OneD-corrected heatmap showed 
improvement over the raw heatmap, the footprints of off-diagonal blocks of weaker 
strength are still visible in the post-corrected heatmap (Fig. 4b). We witnessed simi-
lar observations while inspecting other regions of MCF7 for OneD (Additional file 1: 
Fig. S13). In comparison, to the naked eye, the performances of iterative correction-
based methods, ICE and CAIC, are on par with HiCNAtra in mitigating the CNV 
artifacts (Fig.  4b, Additional file  1: Fig. S13). This shows that HiCNAtra’s explicit 
approach is fairly adequate for correcting contact maps of cancer cell lines with 
abnormal karyotypes, similar to implicit approaches.

Nonetheless, visual inspection is not a gold standard to evaluate the performance of 
Hi-C correction tools. The main criteria for any normalization should be to attenuate 
the signal variations without changing the inherent behavior of the data. As defined 
by implicit-based approaches, the ultimate target of Hi-C normalization is to achieve 
near-equal visibility of all genomic regions. It is self-evident that this normalization must 
preserve the inherent behavior of the chromatin interaction signal. To evaluate the qual-
ity of normalization of Hi-C correction tools in attenuating the overall bias, we plot-
ted 1D signal tracks (the summation of each column of the contact matrix) of raw and 
corrected heatmaps generated by ICE, CAIC, OneD, and HiCNAtra (Fig. 4c, Additional 
file  1: Fig. S14–S16, Additional file  9: Table  S8). Visually, the HiCNAtra-corrected 1D 
tracks showed the minimum overall variation compared to the other Hi-C correction 
tools (Fig. 4c, Additional file 1: Fig. S14–S16). This is further substantiated by the fact 
that HiCNAtra achieved the least standard deviation in the 1D signal for all chromo-
somes (Fig. 4d). All other tools attenuate the 1D signal variation compared to the raw 

(See figure on next page.)
Fig. 4  HiCNAtra normalization successfully ameliorates the effects of CNVs on the MCF7 chromatin contact 
map. a Raw (top) and HiCNAtra-normalized (bottom) interaction heatmaps (500-kb bin) of MCF7 chr 1. 
Copy number track of chr 1 computed by HiCNAtra from MCF7 Hi-C data is shown on top. Each grey dot 
represents the copy number of a bin. The red line represents the copy number track where any amplitude 
transition indicates a new CNV region. Two amplified regions, CNV1 and CNV2, are shown that resulted in 
two off-diagonal block patterns (visible artifacts). b Post-normalized Hi-C interaction heatmaps (500-kb bin) 
of MCF7 chr 1 using ICE (top), CAIC (middle), and OneD (bottom) tools. The copy number track is shown as in 
(a). For the OneD tool, OneD + CN normalization module was used. c Visual comparison of the 1D signals of 
pre-corrected (raw) and post-corrected contact maps of MCF7 chr 1 using different Hi-C correction tools. The 
five panels show the raw and post-corrected 1D signals (red dots) using ICE, CAIC, OneD, and HiCNAtra tools, 
respectively. The blue line shows the moving average of the 1D signal. The black line with arrows represents a 
region showing a signal inversion effect. For each post-corrected 1D signal, the Spearman correlation (ρ) and 
standard deviation (s) are indicated next to each panel. d Bean plot of standard deviations per chromosome 
of 1D signal of cis contact map corrected by ICE (green), CAIC (teal), OneD (red), and HiCNAtra (blue) tools
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(uncorrected) signal albeit to varying degrees (Additional file 9: Table S8). The iterative-
correction-based methods, CAIC and ICE, achieved the second-least and third-least 
variation levels, respectively (Fig. 4c).
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Intriguingly, upon close inspection, we observed the ‘flipping’ (signal inversion effect) 
of the signal in ICE-corrected 1D trajectory relative to the raw 1D signal (Fig. 4c and 
Additional file 1: Fig. S14, shown by a black line). This observation is further supported 
by the fact that the ICE-corrected 1D signal of all MCF7 chromosomes showed nega-
tive correlations compared to the raw 1D signal (Additional file 10: Table S9). This signal 
inversion effect contradicts the general idea of normalization which tends to attenuate 
the bias effect without distorting the main feature of the signal. This also confirms the 
conclusions of previous studies that ICE results in overcompensation of original CNV 
bias leading to distortion of the interaction frequency signal, which render it unsuitable 
for correcting Hi-C contact map of cancer cells [26, 30]. Though CNV-targeted CAIC 
tool attempted to overcome this problem by utilizing CNV information in their matrix 
correction, its corrected 1D signal still carries the footprints of signal inversion effect 
(Fig. 4c and Additional file 1: Fig. S14, shown by a black line) as evidenced by the nega-
tive correlation of their 1D signal relative to the uncorrected ones in 16 chromosomes 
(Additional file 10: Table S9). It is notable that CAIC also utilizes local iterative correc-
tion in its approach. This data suggests that the iterative correction-based approach may 
not be suitable for normalizing Hi-C data of CNV-infested cancer cells. Additionally, 
signal inversion effects witnessed in implicit-based normalization approaches render the 
explicit-based Hi-C contact map correction as a better alternative for removing CNV 
bias.

