
Improved cytokine–receptor interaction
prediction by exploiting the negative sample
space
Abhigyan Nath1* and André Leier2* 

Abstract 

Background:  Cytokines act by binding to specific receptors in the plasma membrane
of target cells. Knowledge of cytokine–receptor interaction (CRI) is very important for
understanding the pathogenesis of various human diseases—notably autoimmune,
inflammatory and infectious diseases—and identifying potential therapeutic targets.
Recently, machine learning algorithms have been used to predict CRIs. “Gold Standard”
negative datasets are still lacking and strong biases in negative datasets can signifi-
cantly affect the training of learning algorithms and their evaluation. To mitigate the
unrepresentativeness and bias inherent in the negative sample selection (non-inter-
acting proteins), we propose a clustering-based approach for representative negative
sample selection.

Results:  We used deep autoencoders to investigate the effect of different sampling
approaches for non-interacting pairs on the training and the performance of machine
learning classifiers. By using the anomaly detection capabilities of deep autoencod-
ers we deduced the effects of different categories of negative samples on the training
of learning algorithms. Random sampling for selecting non-interacting pairs results
in either over- or under-representation of hard or easy to classify instances. When
K-means based sampling of negative datasets is applied to mitigate the inadequa-
cies of random sampling, random forest (RF) together with the combined feature set
of atomic composition, physicochemical-2grams and two different representations
of evolutionary information performs best. Average model performances based on
leave-one-out cross validation (loocv) over ten different negative sample sets that each
model was trained with, show that RF models significantly outperform the previous
best CRI predictor in terms of accuracy (+ 5.1%), specificity (+ 13%), mcc (+ 0.1) and
g-means value (+ 5.1). Evaluations using tenfold cv and training/testing splits confirm
the competitive performance.

Conclusions:  A comparative analysis was performed to assess the effect of three dif-
ferent sampling methods (random, K-means and uniform sampling) on the training of
learning algorithms using different evaluation methods. Models trained on K-means
sampled datasets generally show a significantly improved performance compared
to those trained on random selections—with RF seemingly benefiting most in our

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Nath and Leier ﻿BMC Bioinformatics (2020) 21:493
https://doi.org/10.1186/s12859-020-03835-5

*Correspondence:
abhigyannath01@gmail.com;
leier.andre@gmail.com
1 Department
of Biochemistry, Pt. Jawahar
Lal Nehru Memorial Medical
College, Raipur 492001, India
2 Department of Genetics,
Department of Cell
Developmental
and Integrative Biology,
School of Medicine,
University of Alabama
at Birmingham, Birmingham,
AL, USA

http://orcid.org/0000-0002-2647-2693
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03835-5&domain=pdf

Page 2 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493

particular setting. Our findings on the sampling are highly relevant and apply to many
applications of supervised learning approaches in bioinformatics.

Keywords:  Cytokine–receptor interaction, Negative sample space, Deep
autoencoders, Random forest, K-means

Background
Insights into protein–protein interactions (PPIs) can shed light into the molecular mech-
anisms of biological processes, inform about pathogenesis, and help identify disease
intervention points. The prevalent experimental methods include the two-hybrid system
[1, 2] and co-immunoprecipitation [3, 4], which are both used for large scale determina-
tion of PPIs. Computational methods for PPI prediction can complement experimental
methods as they are cost effective and less time consuming [5]. Aside from general PPI
predictors, computational approaches have also been developed for specific subsets of
proteins, e.g. those encoded by paralogous genes [6, 7]. Among the different computa-
tional methods, Machine Learning (ML) based prediction methods provide a suitable
alternative to experimental approaches, allowing for near accurate and fast annotation
of biological sequences. These methods exploit hidden similarities to known interacting
protein pairs based on various calculated protein features, including sequence, physico-
chemical, evolutionary, and structural information [8]. Usually, machine learning pre-
dictors that are based on a diverse feature set achieve higher classification accuracy than
traditional, solely sequence similarity based methods [9, 10]. Several ML systems for PPI
prediction have been developed, using a variety of learning methods and feature sets [5,
11–18]. A specific case of a PPI is a cytokine–receptor interaction (CRI). Cytokines are
a rather loosely defined group of small signaling proteins that bind specific receptors on
the plasma membrane of target cells. Knowledge of CRIs is very important for under-
standing the pathogenesis of various human diseases—notably autoimmune, inflam-
matory and infectious diseases—as well as for identifying potential therapeutic targets.
While computational prediction of CRIs can narrow down the search space for wet lab
based experimental validation screens, only few computational studies have specifically
contributed towards the prediction of cytokines and CRIs [19–23].

Previously, Wei et al. [24] used k-skip-gram, physicochemical properties and local
pseudo position-specific scoring information with a random forest based classifier for
developing a prediction model. Their method achieved an overall accuracy of 83.7%
with 80.8% sensitivity and 86.7% specificity. Since the specificity is higher than the sen-
sitivity, it can be concluded that their prediction model is more accurate for predicting
non-interacting pairs than interacting pairs. Wei et al. [22] further improved the CRI
prediction accuracy using random forest with evolutionary features, i.e. Pseudo Posi-
tion-Specific Score Matrix (Pse-PSSM) and amino acid composition and PSSM with
auto-covariance (AC) transformation (AAC_PSSM_AC). Using leave one out cross vali-
dation (loocv), they obtained an overall accuracy of 87.9%, a sensitivity of 92.6% and a
specificity of 83.3%, leaving room for further improving CRI predictions.

