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Abstract 

Background:  Cytokines act by binding to specific receptors in the plasma membrane 
of target cells. Knowledge of cytokine–receptor interaction (CRI) is very important for 
understanding the pathogenesis of various human diseases—notably autoimmune, 
inflammatory and infectious diseases—and identifying potential therapeutic targets. 
Recently, machine learning algorithms have been used to predict CRIs. “Gold Standard” 
negative datasets are still lacking and strong biases in negative datasets can signifi-
cantly affect the training of learning algorithms and their evaluation. To mitigate the 
unrepresentativeness and bias inherent in the negative sample selection (non-inter-
acting proteins), we propose a clustering-based approach for representative negative 
sample selection.

Results:  We used deep autoencoders to investigate the effect of different sampling 
approaches for non-interacting pairs on the training and the performance of machine 
learning classifiers. By using the anomaly detection capabilities of deep autoencod-
ers we deduced the effects of different categories of negative samples on the training 
of learning algorithms. Random sampling for selecting non-interacting pairs results 
in either over- or under-representation of hard or easy to classify instances. When 
K-means based sampling of negative datasets is applied to mitigate the inadequa-
cies of random sampling, random forest (RF) together with the combined feature set 
of atomic composition, physicochemical-2grams and two different representations 
of evolutionary information performs best. Average model performances based on 
leave-one-out cross validation (loocv) over ten different negative sample sets that each 
model was trained with, show that RF models significantly outperform the previous 
best CRI predictor in terms of accuracy (+ 5.1%), specificity (+ 13%), mcc (+ 0.1) and 
g-means value (+ 5.1). Evaluations using tenfold cv and training/testing splits confirm 
the competitive performance.

Conclusions:  A comparative analysis was performed to assess the effect of three dif-
ferent sampling methods (random, K-means and uniform sampling) on the training of 
learning algorithms using different evaluation methods. Models trained on K-means 
sampled datasets generally show a significantly improved performance compared 
to those trained on random selections—with RF seemingly benefiting most in our 
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particular setting. Our findings on the sampling are highly relevant and apply to many 
applications of supervised learning approaches in bioinformatics.

Keywords:  Cytokine–receptor interaction, Negative sample space, Deep 
autoencoders, Random forest, K-means

Background
Insights into protein–protein interactions (PPIs) can shed light into the molecular mech-
anisms of biological processes, inform about pathogenesis, and help identify disease 
intervention points. The prevalent experimental methods include the two-hybrid system 
[1, 2] and co-immunoprecipitation [3, 4], which are both used for large scale determina-
tion of PPIs. Computational methods for PPI prediction can complement experimental 
methods as they are cost effective and less time consuming [5]. Aside from general PPI 
predictors, computational approaches have also been developed for specific subsets of 
proteins, e.g. those encoded by paralogous genes [6, 7]. Among the different computa-
tional methods, Machine Learning (ML) based prediction methods provide a suitable 
alternative to experimental approaches, allowing for near accurate and fast annotation 
of biological sequences. These methods exploit hidden similarities to known interacting 
protein pairs based on various calculated protein features, including sequence, physico-
chemical, evolutionary, and structural information [8]. Usually, machine learning pre-
dictors that are based on a diverse feature set achieve higher classification accuracy than 
traditional, solely sequence similarity based methods [9, 10]. Several ML systems for PPI 
prediction have been developed, using a variety of learning methods and feature sets [5, 
11–18]. A specific case of a PPI is a cytokine–receptor interaction (CRI). Cytokines are 
a rather loosely defined group of small signaling proteins that bind specific receptors on 
the plasma membrane of target cells. Knowledge of CRIs is very important for under-
standing the pathogenesis of various human diseases—notably autoimmune, inflam-
matory and infectious diseases—as well as for identifying potential therapeutic targets. 
While computational prediction of CRIs can narrow down the search space for wet lab 
based experimental validation screens, only few computational studies have specifically 
contributed towards the prediction of cytokines and CRIs [19–23].