HiCNAtra is the best explicit‑based method for correcting chromatin contact map from all 

systematic biases

After establishing the advantage of explicit-based approaches in normalizing CNV-
driven bias, we comprehensively evaluated the performance of the two explicit-based 
Hi-C correction tools, HiCNAtra and OneD, for correcting all systematic bias sources 
(GC-content, mappability, effective fragment length, and CNV) using five Hi-C/3C-seq 
datasets of cancer cell lines (MCF7, LNCaP, PC3, H69AR, and K562). Although both 
tools utilize GLMs based on either Poisson (HiCNAtra) or negative binomial (NB) 
(OneD) distribution for contact map normalization, there are two major differences 
between OneD and HiCNAtra approaches. First, OneD uses an HMM-based CNV call-
ing method, whereas HiCNAtra employs a multimodal-based hierarchical CNV call-
ing approach. Second, OneD uses a two-step normalization approach while HiCNAtra 
simultaneously normalizes the contact map from all biases, including CNV-driven bias 
using a single model.

At the outset, we visually inspected the interaction heatmap (raw, OneD-corrected, 
and HiCNAtra-corrected) and 1D signal track of chromosomes carrying CNVs in differ-
ent cancer cell lines (LNCaP chr 10, H69AR chr 2, PC3 chr 14, and K562 chr 3) (Fig. 5a, b 
and Additional file 1: Fig. S17). In all chromosomes, HiCNAtra successfully ameliorated 
the CNV-induced artifacts, as evidenced by the homogeneous signal in the corrected 
contact map, without any distortion of the inherent chromatin interaction landscape. In 
contrast, the footprints of these artifacts are conspicuous in the OneD-corrected heat-
maps. Additionally, the 1D signals of HiCNAtra-corrected chromosome-wide heatmaps 
showed lesser variations compared to OneD (Fig. 5a, b and Additional file 1: Fig. S17). 
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This is further confirmed by the fact that HiCNAtra scored the least standard deviation 
of genome-wide 1D signal variation in all cell lines (Fig. 5c, Additional file 11: Table S10).

Both OneD and HiCNAtra tend to explicitly estimate and correct the impact of all 
systematic bias sources (GC-content, mappability, effective fragment length, and CNV) 
on the interaction matrices. It is targeted to produce corrected heatmaps that are uncor-
related with these systematic biases. Therefore, we next measured the Spearman correla-
tions between different biases and the interaction frequencies of the raw (uncorrected), 
OneD-corrected, and HiCNAtra-corrected contact maps. Our analysis of the five cancer 
cell lines demonstrated that raw interaction frequencies are positively correlated with 
the HiCNAtra-derived CNV track derived from Hi-C/3C-seq data of the same cell line 
(Fig. 5d and Additional file 12: Table S11), which reiterates the adverse impact of CNV 
on contact map as reported earlier [26, 30]. We found that CNV and effective fragment 
length impart the dominant biases on the raw contact map of cancer cell lines (Fig. 5d 
and Additional file 12: Table S11). For example, the Spearman correlation of genome-
wide interaction frequencies with CNV is 0.47 for MCF7 and 0.51 for LNCaP, whereas 
Spearman correlation with effective fragment length is 0.34 for MCF7 and 0.41 for 
LNCaP. We observed that HiCNAtra-corrected interaction frequencies became virtually 
uncorrelated as they achieved the minimum correlation with CNV tracks as well as with 
other systematic biases across cell lines. For example, post-correction Spearman correla-
tion of MCF7 genome-wide interaction frequencies with CNV is 0.1 for HiCNAtra and 
0.28 for OneD. Similarly, for LNCaP, the post-correction Spearman correlation is 0.134 
for HiCNAtra and 0.29 for OneD. Collectively, these data suggest that the HiCNAtra 
approach can successfully diminish the effects of CNV and other systematic biases.