Both positive examples (interacting pairs) and negative examples (non-interacting
pairs) contribute towards the optimal learning of a classifier. Positive datasets are easy to
obtain from a number of databases. However, “Gold standard” negative datasets, which
could be used for benchmarking, are still lacking. There is no agreement on the method

Page 3 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493 	

for the creation of a “standard” dataset of non-interacting proteins [25]. As a result, a
variety of methods for creating high quality non-interacting protein partners have been
proposed. One such method is to select protein pairs with different (annotated) sub-cel-
lular localizations, because they are unlikely to interact [26, 27]. Probably the simplest
method reported for forming a set of non-interacting protein pairs is to sample from
the pool of all those pairs that are not known to interact, i.e. combinations absent from
the PPI list [11, 28, 29]. Another method is to use structural similarity as a criterion [30].
The expectation is that if a pair of proteins is structurally very similar to another pair of
proteins that are known to interact, then these two proteins are likely interacting as well.
However, the above mentioned methods to produce high quality negative datasets have
their pitfalls: Sampling based on non-colocalization of protein pairs may lead to over-
optimistic performance evaluation metrics for the ML classifier, as it is easier to discrim-
inate these negative examples, since they are biased with localization information [31].
Random sampling of protein pairs not present in the protein interaction list may result
in a negative dataset containing putative interacting protein pairs, even though this has
been estimated to occur only with very low probability [25]. And significant structural
similarity can also exist among non-interacting pairs and interacting pairs. For instance,
approximately 8.7% of non-interacting pairs in S. cerevisiae are expected to be struc-
turally similar to interacting pairs [32]. Of note, it is important to distinguish between
the underlying principle used to generate the base set of non-interacting protein pairs
(e.g. sub-cellular non-co-localization, structural dissimilarity, PPI set exclusion) and the
actual methods used to sample from this base set for the purpose of generating a much
smaller negative dataset that the ML models are being trained on.

We evaluated a number of different ML algorithms with simple sequence-based fea-
tures along with evolutionary information. In order to enhance the prediction accuracy
further, we developed a heterogeneous feature set based on individual feature perfor-
mances with respect to the different learning algorithms. The heterogeneous feature set
consisting of atomic composition, physicochemical-2-grams, AAC_PSSM and D-FPSSM
produced the best performance evaluation metrics based on loocv.

Anomaly detection can be defined as the problem of finding patterns in the data that
do not fit to the expected behavior or normal behavior. These “not fitting patterns”
are called by a variety of names such as anomalies, aberrations, or exceptions [33]. A
plethora of methods such as statistical profiling using histograms, neural networks, mix-
ture models, support vector machines, and clustering have been used successfully for
anomaly detection [33]. In the present work we use the anomaly detection capability of
autoencoders for constructing different sets of negative samples and show how different
categories of negative samples can affect the training of a learning algorithm.

Strong biases in negative datasets can significantly affect the training of learning algo-
rithms and their evaluation. Imbalanced datasets having a high skew towards negative
samples result in majority class classifiers [21, 34]. Consequently, unbiased negative sets
of non-interacting proteins are desirable. We propose a method for negative data sub-
set sampling using K-means clustering, which enhances the learning and evaluation of
the entire input space by providing a proper and diverse representation. A representa-
tive training set has a proper distribution of samples from the entire input space, which
is a principal requirement for near complete learning. Likewise, a properly diversified

Page 4 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493

test set is also needed for robust evaluation of the learned models. To this end, we thor-
oughly evaluated all models using different sampling and performance evaluation meth-
ods. The latter include (1) loocv, (2) tenfold cross validation, (3) random and diversified
(K-means based) training/testing, and (4) uniform sampling-based training/testing sets.
Our results show that negative dataset selection and sampling have significant impact on
prediction accuracy of ML models, and lead to an improved performance of CRI predic-
tors. A schematic representation of our approach is shown in Additional file 1: Fig. S1.

Results and discussion
Each of the selected ML algorithms was applied using the original dataset by Wei et al.
[22] and various feature sets (see “Methods” below and Additional file 1). The perfor-
mance was evaluated based on loocv (Additional file 1: Tables S1–S12 and Table 1). With
the feature set changing and depending on the performance metric, the best performing
algorithm changes. For AAC, DPC, PGC and PCP feature sets, the accuracies for the
ML algorithms range between 63.1% and 81.0% (Additional file 1: Tables S1, S2, S3 and
S4). The maximum accuracy is achieved by the SMO-RBF model trained using AAC fea-
tures. This combination also achieves the highest accuracy, mcc and g-means, while the
best AUC value is achieved with the RF model trained using DPC features. Using either
P2G or ATC feature sets (Additional file 1: Tables S5, S6) generally improves the perfor-
mance of all learning algorithms, in particular the accuracy of correctly predicting CRIs
(higher sensitivity). All ML algorithms achieve more than 80% sensitivity using either of
these two feature sets, while higher sensitivities are achieved with the ATC feature set.
More specifically, the RF model using ATC features performs best in all metrics except
sensitivity, where the SMO-RBF model using ATC achieves the highest value (94.6%),
and AUC, where the RF model using P2G achieves the highest value (0.904). Using the
combined feature sets of ATC and P2G (Additional file 1: Table S7), the obtained sensi-
tivities are well above 80% for all algorithms. However, for IBK and RF the sensitivity is
slightly decreased as compared to the scenario where only the ATC feature set is used.
Overall, the combination of ATC and P2G features improves performances of only a few

Table 1  Performance metrics of different ML algorithms using the combined features
ATC + P2G + AAC_PSSM + D-FPSSM when applied to exactly the same dataset (positives
and sampled negatives) used by Wei et al. [22]

For comparison, we also show the metrics reported by Wei et al. The best performance for each metric is shown in italic

SE SP ACC​ MCC AUC​ g-means

ATC + P2G + AAC_PSSM + D-FPSSM

 NB 94.1 68.5 81.3 0.647 0.843 80.2

 A1DE 95.1 69.5 82.3 0.668 0.910 81.2

 SMO-RBF 93.6 86.7 90.1 0.805 0.901 90.1

 SMO-PolyK 92.6 77.3 85.0 0.708 0.850 84.6

 SMO-PuK 90.6 88.2 89.4 0.788 0.894 89.4

 IBK 91.6 84.2 87.9 0.761 0.879 87.8

 Bagging 85.7 79.8 82.8 0.656 0.904 82.7

 RF 89.2 81.3 85.2 0.707 0.935 85.1

 Wei et al 92.6 83.3 87.9 0.762 – 87.8

Page 5 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493 	

models (such as bagging) but other algorithms do not benefit from the larger feature set.
Of note, the AUC for the RF-based model is slightly higher (0.912).