Previously, Wei et  al. [24] used k-skip-gram, physicochemical properties and local 
pseudo position-specific scoring information with a random forest based classifier for 
developing a prediction model. Their method achieved an overall accuracy of 83.7% 
with 80.8% sensitivity and 86.7% specificity. Since the specificity is higher than the sen-
sitivity, it can be concluded that their prediction model is more accurate for predicting 
non-interacting pairs than interacting pairs. Wei et  al. [22] further improved the CRI 
prediction accuracy using random forest with evolutionary features, i.e. Pseudo Posi-
tion-Specific Score Matrix (Pse-PSSM) and amino acid composition and PSSM with 
auto-covariance (AC) transformation (AAC_PSSM_AC). Using leave one out cross vali-
dation (loocv), they obtained an overall accuracy of 87.9%, a sensitivity of 92.6% and a 
specificity of 83.3%, leaving room for further improving CRI predictions.

Both positive examples (interacting pairs) and negative examples (non-interacting 
pairs) contribute towards the optimal learning of a classifier. Positive datasets are easy to 
obtain from a number of databases. However, “Gold standard” negative datasets, which 
could be used for benchmarking, are still lacking. There is no agreement on the method 
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for the creation of a “standard” dataset of non-interacting proteins [25]. As a result, a 
variety of methods for creating high quality non-interacting protein partners have been 
proposed. One such method is to select protein pairs with different (annotated) sub-cel-
lular localizations, because they are unlikely to interact [26, 27]. Probably the simplest 
method reported for forming a set of non-interacting protein pairs is to sample from 
the pool of all those pairs that are not known to interact, i.e. combinations absent from 
the PPI list [11, 28, 29]. Another method is to use structural similarity as a criterion [30]. 
The expectation is that if a pair of proteins is structurally very similar to another pair of 
proteins that are known to interact, then these two proteins are likely interacting as well. 
However, the above mentioned methods to produce high quality negative datasets have 
their pitfalls: Sampling based on non-colocalization of protein pairs may lead to over-
optimistic performance evaluation metrics for the ML classifier, as it is easier to discrim-
inate these negative examples, since they are biased with localization information [31]. 
Random sampling of protein pairs not present in the protein interaction list may result 
in a negative dataset containing putative interacting protein pairs, even though this has 
been estimated to occur only with very low probability [25]. And significant structural 
similarity can also exist among non-interacting pairs and interacting pairs. For instance, 
approximately 8.7% of non-interacting pairs in S. cerevisiae are expected to be struc-
turally similar to interacting pairs [32]. Of note, it is important to distinguish between 
the underlying principle used to generate the base set of non-interacting protein pairs 
(e.g. sub-cellular non-co-localization, structural dissimilarity, PPI set exclusion) and the 
actual methods used to sample from this base set for the purpose of generating a much 
smaller negative dataset that the ML models are being trained on.

We evaluated a number of different ML algorithms with simple sequence-based fea-
tures along with evolutionary information. In order to enhance the prediction accuracy 
further, we developed a heterogeneous feature set based on individual feature perfor-
mances with respect to the different learning algorithms. The heterogeneous feature set 
consisting of atomic composition, physicochemical-2-grams, AAC_PSSM and D-FPSSM 
produced the best performance evaluation metrics based on loocv.

Anomaly detection can be defined as the problem of finding patterns in the data that 
do not fit to the expected behavior or normal behavior. These “not fitting patterns” 
are called by a variety of names such as anomalies, aberrations, or exceptions [33]. A 
plethora of methods such as statistical profiling using histograms, neural networks, mix-
ture models, support vector machines, and clustering have been used successfully for 
anomaly detection [33]. In the present work we use the anomaly detection capability of 
autoencoders for constructing different sets of negative samples and show how different 
categories of negative samples can affect the training of a learning algorithm.

Strong biases in negative datasets can significantly affect the training of learning algo-
rithms and their evaluation. Imbalanced datasets having a high skew towards negative 
samples result in majority class classifiers [21, 34]. Consequently, unbiased negative sets 
of non-interacting proteins are desirable. We propose a method for negative data sub-
set sampling using K-means clustering, which enhances the learning and evaluation of 
the entire input space by providing a proper and diverse representation. A representa-
tive training set has a proper distribution of samples from the entire input space, which 
is a principal requirement for near complete learning. Likewise, a properly diversified 
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test set is also needed for robust evaluation of the learned models. To this end, we thor-
oughly evaluated all models using different sampling and performance evaluation meth-
ods. The latter include (1) loocv, (2) tenfold cross validation, (3) random and diversified 
(K-means based) training/testing, and (4) uniform sampling-based training/testing sets. 
Our results show that negative dataset selection and sampling have significant impact on 
prediction accuracy of ML models, and lead to an improved performance of CRI predic-
tors. A schematic representation of our approach is shown in Additional file 1: Fig. S1.