It is intriguing that OneD has not performed on par with HiCNAtra although both 
tools are based on an explicit-based approach. Therefore, the sub-optimal performance 
of OneD can be attributed to either its CNV calling approach and/or its sequential 
bias correction method. We earlier demonstrated that HiCNAtra’s CNV caller module 
outperforms the CNV detection method of OneD (Fig.  3). To further probe into this 
aspect, we implemented a ‘modified OneD’ method where we incorporated HiCNAtra-
generated CNV tracks as input in the original OneD tool instead of their default HMM-
based CNV information for contact map normalization. We applied this modified OneD 
method to the five Hi-C/3C-seq datasets of cancer cell lines. We observed that modified 

Fig. 5  HiCNAtra removes sample-dependent and sample-independent biases from the contact maps of 
cancer cell lines. a-b Interaction heatmaps (500-kb bin) and 1D signals of LNCaP chr 10 (a) and H69AR chr 
2 (b) corrected by OneD and HiCNAtra approaches. For the OneD tool, OneD + CN normalization module 
was used in all the analyses. Copy number track computed by HiCNAtra is shown on top. Each grey dot 
represents the copy number of a bin. The red line represents the copy number track where any amplitude 
transition indicates a new CNV region. The second and fourth panels show the OneD-corrected, and 
HiCNAtra-corrected contact maps, respectively. The third and fifth panels show post-corrected 1D signals 
(red dots) using OneD and HiCNAtra tools, respectively. The blue line shows the moving average of the 1D 
signal. c Bean plot of standard deviations per chromosome of 1D signal of raw (orange), OneD-corrected 
(red) and HiCNAtra-corrected (blue) cis contact maps computed from five cancer datasets (MCF7, LNCaP, 
PC3, H69AR, and K562). d Bean plot showing Spearman correlations between cis contact frequencies and 
sample-dependent (CNV) and sample-independent (effective length, GC-content, and mappability) biases in 
raw (orange), OneD-corrected (red) and HiCNAtra-corrected (blue) contact maps. Correlations are calculated 
across chromosomes of five cancer datasets

(See figure on next page.)
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OneD-normalized heatmap still harbors the footprint of off-diagonal blocks (artifacts) of 
weaker strength (Additional file 1: Figs. S18, S19). Nevertheless, the modified OneD-cor-
rected heatmap showed less variation in the 1D signal compared to the original (default) 
OneD method (Additional file 1: Fig. S18, S19, Additional file 11: Table S10), suggest-
ing that the utilization of HiCNAtra’s CNV information alone enhances the performance 
of modified OneD. This underscores the cardinal importance of accurate estimation of 
CNV profiles from Hi-C/3C-seq data for contact map normalization of cancer cell lines 
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with  pervasive chromosomal aberrations. Strikingly, the HiCNAtra-corrected interac-
tion frequencies still showed the minimum overall variations in the 1D signal compared 
to modified OneD (Additional file 1: Figs. S18, S19, S20a, Additional file 11: Table S10). 
Furthermore, HiCNAtra achieved the minimum correlations with CNV tracks as well as 
with other systematic biases across cell lines (Additional file 1: Fig. S20b and Additional 
file 12: Table S11). For example, Spearman correlation of genome-wide interaction fre-
quencies with CNV is 0.1 (MCF7) and 0.13 (LNCaP) for HiCNAtra and 0.24 (MCF7) 
and 0.33 (LNCaP) for modified OneD.

Taking together, we speculate that the advantage of HiCNAtra’s normalization method 
is attributed to (1) the improved RD calculation from Hi-C/3C-seq reads, (2) the multi-
modal-based hierarchical CNV calling approach, and (3) the simultaneous bias correc-
tion of Hi-C contact map.