Most learning algorithms perform much better using the AAC_PSSM or the D-FPSSM
feature set than when using only sequence-based feature sets (Additional file 1: Tables
S8 and S9, respectively). Except for NB (for AAC_PSSM and D-FPSSM) and IBK (for
D-FPSSM), all other algorithms produced trained models with more than 80% accu-
racy. The highest accuracy (87.2%) and specificity (88.2%) is obtained using SMO-PuK
with AAC_PSSM, the highest AUC value is achieved using an RF model with D-FPSSM
(0.939), and NB with D-FPSSM yields the highest sensitivity (97.5%). With minor excep-
tions, combining the two feature sets increases specificities compared to models trained
with D-FPSSM features, and increases sensitivities compared to models trained with
AAC_PSSM features (Additional file 1: Table S10). Notably, SMO-RBF benefits from
training using both feature sets, as the model achieves the highest accuracy (89.2%).
Overall, AAC_PSSM and D-FPSSM features and their combination performed better
than all other sequence-based features (Additional file 1: Table S12).

Training the different ML algorithms using the full feature set let to the following
results (Additional file 1: Table S11): SMO-RBF achieved the highest recorded specificity
(99.5%) over all algorithms and feature configurations, but its sensitivity was significantly
lower in comparison to all other ML algorithms. The highest accuracy and sensitivity are
obtained by A1DE but does not reach the values of the best performing models trained
using AAC_PSSM and/or D-FPSSM.

Based on the performance of the ML algorithms on the different feature sets, we
decided to merge those sets that had trained models with more than 80% accuracy. This
resulted in a new feature set created by the combination of ATC, P2G, AAC_PSSM and
D-FPSSM features (the length of the vector describing the features of one protein is
equal to 5 + 11 + 20 + 20 = 56). Using this feature set, we obtained a SMO-RBF model
with 90.1% accuracy, an mcc value of 0.805, and a g-means value of 90.1—the highest
values over all algorithms and feature configurations (see Table 1). Moreover, the model
was 2.2% more accurate than the model previously described by Wei et al. [22], which
had been trained on the same dataset. The highest AUC value among all trained mod-
els with this particular feature set was obtained with the RF model (0.935). Of note, we
achieved a higher accuracy with a smaller feature set, which has the additional benefit of
a shorter classifier training time. Our feature vector had only 112 (2 × 56) dimensions as
compared to 1600 dimensions of the feature vectors used in [22].

Based on these performance metrics, we chose SMO-RBF for investigating further the
effect of sampling non-interacting pairs on the training and the performance of our clas-
sifiers. For that purpose, we used the anomaly detection capability of deep autoencoders
and explored some of the parameters for selecting the best autoencoder model, evalu-
ated in terms of MSE and RMSE. For all autoencoder models we fixed the number of
epochs to 1000, the l2 regularization parameter to 0.0001, and experimented with dif-
ferent architectures. Specifically, we used either decreasing, increasing or alternating
larger and smaller numbers of neurons with varying numbers of hidden layers, i.e. we
varied both width and depth of the autoencoder models. The MSE and the RMSE of the
autoencoder model with rectifier activation function was very high (model no. 2, Addi-
tional file 1: Table S13), and, hence, we decided to use tanh as the activation function for

Page 6 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493

all other autoencoder models. The best autoencoder model achieved an MSE of 0.00067
and an RMSE of 0.0258 (model no. 5, Additional file 1: Table S13) using three hidden
layers with decreasing numbers of neurons: 1000, 500, and 100.

The unsupervised autoencoder was trained with only positive samples i.e. interacting
protein pairs. However, both the positive samples and the negative samples were passed
through the autoencoder for the estimation of the reconstruction error. The respec-
tive histogram bins and the counts for the reconstruction error of interacting protein
pairs and non-interacting protein pairs are presented in Additional file 1: Fig. S2 and
Table S14 (Additional file 1). Almost all the interacting protein pairs have a reconstruc-
tion value ≤ 0.003, which is intuitively understandable since the autoencoder was trained
on this dataset. Moreover, the non-interacting protein pairs with lower reconstruction
error are closer to the interacting protein pairs (see also additional information in the
Additional file 1).

In order to group the (potentially) negative samples according to how difficult it is to
classify them correctly, namely into “easy to classify” non-interacting pairs, “difficult
to classify” non-interacting pairs, and those that are in-between these two groups, we
divided the negative samples according to their estimated autoencoder reconstruction
error. According to our data, 0.003 was a reasonably good cut-off to distinguish between
the “difficult to classify” positive pairs and the rest, while 0.001 was a reasonably good
cut-off to distinguish the “easy to classify” positive pairs from the rest. We then used
the same cutoff to group the “easy to classify” and the “hard to classify” non-interacting
proteins. Accordingly, we obtained the following three groups: (a) samples with recon-
struction error ≤ 0.001, (b) those with reconstruction error > 0.001 and ≤ 0.003, and (c)
samples with reconstruction error > 0.003. Subsequently, we trained SMO-RBF models
using all the 203 positive samples and 203 negative samples, all randomly selected from
one of the above three classes. The performance metrics of five SMO-RBF models and
their average, evaluated using loocv for each of the three classes, are shown in Additional
file 1: Table S15. As expected from obtained reconstruction errors and confirmed by the
reported specificity and accuracy of SMO-RBF models, the negative samples belonging
to the first group (≤ 0.001) are hardest to classify, due to the closeness of the non-inter-
acting pairs to interacting pairs creating overlapping decision boundaries, while those
belonging to the third group (> 0.003) are easiest to classify.

We concluded, using random sampling for selecting instances for the negative train-
ing data does not guarantee a wide representation of the entire negative sample space
as there is always a chance of either overrepresentation or underrepresentation of, for
instance, hard or easy to classify instances. With respect to the above mentioned three
groups, if the set of negative instances in the training set consists mostly of samples
belonging to group (c), then the learning algorithm will most likely return overoptimistic
performance evaluation metrics. To mitigate the under-representativeness or over-rep-
resentativeness of the random selection strategy we decided to use K-means sampling
(with K = 203, the number of positive instances) for constructing representative negative
training sets (see “Methods” section). The distribution of samples into the different clus-
ters are shown in Additional file 1: Fig. S3 for all the negative samples.