Results and discussion
Each of the selected ML algorithms was applied using the original dataset by Wei et al. 
[22] and various feature sets (see “Methods” below and Additional file 1). The perfor-
mance was evaluated based on loocv (Additional file 1: Tables S1–S12 and Table 1). With 
the feature set changing and depending on the performance metric, the best performing 
algorithm changes. For AAC, DPC, PGC and PCP feature sets, the accuracies for the 
ML algorithms range between 63.1% and 81.0% (Additional file 1: Tables S1, S2, S3 and 
S4). The maximum accuracy is achieved by the SMO-RBF model trained using AAC fea-
tures. This combination also achieves the highest accuracy, mcc and g-means, while the 
best AUC value is achieved with the RF model trained using DPC features. Using either 
P2G or ATC feature sets (Additional file 1: Tables S5, S6) generally improves the perfor-
mance of all learning algorithms, in particular the accuracy of correctly predicting CRIs 
(higher sensitivity). All ML algorithms achieve more than 80% sensitivity using either of 
these two feature sets, while higher sensitivities are achieved with the ATC feature set. 
More specifically, the RF model using ATC features performs best in all metrics except 
sensitivity, where the SMO-RBF model using ATC achieves the highest value (94.6%), 
and AUC, where the RF model using P2G achieves the highest value (0.904). Using the 
combined feature sets of ATC and P2G (Additional file 1: Table S7), the obtained sensi-
tivities are well above 80% for all algorithms. However, for IBK and RF the sensitivity is 
slightly decreased as compared to the scenario where only the ATC feature set is used. 
Overall, the combination of ATC and P2G features improves performances of only a few 

Table 1  Performance metrics of  different ML algorithms using the  combined features 
ATC + P2G + AAC_PSSM + D-FPSSM when  applied to  exactly the same dataset (positives 
and sampled negatives) used by Wei et al. [22]

For comparison, we also show the metrics reported by Wei et al. The best performance for each metric is shown in italic

SE SP ACC​ MCC AUC​ g-means

ATC + P2G + AAC_PSSM + D-FPSSM

 NB 94.1 68.5 81.3 0.647 0.843 80.2

 A1DE 95.1 69.5 82.3 0.668 0.910 81.2

 SMO-RBF 93.6 86.7 90.1 0.805 0.901 90.1

 SMO-PolyK 92.6 77.3 85.0 0.708 0.850 84.6

 SMO-PuK 90.6 88.2 89.4 0.788 0.894 89.4

 IBK 91.6 84.2 87.9 0.761 0.879 87.8

 Bagging 85.7 79.8 82.8 0.656 0.904 82.7

 RF 89.2 81.3 85.2 0.707 0.935 85.1

 Wei et al 92.6 83.3 87.9 0.762 – 87.8
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models (such as bagging) but other algorithms do not benefit from the larger feature set. 
Of note, the AUC for the RF-based model is slightly higher (0.912).

Most learning algorithms perform much better using the AAC_PSSM or the D-FPSSM 
feature set than when using only sequence-based feature sets (Additional file 1: Tables 
S8 and S9, respectively). Except for NB (for AAC_PSSM and D-FPSSM) and IBK (for 
D-FPSSM), all other algorithms produced trained models with more than 80% accu-
racy. The highest accuracy (87.2%) and specificity (88.2%) is obtained using SMO-PuK 
with AAC_PSSM, the highest AUC value is achieved using an RF model with D-FPSSM 
(0.939), and NB with D-FPSSM yields the highest sensitivity (97.5%). With minor excep-
tions, combining the two feature sets increases specificities compared to models trained 
with D-FPSSM features, and increases sensitivities compared to models trained with 
AAC_PSSM features (Additional file  1: Table  S10). Notably, SMO-RBF benefits from 
training using both feature sets, as the model achieves the highest accuracy (89.2%). 
Overall, AAC_PSSM and D-FPSSM features and their combination performed better 
than all other sequence-based features (Additional file 1: Table S12).