Discussion
Cancer genomes are scattered with large-scale and focal CNVs. Amplification and dele-
tion events will naturally result in over- and under-representation of chromatin interac-
tions respectively in Hi-C/3C-seq contact matrices. As previously reported [18, 26, 30], 
our analysis also pointed out a positive correlation between the copy number and the 
strength of the interaction frequencies of genomic loci. This clearly suggests that CNV 
presents a dominant explicit bias in the case of cancer cell lines with abnormal karyo-
types. Therefore, CNVs can greatly influence the interpretation of chromatin contact 
maps and may lead to false identification of genomic regions with over- or under-repre-
sented interaction strengths. The effect of CNV-driven bias should be compensated for 
the amplified/deleted regions along with other systematic biases for accurate interpreta-
tion of interaction frequency with respect to the CN-neutral regions. Therefore, we have 
improved on three aspects for the effective normalization of chromatin contact map of 
cancer cell lines.

High-resolution extraction of RD signal from Hi-C/3C-seq datasets is central to dis-
cover copy number events of smaller sizes. We proposed two solutions to better esti-
mate the RD signal from Hi-C datasets. First, HiCNAtra utilizes all types of Hi-C reads, 
resulting in high-coverage RD signal, unlike other tools that use only valid pairs. Second, 
HiCNAtra employs a novel entire-fragment counting approach to create the RD signal 
track that is consistent with the WGS-derived RD profile of the corresponding cell line.

Accurate estimation of the CNV profile is a prerequisite for effectual normalization of 
the chromatin contact map. To achieve this, we adapted multimodal distribution-based 
modeling of RD signal for correct estimation of CN reference (CN = 2), which allows 
hierarchical identification of large-scale (Mb-scale) and focal alterations (kb-scale) in 
cancer cell lines with hyperploid karyotypes.

For normalization, HiCNAtra utilizes a Poisson regression model to learn the effects 
of CNVs on the contact map in conjunction with other systematic biases. Therefore, 
HiCNAtra is able  to estimate the contributions of each bias simultaneously instead of 
merely assuming a pre-defined specific effect of the CNVs on the interaction frequen-
cies. HiCNAtra thus employs a GLM to normalize the contact frequencies (the variable) 
versus GC-content, effective fragment length, mappability and CNV (the predictors) 
simultaneously. In principle, HiCNAtra can also include newer sources of biases in the 
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same method. Therefore, it is adaptable to be future-ready for correcting new biases 
from chromatin interaction data. HiCNAtra alleviates the CNV-induced visual artifacts 
from raw contact maps as evidenced by near-uncorrelation of contact frequencies with 
the CNV regions.

In this study, our benchmarking analysis of the HiCNAtra’s CNV detection module 
against OneD and HiNT firmly established the advantage of implementing multimodal-
based CNV discovery. Similarly, RD signal extraction using the entire-fragment count-
ing approach for Hi-C reads facilitated the detection of focal copy number alterations. 
Performance evaluation of contact map correction against ICE, OneD, and CAIC meth-
ods undeniably demonstrated that HiCNAtra is superior to other Hi-C correction tools 
in eliminating the CNV effects on contact matrices without any signal inversion effect.

It is worth mentioning that previous studies have demonstrated the adverse effects of 
CNVs on the higher-order chromatin structure such as TADs [17, 18]. However, chro-
matin topological structures such as TADs and A/B compartments are defined by com-
putational methods using a normalized Hi-C contact map. As we have shown in our 
data, the contact map exhibits signal artifacts in CNV regions. Hence, whether the TAD 
changes demonstrated in these studies are real alterations in higher-order chromatin 
organization or a result of CNV artifacts on the Hi-C contact map is open to interpreta-
tion. We believe that an in-depth study supported by sound experimental validation is 
necessary to provide the true picture of chromatin organization in cancer cells.

Altogether, our results suggest that HiCNAtra provides a better solution for (a) com-
puting high-coverage RD signal and detecting large-scale and focal CNVs from Hi-
C/3C-seq datasets, and (b) for explicitly correcting the chromatin contact frequencies 
from all systematic biases, including bias introduced by CNVs, in aneuploid cancer cell 
lines.

Conclusions
HiCNAtra is a computational framework for CNV detection from Hi-C data and sys-
tematic bias removal from chromatin contact matrices. For this, HiCNAtra employs a 
three-pronged approach. First, using the entire-fragment counting approach, it extracts 
a high-resolution RD signal utilizing all Hi-C reads. Second, a multimodal-based CNV 
detection allows accurate estimation of CNV profiles of cancer cell lines. Finally, HiC-
NAtra’s explicit normalization provides the best solution for contact map correction of 
cancer cell lines by simultaneously integrating all the systematic biases. To sum up, HiC-
NAtra is the best tool available to date for detecting CNVs from Hi-C/3C-seq data as 
well as for correcting chromatin contact frequencies.