In Tables 2, 3 and 4 we present the performance metrics for all eight learning algo-
rithms using loocv (Table 2), random training (70%) and testing (30%) split (Table 3),

Page 7 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493 	

Table 2  Performance metrics of different ML algorithms using negative samples
generated through random (top) and K-means (bottom) sampling

The averages of ten runs of loocv are reported. The best performance for each metric is shown in italic

SE SP ACC​ MCC AUC​ g-means

Random (loocv)

 NB 52.3 59.3 55.8 0.119 0.554 54.9

 A1DE 70.5 53.3 62.9 0.264 0.707 62.5

 SMO-RBF 79.1 74.5 76.7 0.536 0.767 76.7

 SMO-PolyK 62.8 50.9 56.9 0.199 0.569 56.4

 SMO-PuK 73.0 83.5 78.2 0.568 0.782 78.0

 IBK 81.4 71.9 76.6 0.536 0.766 76.4

 Bagging 66.6 63.5 65.1 0.303 0.718 65.0

 RF 73.2 71.6 72.4 0.449 0.807 72.3

K-means (loocv)

 NB 73.3 51.3 61.3 0.253 0.713 63.0

 A1DE 83.6 84.1 83.9 0.679 0.908 83.8

 SMO-RBF 90.2 90.8 90.5 0.814 0.905 90.5

 SMO-PolyK 80.5 87.9 84.2 0.686 0.842 84.0

 SMO-PuK 85.7 91.7 88.4 0.770 0.887 88.3

 IBK 86.1 86.1 86.1 0.722 0.861 86.0

 Bagging 86.4 92.3 89.4 0.789 0.945 89.3

 RF 89.7 96.3 93.0 0.862 0.965 92.9

Table 3  Average performance metrics of different ML algorithms based on 10 runs of split
training and testing sets 

The different sets are generated through either random (top) or K-means sampling (bottom). As for the latter, each run,
the 12,343 negative protein-receptor combinations undergo K-means sampling with K = 203. The randomly chosen 203
negative samples, one per cluster, are then randomly split into training (70%) and testing (30%) sets. Similarly, the 203
positive samples are randomly split into training (70%) and testing (30%) sets

SE SP ACC​ MCC AUC​ g-means

Random (70% training, 30% testing)

 NB 63.7 53.5 58.4 0.178 0.595 56.8

 A1DE 70.7 57.5 62.2 0.255 0.674 63.4

 SMO-RBF 79.3 72.5 75.7 0.520 0.759 75.6

 SMO-PolyK 66.7 50.0 55.2 0.194 0.583 57.1

 SMO-PuK 74.8 77.8 76.3 0.529 0.763 76.0

 IBK 79.8 68.9 74.1 0.491 0.743 73.9

 Bagging 65.5 58.9 62.0 0.244 0.682 62.0

 RF 74.5 64.2 69.1 0.390 0.779 68.9

K-means (70% training, 30% testing)

 NB 79.7 50.0 63.6 0.299 0.742 62.3

 A1DE 77.6 87.2 82.9 0.659 0.857 82.4

 SMO-RBF 89.5 89.0 89.2 0.785 0.890 89.2

 SMO-PolyK 88.1 78.9 83.2 0.692 0.828 83.2

 SMO-PuK 82.9 85.1 84.1 0.683 0.845 83.8

 IBK 82.2 87.0 84.2 0.692 0.841 84.0

 Bagging 84.8 92.3 88.7 0.776 0.934 88.4

 RF 90.3 93.9 92.2 0.844 0.959 92.0

Page 8 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493

and tenfold cv (Table 4). Results are averaged over ten randomly (Tables 2, 3 and 4,
top) and ten K-means (K = 203) sampled negative datasets (Tables 2, 3 and 4, bottom).
Our results obtained using loocv with randomly sampled negatives (Table 2, top) show
that SMO-PuK performs best for all metrics (SP: 83.5%, ACC: 78.2%, AUC: 0.782, mcc:
0.568, g-means: 78.0) except for sensitivity. Here the ‘winner’ is IBK (81.4%). SMO-RBF
is the second-best performing algorithm for all metrics (SP: 74.5%, ACC: 76.7%, AUC:
0.767, mcc: 0.536, g-means: 76.7). Also, IBK performs similarly to SMO-RBF for those
metrics. Performances of all algorithms improve significantly when training is done
with sets of negatives obtained via K-means based sampling (see Table 2, bottom). In
this case, RF becomes the best performing algorithm for all metrics except sensitivity
(SP: 96.3%, ACC: 93%, AUC: 0.965, mcc: 0.862, g-means: 92.9). SMO-RBF performs best
with respect to sensitivity (SE: 90.2%). It also performs second-best for metrics accuracy
(90.5%) and g-means (90.5). Of note, all other algorithms including NB, A1DE, IBK, and
Bagging also perform much better when trained with negatives obtained via K-means
sampling than when trained on randomly sampled negatives, indicating the significant
impact that the negative training data has on the performance of all learning algorithms.
In accordance with the results in Table 2, (almost) all performance metrics increase con-
siderably (for all ML algorithms) on the holdout disjunct testing set, when the training
is performed using K-means sampled diversified training sets (Table 3, bottom) instead
of random sampling (Table 3, top). NB’s specificity is the only exception. As to random
sampling, SMO-PuK and SMO-RBF perform best considering all metrics. While IBK
performs best in terms of sensitivity (79.8%), and RF performs best in terms of AUC
(0.779), SMO-PuK performs best on all other metrics closely followed by SMO-RBF.

Table 4  Performance metrics of different ML algorithms averaged over 10 × 10-fold cross
validations 

Each model was trained on different negative sample sets that have been generated using either random selection or the
K-means based sampling

SE SP ACC​ MCC AUC​ g-means

Random (10 × 10-fold cross validation)

 NB 51.04 61.22 55.49 0.106 0.560 66.2

 A1DE 72.02 52.4 62.2 0.244 0.697 61.4

 SMO-RBF 79.70 75.57 77.57 0.553 0.776 77.6

 SMO-PolyK 64.72 49.45 57.11 0.144 0.571 56.5

 SMO-PuK 71.76 83.29 78.53 0.555 0.775 77.3

 IBK 81.14 71.43 76.28 0.528 0.762 76.1

 Bagging 66.65 63.42 65.02 0.301 0.712 65.0

 RF 72.77 69.79 71.27 0.426 0.795 71.2

K-means (10 × 10-fold cross validation)