Training the different ML algorithms using the full feature set let to the following 
results (Additional file 1: Table S11): SMO-RBF achieved the highest recorded specificity 
(99.5%) over all algorithms and feature configurations, but its sensitivity was significantly 
lower in comparison to all other ML algorithms. The highest accuracy and sensitivity are 
obtained by A1DE but does not reach the values of the best performing models trained 
using AAC_PSSM and/or D-FPSSM.

Based on the performance of the ML algorithms on the different feature sets, we 
decided to merge those sets that had trained models with more than 80% accuracy. This 
resulted in a new feature set created by the combination of ATC, P2G, AAC_PSSM and 
D-FPSSM features (the length of the vector describing the features of one protein is 
equal to 5 + 11 + 20 + 20 = 56). Using this feature set, we obtained a SMO-RBF model 
with 90.1% accuracy, an mcc value of 0.805, and a g-means value of 90.1—the highest 
values over all algorithms and feature configurations (see Table 1). Moreover, the model 
was 2.2% more accurate than the model previously described by Wei et al. [22], which 
had been trained on the same dataset. The highest AUC value among all trained mod-
els with this particular feature set was obtained with the RF model (0.935). Of note, we 
achieved a higher accuracy with a smaller feature set, which has the additional benefit of 
a shorter classifier training time. Our feature vector had only 112 (2 × 56) dimensions as 
compared to 1600 dimensions of the feature vectors used in [22].

Based on these performance metrics, we chose SMO-RBF for investigating further the 
effect of sampling non-interacting pairs on the training and the performance of our clas-
sifiers. For that purpose, we used the anomaly detection capability of deep autoencoders 
and explored some of the parameters for selecting the best autoencoder model, evalu-
ated in terms of MSE and RMSE. For all autoencoder models we fixed the number of 
epochs to 1000, the l2 regularization parameter to 0.0001, and experimented with dif-
ferent architectures. Specifically, we used either decreasing, increasing or alternating 
larger and smaller numbers of neurons with varying numbers of hidden layers, i.e. we 
varied both width and depth of the autoencoder models. The MSE and the RMSE of the 
autoencoder model with rectifier activation function was very high (model no. 2, Addi-
tional file 1: Table S13), and, hence, we decided to use tanh as the activation function for 
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all other autoencoder models. The best autoencoder model achieved an MSE of 0.00067 
and an RMSE of 0.0258 (model no. 5, Additional file 1: Table S13) using three hidden 
layers with decreasing numbers of neurons: 1000, 500, and 100.

The unsupervised autoencoder was trained with only positive samples i.e. interacting 
protein pairs. However, both the positive samples and the negative samples were passed 
through the autoencoder for the estimation of the reconstruction error. The respec-
tive histogram bins and the counts for the reconstruction error of interacting protein 
pairs and non-interacting protein pairs are presented in Additional file  1: Fig. S2 and 
Table S14 (Additional file 1). Almost all the interacting protein pairs have a reconstruc-
tion value ≤ 0.003, which is intuitively understandable since the autoencoder was trained 
on this dataset. Moreover, the non-interacting protein pairs with lower reconstruction 
error are closer to the interacting protein pairs (see also additional information in the 
Additional file 1).

In order to group the (potentially) negative samples according to how difficult it is to 
classify them correctly, namely into “easy to classify” non-interacting pairs, “difficult 
to classify” non-interacting pairs, and those that are in-between these two groups, we 
divided the negative samples according to their estimated autoencoder reconstruction 
error. According to our data, 0.003 was a reasonably good cut-off to distinguish between 
the “difficult to classify” positive pairs and the rest, while 0.001 was a reasonably good 
cut-off to distinguish the “easy to classify” positive pairs from the rest. We then used 
the same cutoff to group the “easy to classify” and the “hard to classify” non-interacting 
proteins. Accordingly, we obtained the following three groups: (a) samples with recon-
struction error ≤ 0.001, (b) those with reconstruction error > 0.001 and ≤ 0.003, and (c) 
samples with reconstruction error > 0.003. Subsequently, we trained SMO-RBF models 
using all the 203 positive samples and 203 negative samples, all randomly selected from 
one of the above three classes. The performance metrics of five SMO-RBF models and 
their average, evaluated using loocv for each of the three classes, are shown in Additional 
file 1: Table S15. As expected from obtained reconstruction errors and confirmed by the 
reported specificity and accuracy of SMO-RBF models, the negative samples belonging 
to the first group (≤ 0.001) are hardest to classify, due to the closeness of the non-inter-
acting pairs to interacting pairs creating overlapping decision boundaries, while those 
belonging to the third group (> 0.003) are easiest to classify.