Methods
Here, we explain the main modules of the HiCNAtra framework. The description of the 
wet lab experiments and other modules of the HiCNAtra pipeline are provided in the 
Extended Methods under Additional file  1. The HiCNAtra software is freely available 
along with the user manual that contains all the necessary information about the input 
data and all output results. This software also provides an interactive platform to visual-
ize and manually inspect the complete CNV profiles, pre- and post-normalized contact 
maps, and accessory information for further validation and interpretation.
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HiCNAtra framework

HiCNAtra pipeline is divided into three modules (Fig. 1a): (1) computation of the RD 
signal from Hi-C or 3C-seq reads (RD calculator), (2) RD-based detection of copy 
number events (CNV caller), and (3) bias correction of interaction matrix (contact 
map normalization). Briefly, the HiCNAtra pipeline starts with computing RD sig-
nal from the Hi-C/3C-seq reads. Next, we employ CNAtra [23] approach to identify 
large-scale and focal alterations from the RD signal and integrate them to generate 
the CNV track that is used as an explicit bias source for correcting chromatin interac-
tion matrix. Finally, we utilize Poisson-based GLM to simultaneously normalize the 
contact map for GC-content, mappability, and effective fragment length biases as well 
as bias introduced by copy number gains/losses.

Computing the RD signal from Hi‑C/3C‑seq NGS reads

Hi-C/3C-seq datasets comprise different read types such as valid pairs, dangling-end, 
extra dangling-end, self-circle, and single-sided reads as well as genomic reads [41]. 
These reads can be mainly categorized into (1) ‘informative’ reads containing valid 
pairs that represent interactions between genomic loci, and (2) ‘non-informative’ 
reads that include all other types of reads. In Hi-C datasets analyzed in this study, 
valid pairs comprise 39–64% of the total mapped reads (Additional file 2: Table S1). 
These valid pair reads are solely used to generate the contact map. HiCNAtra inte-
grates other non-informative reads (dangling-end, extra dangling-end, self-circle, 
and single-sided reads) along with valid pairs to compute the RD signal at a higher 
resolution. On the other hand, in the absence of biotin labeling and pull-down steps, 
the majority of 3C-seq reads are contributed by genomic reads. Therefore, for 3C-seq 
datasets, we compute the RD signal exclusively from these genomic reads similar 
to RD signal computation from paired-end WGS reads. Depending on the Hi-C or 
3C-seq experiment, reads are utilized differently for computing the RD signal (default 
bin size = 5 kb).

For Hi-C datasets, HiCNAtra computes the RD signal from all Hi-C reads (Fig. 1b, 
top panel) using the entire-fragment counting approach. For this, we first retain only 
those reads that are located within the restriction fragment-end windows – a region 
of maximum molecule length adjacent to the restriction site (Fig. 1b, second panel). 
Second, we count the reads for each restriction fragment based on the assumption 
that each continuous DNA-sequence read represents a particular restriction fragment 
and contributes to the abundance of that fragment. Therefore, we count each non-
informative read as a single count, whereas for valid pairs, side1 and side2 are counted 
separately (Fig.  1b, third panel). So, for a particular restriction fragment, the frag-
ment count is calculated as the sum of the number of reads located in both fragment-
end windows (Fig. 1b, bottom panel). For example, the fragment count of restriction 
fragment 1 (rFrag1) is the sum of read counts of fragment-end windows, w2 and w3 
(Fig. 1b, bottom panel). Finally, we assign the fragment count of a restriction fragment 
to all its bases and compute the RD signal. Then, we corrected it against all system-
atic biases (GC-content, mappability, and effective length features) (See Additional 
file 1). Differential restriction fragment lengths can affect the coverage of a particular 
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restriction fragment in the Hi-C data [24]. Effective length feature is defined as the 
number of nucleotides belongs to the restriction fragment-end windows per bin.

For 3C-seq datasets, genomic reads are distributed uniformly along the genome and rep-
resent the majority of reads (Fig. 1b, top panel). Therefore, we use these paired-end genomic 
reads (Fig. 1b, middle panel) to compute the RD signal in an unbiased manner (Fig. 1b, bot-
tom panel).