 NB 74.05 51.76 61.76 0.262 0.714 61.9

 A1DE 83.70 85.02 84.34 0.688 0.901 84.4

 SMO-RBF 88.55 90.48 89.53 0.796 0.903 89.5

 SMO-PolyK 82.72 88.06 85.39 0.709 0.847 85.3

 SMO-PuK 84.60 91.32 87.97 0.761 0.880 87.7

 IBK 84.42 86.35 85.4 0.711 0.855 85.4

 Bagging 86.10 92.25 89.19 0.786 0.938 89.1

 RF 89.42 95.98 92.52 0.853 0.957 92.6

Page 9 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493 	

When K-means sampling is used, performances improve most significantly for RF, that
performs now best for all metrics (SE: 90.3%, SP: 93.9%, ACC: 92.2%, mcc: 0.844, AUC:
0.959, g-means: 92.0). SMO-RBF performs second-best in a number of metrics (SE:
89.2%, ACC: 89.2%, mcc: 0.785, and g-means: 89.2). When applying 10 × 10-fold cv (see
Table 4), the performances and, thus, the ranking of the ML algorithms is very similar
to those reported for Tables 2 and 3. Lastly, we also applied uniform sampling (Kennard
Stone algorithm), both to obtain an initial sampling of 203 negative instances and in
combination with the training/testing split. In general, performances were better com-
pared to random sampling but not as good as when using K-means based sampling (see
Additional file 1: Tables S16 and S17 and additional information in the Additional file 1).

Conclusions
Knowledge of CRIs can facilitate the understanding of many regulatory biological pro-
cesses. ML-based CRI prediction can help narrowing down the search space for wet lab
based experimental validation. In the present work, we tested a number of different fea-
ture sets. The feature set consisting of atomic composition, physicochemical-2-grams as
well as evolutionary information in the form of AAC_PSSM and D-FPSSM proved to be
very useful in developing CRI predictors. To the best of our knowledge, this study is the
first in using atomic composition and physicochemical-2-grams as discriminating fea-
tures for PPI. We then compared the effect of random, uniform and K-means based sam-
pling of the negative data on the training of eight different machine learning algorithms.
To this end, we produced 10 different negative sample sets for each method. The trained
ML models were thoroughly evaluated using the popular leave one out cross validation,
10 × 10-fold cross validation, and 70% training/30% testing split. Our results show, per-
formances of all ML algorithms benefitted from K-means based sampling, with RF mod-
els performing best, significantly outperforming the Wei et al. [22] model with respect to
all metrics except sensitivity. Negative dataset selection as well as sampling have signifi-
cant impact on prediction performance. K-means sampling with random splitting pro-
duced diversified training sets consisting of representative samples that cover the input
space and include both common and rare patterns, thus allowing for a complete learning
of the ML algorithms. Corresponding diversified testing sets led to a proper and robust
evaluation of the trained models, showing a considerable increase of their generaliza-
tion ability. So far, a gold standard for choosing non-interacting protein pairs has been
lacking. Here we have shown that K-means based sampling is able to include samples
from the entire representative list of protein non-interactions, thereby avoiding under-
representation or overrepresentation and learning bias. The good performance metrics
of the trained RF models on K-means sampled datasets across all evaluation methods
suggest that the present methodology can be used as a complementary approach along
with other wet lab methods for CRI identification.

Methods
Dataset

We use the original dataset of Wei et al. [22] in order to allow for a direct comparison.
It consists of 123 human cytokines and 102 human receptors. Thus, there are 12,546
(= 123 × 102) possible cytokine–receptor combinations. Among those are 203 known

Page 10 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493

interacting cytokine–receptor pairs that form the positive training dataset (see Addi-
tional file 1). As per the “closed world association” [14], all cytokine–receptor pairs
not present in the positive dataset are potentially negative. This pool of protein pairs
that are not known to interact comprises in total 12,343 pairs. The negative training
data in [22] was obtained from this set by simple random sampling of 203 pairs. Aside
from training ML models with the exact same negative data in [22], we also generated
new negative training data by sampling 203 non-interacting cytokine–receptor pairs
from the same pool of protein pairs (accepting the relatively small risk of having false
negatives in this pool). For the work reported here, we used three different sampling
methods: simple random sampling as in [22], K-means clustering and sampling, and
uniform selection algorithm for sampling. The latter two are described below in the
subsection “Sampling Methods for Creating Diversified and Representative Training
and Testing Sets “.

Feature extraction

The prediction of protein classifications (interacting/non-interacting, family clas-
sification, etc.) is profoundly dependent on feature extraction. Data representation
is an important part in the training of ML algorithms, because different representa-
tions can emphasize different aspects of the data. The accuracy of the learned model
is strongly impacted by the selection of features that we feed into the learning phase
of the classifier. Broadly speaking, two types of features are calculated for distin-
guishing interacting pairs from non-interacting pairs: (1) Classical sequence-based
features and (2) features based on evolutionary information. From the first feature
type we use Amino Acid Composition (AAC), Dipeptide Composition (DPC), Prop-
erty Group Composition (PGC), Physicochemical-2grams (P2G), Atomic Composi-
tion (ATC), and Physicochemical Properties (PCP). Regarding the second feature
type, we use two types of information representations from PSSMs (position specific
scoring matrices), namely AAC_PSSM and D-FPSSM. For performance evaluation
of different ML algorithms, we use each of these features individually and in addi-
tion the following combinations of feature sets: ATC + P2G, AAC_PSSM + D-FPSSM,
ATC + P2G + AAC_PSSM + D-FPSSM, and all features combined. A detailed descrip-
tion of each individual feature is provided in the Additional file.

Classification algorithms

We have compared eight different machine learning algorithms: Naïve Bayes (NB),
Average One Dependence Estimator (A1DE), Support vector machines with RBF ker-
nel (SMO-RBF), Support vector machines with Poly K kernel (SMO-Poly K), Support
vector machines with PuK kernel (SMO-PuK), Nearest neighbor classifier (IBK), Bag-
ging, and Random Forest (RF). The description of each of the algorithms is provided
in the Additional file 1.

We have implemented all ML algorithms on the Weka ML platform [35] using
default parameters. Of note, our results (including the best performing classifier)
could have varied greatly had we applied parameter optimization methods.