We concluded, using random sampling for selecting instances for the negative train-
ing data does not guarantee a wide representation of the entire negative sample space 
as there is always a chance of either overrepresentation or underrepresentation of, for 
instance, hard or easy to classify instances. With respect to the above mentioned three 
groups, if the set of negative instances in the training set consists mostly of samples 
belonging to group (c), then the learning algorithm will most likely return overoptimistic 
performance evaluation metrics. To mitigate the under-representativeness or over-rep-
resentativeness of the random selection strategy we decided to use K-means sampling 
(with K = 203, the number of positive instances) for constructing representative negative 
training sets (see “Methods” section). The distribution of samples into the different clus-
ters are shown in Additional file 1: Fig. S3 for all the negative samples.

In Tables 2, 3 and 4 we present the performance metrics for all eight learning algo-
rithms using loocv (Table  2), random training (70%) and testing (30%) split (Table  3), 
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Table 2  Performance metrics of  different ML algorithms using negative samples 
generated through random (top) and K-means (bottom) sampling

The averages of ten runs of loocv are reported. The best performance for each metric is shown in italic

SE SP ACC​ MCC AUC​ g-means

Random (loocv)

 NB 52.3 59.3 55.8 0.119 0.554 54.9

 A1DE 70.5 53.3 62.9 0.264 0.707 62.5

 SMO-RBF 79.1 74.5 76.7 0.536 0.767 76.7

 SMO-PolyK 62.8 50.9 56.9 0.199 0.569 56.4

 SMO-PuK 73.0 83.5 78.2 0.568 0.782 78.0

 IBK 81.4 71.9 76.6 0.536 0.766 76.4

 Bagging 66.6 63.5 65.1 0.303 0.718 65.0

 RF 73.2 71.6 72.4 0.449 0.807 72.3

K-means (loocv)

 NB 73.3 51.3 61.3 0.253 0.713 63.0

 A1DE 83.6 84.1 83.9 0.679 0.908 83.8

 SMO-RBF 90.2 90.8 90.5 0.814 0.905 90.5

 SMO-PolyK 80.5 87.9 84.2 0.686 0.842 84.0

 SMO-PuK 85.7 91.7 88.4 0.770 0.887 88.3

 IBK 86.1 86.1 86.1 0.722 0.861 86.0

 Bagging 86.4 92.3 89.4 0.789 0.945 89.3

 RF 89.7 96.3 93.0 0.862 0.965 92.9

Table 3  Average performance metrics of different ML algorithms based on 10 runs of split 
training and testing sets 

The different sets are generated through either random (top) or K-means sampling (bottom). As for the latter, each run, 
the 12,343 negative protein-receptor combinations undergo K-means sampling with K = 203. The randomly chosen 203 
negative samples, one per cluster, are then randomly split into training (70%) and testing (30%) sets. Similarly, the 203 
positive samples are randomly split into training (70%) and testing (30%) sets

SE SP ACC​ MCC AUC​ g-means

Random (70% training, 30% testing)

 NB 63.7 53.5 58.4 0.178 0.595 56.8

 A1DE 70.7 57.5 62.2 0.255 0.674 63.4

 SMO-RBF 79.3 72.5 75.7 0.520 0.759 75.6

 SMO-PolyK 66.7 50.0 55.2 0.194 0.583 57.1

 SMO-PuK 74.8 77.8 76.3 0.529 0.763 76.0

 IBK 79.8 68.9 74.1 0.491 0.743 73.9

 Bagging 65.5 58.9 62.0 0.244 0.682 62.0

 RF 74.5 64.2 69.1 0.390 0.779 68.9

K-means (70% training, 30% testing)