CNV identification

The CNV caller module of HiCNAtra is based on CNAtra [23] approach. CNAtra frame-
work constitutes the hierarchical framework to delineate the multi-level copy number 
alterations in the cancer genomes. Briefly, the CN reference (CN = 2) is first defined by fit-
ting the RD signal to a multimodal distribution. Then, a multi-step framework is utilized to 
initially identify large genomic segments with distinct CN states. Segments with CN state 
other than 2 (CN ≠ 2) are considered as LCVs or segmental aneuploidies. Next, FAs con-
taining focal amplifications and deletions in each CN-defined segment are detected based 
on coverage-based thresholding. HiCNAtra finally computes the CNV track by merging 
both LCVs and FAs for Hi-C correction.

Correction of the chromatin contact map

We employed a GLM to normalize the contact frequencies against all sources of biases. This 
GLM model was first introduced by HiCNorm [32] to correct systematic biases introduced 
by restriction fragment length, mappability and GC-content, excluding CNV bias. In the 
HiCNorm study, the comparative analysis showed that both Poisson and NB distributions 
performed equally in bias reduction. Nevertheless, HiCNorm uses the Poisson distribution 
model as it is mathematically simpler. Two GLMs with Poisson distribution are used to fit 
the cis and trans contact maps separately. By default, we apply our normalization approach 
in a genome-wide manner for better estimation of the GLM parameters.

Normalization of cis contact map

Let F =
{

f ikl
}

1≤k ,l≤ni
 represent the ni × ni cis interaction frequencies for chromosome i , 

where ni is the number of bins in chromosome i . Each element f ikl represent the number of 
interactions between genome loci from bin k and bin l in chromosome i . Let xik , y
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Then, �̂kl is used to compute the normalized interaction frequency f̂ ikl between bin k 
and bin l in chromosome i of bin as follows:

Normalization of trans contact map

Let F =
{

f
ij
kl

}

1≤k≤ni ,1≤l≤nj
 represent the ni × nj trans interaction frequencies between 

chromosome i and chromosome j , where ni and nj are the number of bins in chromo-
somes i and j , respectively. Each element f ijkl represent the number of interactions 
between genome loci of bins k and l from chromosomes i and j , respectively. Let xik , y

i
k , 

zik , and wi
k represent the GC content, mappability, effective fragment length, CNV fea-

tures of bin k in chromosome i , respectively; whereas xjl , y
j
l , z

j
l , and wj

l represent the fea-
tures of bin l in chromosome j , respectively. We assume that the interaction frequency 
f
ij
kl follows a Poisson distribution with rate �jk:

where αij
0−4 are the coefficients of the GLM. We fit this GLM model and use the coeffi-

cient estimates α̂0−4 for computing the estimated Poisson rates:

Then, �̂kl is used to compute the normalized interaction frequency f̂ ijkl between bins k 
and l from chromosomes i and j , respectively:

Data processing

We used six publicly available Hi-C datasets (GM12878, IMR90, PrEC, MCF7, LNCaP, 
and PC3) and two in-house generated 3C-seq datasets (K562 and H69AR). We used 
input control reads of ChIP-seq experiments of MCF7, LNCaP, and K562 cells to gener-
ate WGS-derived RD signal to validate HiCNAtra-computed RD signal. Detailed infor-
mation about the sequencing datasets is provided in Additional file 2: Table S1. The wet 
lab experimental details about cell culture and 3C-seq library preparation are provided 
in Extended Methods under Additional file 1.

The iterative mapping has been shown to recover the maximum numbers of aligned 
reads compared to fixed-length mapping [27]. Therefore, for both Hi-C and 3C-seq data-
sets, we applied the iterative-mapping technique of hiclib using default parameters for 
aligning short sequence reads to human reference genome GRCh37 (hg19). The itera-
tive mapping output HDF5 files are used as input for the HiCNAtra tool. Classification 
of read types (valid pairs, dangling-end, extra dangling-end, self-circle) depends on the 
maximum molecule length (MML). For each dataset, we approximately set the MML 
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as the size (in hundreds of bp) that is greater than the fragment lengths (side1-start 
to side2-end) of 99% of dangling-end and extra-dangling end reads (Additional file  2: 
Table S1, Additional file 1: Fig. S21).
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