Page 11 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493 	

Autoencoders

An autoencoder is an artificial neural network used for unsupervised learning.
Its main objective is to learn hidden structures from unlabeled data by attempting
to reproduce the input given to it through its hidden layer representations [36, 37]
(Additional file 1: Fig. S1). It consists of simulated layers of neurons, where each neu-
ron is associated with a weight and an activation function. The simplest autoencoder
consists of an input layer, an output layer where the reconstructed input is produced,
and a single hidden layer between those two. So-called “deep” autoencoders have
more than one hidden layer. In traditional neural networks, the effect of backprop-
agation decreases on the first layer with increasing number of hidden layers, while
in deep learning neural networks, each layer is trained independently and the fea-
ture encodings from the previous layer are used to train the successive layers. Deep
learning neural networks overcome the vanishing gradient problem known to occur
in gradient based learning of traditional neural networks with multiple layers. In deep
autoencoders the output of the preceding layer becomes the input of the successive
layer. The layout of the autoencoder (i.e. its architecture), including the number of
hidden layers, the type of activation function and the number of epochs it has to be
trained, and the choice of regularization parameters such as l2 (also known as ridge
regression) are prespecified. The goal is to achieve a model with minimum error
between the actual input Xi and the reconstructed input Oi. Let n be the number of
features used to represent the data. Then the reconstruction error ∆i is computed as

Autoencoders find application in unsupervised pre-training of deep learning neural
networks and in anomaly detection [38]. In the present work we used autoencoders
for negative dataset creation using its anomaly detection capability. We trained dif-
ferent autoencoder models with the positive interacting pairs only. The best trained
autoencoder model (i.e. with minimum mean squared error and root mean squared
error) is then used to categorize all the negative interacting pairs using the calculated
reconstruction error values. A non-interacting pair having proximity to interacting
pairs will have low reconstruction error. Conversely, non-interacting pairs with high
reconstruction error are very dissimilar to interacting pairs. Based on the values of
the reconstruction error, we categorized the non-interacting pairs into different
groups for the training of a classifier. We used the H2O package (https​://h2o.ai) in R
for implementing the autoencoder models.

Performance metrics

We have evaluated the ML models using a wide range of performance metrics, using
both threshold-dependent and threshold-independent parameters. Let TP, TN, FP,
and FN denote the number of correctly predicted CRI pairs (true positives), the num-
ber of correctly predicted non-interacting pairs (true negatives), the number of non-
interacting pairs predicted incorrectly as cytokine–receptor interacting pairs (false

�i =
1

n

n
∑

j=1

(

Xi,j − Oi,j

)2
.

https://h2o.ai

Page 12 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493

positives) and the number of CRI pairs predicted incorrectly as non-interacting pairs
(false negatives), respectively. Our metrics are:

Sensitivity: Percentage of correctly predicted CRI pairs:

Specificity: Percentage of correctly predicted non-interacting pairs:

Accuracy: This metric expresses the correctly predicted cytokine–receptor and non-
interacting pairs.

Mathews correlation coefficient (MCC): It is a valuable measure for binary classification
problems. Values range from − 1 to + 1.

Area under ROC (AUC): The AUC can be used to summarize ROC (receiver operating
characteristic) curves by a single numerical quantity. Possible values of the AUC range
from 0 to 1. The closer the value to 1 the better the performance of the ML model [19,
39, 40].

g-means: This is the geometric mean of sensitivity and specificity and is calculated by the
following formula [41]:

It gives a balanced view about the performance of the ML models for both the positive
and negative classes.

For the evaluation of autoencoder models, we have used the following performance eval-
uation metrics:

Root mean squared error (RMSE): Also known as the root mean square deviation, the
RMSE is calculated as the difference between the values predicted by a model and the val-
ues actually observed from the real environment that is being modeled:

where n is the number of samples, Xobs,i is the observed value and Xmodel,i is the predicted
value.

Mean squared error (MSE):

SE = 100× TP/(TP + FN).

SP = 100× TN/(TN + FP).

ACC = (TP + TN)× 100/(TP + FP + TN + FN).

MCC =
(TP × TN)− (FP × FN)

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

g-means =
√
SE × SP.

RMSE =

√

√

√

√

n
∑

i=1

(

Xobs,i − Xmodel,i

)2
/n,

MSE =
1

n

n
∑

i=1

(

Xobs,i − Xmodel,i

)2
.

Page 13 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493 	

Performance evaluation

Three different evaluation methods were used to infer the generalization ability and
the robustness of the ML models. (1) Leave one out cross validation (loocv). loocv is
a special case of K-fold cross validation, where K is equal to the number of samples.
In each round of evaluation, one sample is left out as a test case and all the other
samples are used to train the model. This process is repeated until all the samples
are evaluated once as a test case. Loocv is computationally expensive, but we decided
to include this evaluation method since it had been used previously to evaluate the
models in the work of Wei et al. [22], to which we are comparing our models. (2)
10 × 10-fold cv (tenfold cv repeated 10 times), (3) Random training and testing. Here,
a fixed percentage of data is kept aside for training and the rest of the data is used
for testing the model. The training and testing sets are mutually exclusive. Random
splitting of training and testing sets leaves room for over-representation or under-
representation of patterns that belong to different classes in training and testing sets.
As a consequence, it can give variable estimates for the prediction error. If the train-
ing set lacks a subset of patterns, the learning algorithm will be unable to identify that
subset of patterns. Likewise, if a subset of patterns is missing in the testing set, then
this leads to an incomplete evaluation of the ML model. In other words, if the training
and testing sets are created using random sampling, then there is no guarantee for the
inclusion of both common and rare patterns in the training set. To overcome these
shortcomings of incomplete learning and unrepresentativeness, we implemented a
diversified training/testing set.

Sampling methods for creating diversified and representative training and testing sets

A diversified training set has proper representative samples from the entire input
space and is a necessary prerequisite for complete learning [8, 42]. Similarly, a diver-
sified testing set is needed for the true estimation of the classification error of the
trained models. Ideally, a training set is free from both between and within class
imbalance. In the present case, the numbers of samples of interacting and non-
interacting proteins are equal, so there is no between class imbalance. Within class
imbalance arises due to the difference in the number of common and rare patterns
belonging to each class. These rare patterns are also known as small disjuncts [43].

Applied to our problem this means that if the negative samples in the training set
represent only a relatively narrow sample space, then this can bias the learning and
result in over-optimistic or over-pessimistic performance evaluation metrics. Conse-
quently, a sampling strategy that produces a set of negative instances that effectively
represents (as much as possible) the entire negative sample space would be highly
advantageous for the training of ML models. Such trained models would have the
opportunity to learn from instances belonging to many different regions of the entire
negative instance space.