 NB 79.7 50.0 63.6 0.299 0.742 62.3

 A1DE 77.6 87.2 82.9 0.659 0.857 82.4

 SMO-RBF 89.5 89.0 89.2 0.785 0.890 89.2

 SMO-PolyK 88.1 78.9 83.2 0.692 0.828 83.2

 SMO-PuK 82.9 85.1 84.1 0.683 0.845 83.8

 IBK 82.2 87.0 84.2 0.692 0.841 84.0

 Bagging 84.8 92.3 88.7 0.776 0.934 88.4

 RF 90.3 93.9 92.2 0.844 0.959 92.0
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and tenfold cv (Table  4). Results are averaged over ten randomly (Tables  2, 3 and 4, 
top) and ten K-means (K = 203) sampled negative datasets (Tables 2, 3 and 4, bottom). 
Our results obtained using loocv with randomly sampled negatives (Table 2, top) show 
that SMO-PuK performs best for all metrics (SP: 83.5%, ACC: 78.2%, AUC: 0.782, mcc: 
0.568, g-means: 78.0) except for sensitivity. Here the ‘winner’ is IBK (81.4%). SMO-RBF 
is the second-best performing algorithm for all metrics (SP: 74.5%, ACC: 76.7%, AUC: 
0.767, mcc: 0.536, g-means: 76.7). Also, IBK performs similarly to SMO-RBF for those 
metrics. Performances of all algorithms improve significantly when training is done 
with sets of negatives obtained via K-means based sampling (see Table  2, bottom). In 
this case, RF becomes the best performing algorithm for all metrics except sensitivity 
(SP: 96.3%, ACC: 93%, AUC: 0.965, mcc: 0.862, g-means: 92.9). SMO-RBF performs best 
with respect to sensitivity (SE: 90.2%). It also performs second-best for metrics accuracy 
(90.5%) and g-means (90.5). Of note, all other algorithms including NB, A1DE, IBK, and 
Bagging also perform much better when trained with negatives obtained via K-means 
sampling than when trained on randomly sampled negatives, indicating the significant 
impact that the negative training data has on the performance of all learning algorithms. 
In accordance with the results in Table 2, (almost) all performance metrics increase con-
siderably (for all ML algorithms) on the holdout disjunct testing set, when the training 
is performed using K-means sampled diversified training sets (Table 3, bottom) instead 
of random sampling (Table 3, top). NB’s specificity is the only exception. As to random 
sampling, SMO-PuK and SMO-RBF perform best considering all metrics. While IBK 
performs best in terms of sensitivity (79.8%), and RF performs best in terms of AUC 
(0.779), SMO-PuK performs best on all other metrics closely followed by SMO-RBF. 

Table 4  Performance metrics of different ML algorithms averaged over  10 × 10-fold cross 
validations 

Each model was trained on different negative sample sets that have been generated using either random selection or the 
K-means based sampling

SE SP ACC​ MCC AUC​ g-means

Random (10 × 10-fold cross validation)

 NB 51.04 61.22 55.49 0.106 0.560 66.2

 A1DE 72.02 52.4 62.2 0.244 0.697 61.4

 SMO-RBF 79.70 75.57 77.57 0.553 0.776 77.6

 SMO-PolyK 64.72 49.45 57.11 0.144 0.571 56.5

 SMO-PuK 71.76 83.29 78.53 0.555 0.775 77.3

 IBK 81.14 71.43 76.28 0.528 0.762 76.1

 Bagging 66.65 63.42 65.02 0.301 0.712 65.0

 RF 72.77 69.79 71.27 0.426 0.795 71.2

K-means (10 × 10-fold cross validation)

 NB 74.05 51.76 61.76 0.262 0.714 61.9

 A1DE 83.70 85.02 84.34 0.688 0.901 84.4

 SMO-RBF 88.55 90.48 89.53 0.796 0.903 89.5

 SMO-PolyK 82.72 88.06 85.39 0.709 0.847 85.3

 SMO-PuK 84.60 91.32 87.97 0.761 0.880 87.7

 IBK 84.42 86.35 85.4 0.711 0.855 85.4

 Bagging 86.10 92.25 89.19 0.786 0.938 89.1

 RF 89.42 95.98 92.52 0.853 0.957 92.6
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When K-means sampling is used, performances improve most significantly for RF, that 
performs now best for all metrics (SE: 90.3%, SP: 93.9%, ACC: 92.2%, mcc: 0.844, AUC: 
0.959, g-means: 92.0). SMO-RBF performs second-best in a number of metrics (SE: 
89.2%, ACC: 89.2%, mcc: 0.785, and g-means: 89.2). When applying 10 × 10-fold cv (see 
Table 4), the performances and, thus, the ranking of the ML algorithms is very similar 
to those reported for Tables 2 and 3. Lastly, we also applied uniform sampling (Kennard 
Stone algorithm), both to obtain an initial sampling of 203 negative instances and in 
combination with the training/testing split. In general, performances were better com-
pared to random sampling but not as good as when using K-means based sampling (see 
Additional file 1: Tables S16 and S17 and additional information in the Additional file 1).