For the purpose of creating diversified and representative training and testing sets,
we used the unsupervised K-means clustering algorithm. The aim of K-means cluster-
ing is to partition the variety of patterns (samples) into a predefined number of clus-
ters (K) based on the similarity/dissimilarity that exists among the patterns (samples)

Page 14 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493

[8]. Ideally, the similarity between the clusters is at a minimum, while the similarity
within the clusters is at a maximum. K-means clustering proceeds by minimizing the
objective function given by

where SSE is the acronym for “sum of squared errors”, Cj denotes the centroid of the jth
cluster, Pj

i denotes the ith pattern of the jth cluster, nj denotes the number of objects in
the jth cluster, K denotes the predetermined number of clusters, and ||·|| denotes the
Euclidian distance.

All input features are normalized prior to the application of the K-means algorithm.
Specifically, all the numerical values (attribute values) are normalized in the range from
0 to 1 using the min–max normalization method [44]. We use K = 203 (i.e. equal to the
number of positive interacting pairs) for clustering the 12,343 non-interacting pairs.
Then, for generating a K-means sampled negative dataset, we select one instance from
each non-interacting pair cluster for the training set. Thus, our final combined training
and testing set consisted again of 203 negative instances (one from each cluster) and of
all 203 positive instances.

Of note, K-means sampling could potentially favor the selection of false negatives if
present in the negative base set. This is so because the selection for broad representa-
tiveness favors the selection of the most dissimilar feature vectors, which are most suspi-
cious of being false negatives (i.e. it is assumed that false negatives are likely to be found
among the most dissimilar negatives). However, the likelihood of having false negatives
is still relatively small, perhaps even smaller than the likelihood of having false positives
[25].

Furthermore, we have implemented the uniform selection algorithm for sampling.
Here, the representative samples are selected with the aim of uniformly covering the
entire input space. The uniform selection algorithm, also known as Kennard-Stone algo-
rithm, is implemented as described in [45]. The algorithm proceeds by selecting the
sample that is closest to the data mean, which is then added to the representative set.
Using Euclidean distance as the dissimilarity metric, new samples are iteratively selected
among those that are most dissimilar to the samples already present in the representa-
tive set.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03835​-5.

Additional file 1. Supplementary material (docx file).

Additional file 2. 10 times 10-fold CV test/train sets in ARFF format (zip file).

Additional file 3. 10 K-means sampled test/train sets in ARFF format (zip file).

Abbreviations
CRI: Cytokine receptor interaction; RF: Random forest; loocv: Leave one out cross validation; PPIs: Protein–protein
interaction; ML: Machine learning; Pse-PSSM: Pseudo position-specific score matrix; AAC​: Amino acid composition; DPC:
Dipeptide composition; PGC: Property group composition; P2G: Physicochemical-2grams; ATC​: Atomic composition;
PCP: Physicochemical properties; MSE: Mean squared error; RMSE: Root mean squared error; RE: Reconstruction error;
NB: Naive Bayes; IBK: K-nearest neighbor; A1DE: Average one dependence estimator; SMO-RBF: Sequential minimization

SSE =
K
∑

j=1

nj
∑

i=1

P
j
i − Cj ,

https://doi.org/10.1186/s12859-020-03835-5

Page 15 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493 	

optimization-radial basis function; MCC: Mathews correlation coefficient; ACC​: Accuracy; SP: Specificity; SE: Sensitivity;
ROC: Receiver operating characteristic; AUC​: Area under ROC curve.

Acknowledgements
Not applicable.

Author’s contributions
Both authors participated in the design of the study. Both authors were involved in writing and revising the manuscript.
All authors read and approved the final manuscript.

Funding
AL was supported in part by the Informatics Institute of UAB’s School of Medicine. The funding body had no involvement
in the study (not in the design, the collection, analysis, interpretation of data, nor the writing of the manuscript).

Availability of data and materials
The sequence IDs are provided in the Additional file. Random and K-means sampled data is provided in ARFF format (see
Additional files list).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 May 2020 Accepted: 23 October 2020

References
	1.	 Cagney G, Uetz P, Fields S. High-throughput screening for protein–protein interactions using two-hybrid assay. In:

Thorner J, Emr SD, Abelson JN, editors. Methods in enzymology, vol. 328. London: Academic Press; 2000. p. 3–14.
	2.	 Uetz P, Hughes RE. Systematic and large-scale two-hybrid screens. Curr Opin Microbiol. 2000;3(3):303–8.
	3.	 Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dümpelfeld B, et al. Pro-

teome survey reveals modularity of the yeast cell machinery. Nature. 2006;440:631.
	4.	 Gavin A-C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon A-M, Cruciat C-M, et al.

Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002;415:141.
	5.	 Zahiri J, Bozorgmehr JH, Masoudi-Nejad A. Computational prediction of protein–protein interaction networks:

algorithms and resources. Curr Genomics. 2013;14(6):397–414.
	6.	 Bitbol A-F. Inferring interaction partners from protein sequences using mutual information. PLoS Comput Biol.

2018;14(11):e1006401.
	7.	 Gueudré T, Baldassi C, Zamparo M, Weigt M, Pagnani A. Simultaneous identification of specifically interacting paral-

ogs and interprotein contacts by direct coupling analysis. Proc Natl Acad Sci. 2016;113(43):12186–91.
	8.	 Nath A, Subbiah K. The role of pertinently diversified and balanced training as well as testing data sets in achieving

the true performance of classifiers in predicting the antifreeze proteins. Neurocomputing. 2017;272:294–305.
	9.	 Nath A, Subbiah K. Maximizing lipocalin prediction through balanced and diversified training set and decision

fusion. Comput Biol Chem. 2015;59(Part A):101–10.
	10.	 Ramana J, Gupta D. LipocalinPred: a SVM-based method for prediction of lipocalins. BMC Bioinform. 2009;10(1):445.
	11.	 Gomez SM, Noble WS, Rzhetsky A. Learning to predict protein–protein interactions from protein sequences. Bioin-

formatics. 2003;19(15):1875–81.
	12.	 Lei Y, Jun-Feng X, Jie G. Prediction of protein–protein interactions from protein sequence using local descriptors.

Protein Pept Lett. 2010;17(9):1085–90.
	13.	 Martin S, Roe D, Faulon J-L. Predicting protein–protein interactions using signature products. Bioinformatics.

2005;21(2):218–26.
	14.	 Roy S, Martinez D, Platero H, Lane T, Werner-Washburne M. Exploiting amino acid composition for predicting pro-

tein–protein interactions. PLoS ONE. 2009;4(11):e7813.
	15.	 Sprinzak E, Margalit H. Correlated sequence-signatures as markers of protein–protein interaction1. J Mol Biol.

2001;311(4):681–92.
	16.	 Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein protein interaction using a deep-learning algo-

rithm. BMC Bioinform. 2017;18:277.
	17.	 You Z-H, Chan KCC, Hu P. Predicting protein–protein interactions from primary protein sequences using a novel

multi-scale local feature representation scheme and the random forest. PLoS ONE. 2015;10(5):e0125811.
	18.	 Khorsand B, Savadi A, Zahiri J, Naghibzadeh M. Alpha influenza virus infiltration prediction using virus-human

protein–protein interaction network. Math Biosci Eng. 2020;17:3109–29.
	19.	 Huang J, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng.

2005;17(3):299–310.
	20.	 Lata S, Raghava GPS. CytoPred: a server for prediction and classification of cytokines. Protein Eng Des Sel.

2008;21(4):279–82.

Page 16 of 16Nath and Leier ﻿BMC Bioinformatics (2020) 21:493

	21.	 Wei Q, Dunbrack RL Jr. The role of balanced training and testing data sets for binary classifiers in bioinformatics.
PLoS ONE. 2013;8(7):e67863.

	22.	 Wei L, Bowen Z, Zhiyong C, Gao X, Liao M. Exploring local discriminative information from evolutionary profiles for
cytokine–receptor interaction prediction. Neurocomputing. 2016;217(Supplement C):37–45.

	23.	 Zou Q, Wang Z, Guan X, Liu B, Wu Y, Lin Z. An approach for identifying cytokines based on a novel ensemble classi-
fier. Biomed Res Int. 2013;2013:11.

	24.	 Wei L, Quan Z, Minghong L, Huijuan L, Yuming Z. A novel machine learning method for cytokine–receptor interac-
tion prediction. Comb Chem High Throughput Screen. 2016;19(2):144–52.

	25.	 Ben-Hur A, Noble WS. Choosing negative examples for the prediction of protein–protein interactions. BMC Bioin-
form. 2006;7(1):S2.

	26.	 Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF, Gerstein M. A Bayesian
networks approach for predicting protein–protein interactions from genomic data. Science. 2003;302(5644):449–53.

	27.	 Jansen R, Gerstein M. Analyzing protein function on a genomic scale: the importance of gold-standard positives
and negatives for network prediction. Curr Opin Microbiol. 2004;7(5):535–45.

	28.	 Ben-Hur A, Noble WS. Kernel methods for predicting protein–protein interactions. Bioinformatics.
2005;21(Supp_1):i38–46.

	29.	 Zhang LV, Wong SL, King OD, Roth FP. Predicting co-complexed protein pairs using genomic and proteomic data
integration. BMC Bioinform. 2004;5(1):38.

	30.	 Tuncbag N, Gursoy A, Nussinov R, Keskin O. Predicting protein–protein interactions on a proteome scale by match-
ing evolutionary and structural similarities at interfaces using PRISM. Nat Protoc. 2011;6(9):1341–54.

	31.	 Zahiri J, Mohammad-Noori M, Ebrahimpour R, Saadat S, Bozorgmehr JH, Goldberg T, Masoudi-Nejad A. LocFuse:
Human protein–protein interaction prediction via classifier fusion using protein localization information. Genomics.
2014;104(6, Part B):496–503.

	32.	 Launay G, Ceres N, Martin J. Non-interacting proteins may resemble interacting proteins: prevalence and implica-
tions. Sci Rep. 2017;7:40419.

	33.	 Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv. 2009;41(3):1–58.
	34.	 Park Y, Marcotte EM. Revisiting the negative example sampling problem for predicting protein–protein interactions.

Bioinformatics. 2011;27(21):3024–8.
	35.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. SIGKDD

Explor Newsl. 2009;11(1):10–8.
	36.	 Witten IH, Frank E, Hall MA, Pal CJ. Chapter 10—Deep learning. In: Data mining (fourth edition). London: Morgan

Kaufmann; 2017. p. 417–66.
	37.	 Nath A, Karthikeyan S. Enhanced prediction of recombination hotspots using input features extracted by class

specific autoencoders. J Theor Biol. 2018;444:73–82.
	38.	 Sakurada M, Yairi T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings

of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis; Gold Coast, Australia QLD, Australia.
2689747. London: ACM; 2014. p. 4–11.

	39.	 Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern
Recogn. 1997;30(7):1145–59.

	40.	 Ling CX, Huang J, Zhang H. AUC: A better measure than accuracy in comparing learning algorithms. In: Xiang Y,
Chaib-Draa B, editors. Advances in artificial intelligence: 16th conference of the Canadian society for computational stud-
ies of intelligence, AI 2003, Halifax, Canada, June 11–13, 2003, Proceedings. Berlin, Heidelberg: Springer; 2003. p. 329–41.

	41.	 Kubat M, Holte R, Matwin S. Learning when negative examples abound. In: van Someren M, Widmer G, editors.
Machine learning: ECML-97: 9th European conference on machine learning Prague, Czech Republic, April 23–25, 1997
Proceedings. Berlin: Springer; 1997. p. 146–53.

	42.	 Nath A, Subbiah K. Unsupervised learning assisted robust prediction of bioluminescent proteins. Comput Biol Med.
2016;68(Supplement C):27–36.

	43.	 Jo T, Japkowicz N. Class imbalances versus small disjuncts. SIGKDD Explor Newsl. 2004;6(1):40–9.
	44.	 Han J, Kamber M, Pei J. 3—Data preprocessing. In: Han J, Kamber M, Pei J, editors. Data mining (Third Edition).

Boston: Morgan Kaufmann; 2012. p. 83–124.
	45.	 Daszykowski M, Walczak B, Massart DL. Representative subset selection. Anal Chim Acta. 2002;468(1):91–103.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Improved cytokine–receptor interaction prediction by exploiting the negative sample space
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results and discussion
	Conclusions
	Methods
	Dataset
	Feature extraction
	Classification algorithms
	Autoencoders
	Performance metrics
	Performance evaluation
	Sampling methods for creating diversified and representative training and testing sets

	Acknowledgements
	References