Conclusions
Knowledge of CRIs can facilitate the understanding of many regulatory biological pro-
cesses. ML-based CRI prediction can help narrowing down the search space for wet lab 
based experimental validation. In the present work, we tested a number of different fea-
ture sets. The feature set consisting of atomic composition, physicochemical-2-grams as 
well as evolutionary information in the form of AAC_PSSM and D-FPSSM proved to be 
very useful in developing CRI predictors. To the best of our knowledge, this study is the 
first in using atomic composition and physicochemical-2-grams as discriminating fea-
tures for PPI. We then compared the effect of random, uniform and K-means based sam-
pling of the negative data on the training of eight different machine learning algorithms. 
To this end, we produced 10 different negative sample sets for each method. The trained 
ML models were thoroughly evaluated using the popular leave one out cross validation, 
10 × 10-fold cross validation, and 70% training/30% testing split. Our results show, per-
formances of all ML algorithms benefitted from K-means based sampling, with RF mod-
els performing best, significantly outperforming the Wei et al. [22] model with respect to 
all metrics except sensitivity. Negative dataset selection as well as sampling have signifi-
cant impact on prediction performance. K-means sampling with random splitting pro-
duced diversified training sets consisting of representative samples that cover the input 
space and include both common and rare patterns, thus allowing for a complete learning 
of the ML algorithms. Corresponding diversified testing sets led to a proper and robust 
evaluation of the trained models, showing a considerable increase of their generaliza-
tion ability. So far, a gold standard for choosing non-interacting protein pairs has been 
lacking. Here we have shown that K-means based sampling is able to include samples 
from the entire representative list of protein non-interactions, thereby avoiding under-
representation or overrepresentation and learning bias. The good performance metrics 
of the trained RF models on K-means sampled datasets across all evaluation methods 
suggest that the present methodology can be used as a complementary approach along 
with other wet lab methods for CRI identification.

Methods
Dataset

We use the original dataset of Wei et al. [22] in order to allow for a direct comparison. 
It consists of 123 human cytokines and 102 human receptors. Thus, there are 12,546 
(= 123 × 102) possible cytokine–receptor combinations. Among those are 203 known 
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interacting cytokine–receptor pairs that form the positive training dataset (see Addi-
tional file 1). As per the “closed world association” [14], all cytokine–receptor pairs 
not present in the positive dataset are potentially negative. This pool of protein pairs 
that are not known to interact comprises in total 12,343 pairs. The negative training 
data in [22] was obtained from this set by simple random sampling of 203 pairs. Aside 
from training ML models with the exact same negative data in [22], we also generated 
new negative training data by sampling 203 non-interacting cytokine–receptor pairs 
from the same pool of protein pairs (accepting the relatively small risk of having false 
negatives in this pool). For the work reported here, we used three different sampling 
methods: simple random sampling as in [22], K-means clustering and sampling, and 
uniform selection algorithm for sampling. The latter two are described below in the 
subsection “Sampling Methods for Creating Diversified and Representative Training 
and Testing Sets “.

Feature extraction

The prediction of protein classifications (interacting/non-interacting, family clas-
sification, etc.) is profoundly dependent on feature extraction. Data representation 
is an important part in the training of ML algorithms, because different representa-
tions can emphasize different aspects of the data. The accuracy of the learned model 
is strongly impacted by the selection of features that we feed into the learning phase 
of the classifier. Broadly speaking, two types of features are calculated for distin-
guishing interacting pairs from non-interacting pairs: (1) Classical sequence-based 
features and (2) features based on evolutionary information. From the first feature 
type we use Amino Acid Composition (AAC), Dipeptide Composition (DPC), Prop-
erty Group Composition (PGC), Physicochemical-2grams (P2G), Atomic Composi-
tion (ATC), and Physicochemical Properties (PCP). Regarding the second feature 
type, we use two types of information representations from PSSMs (position specific 
scoring matrices), namely AAC_PSSM and D-FPSSM. For performance evaluation 
of different ML algorithms, we use each of these features individually and in addi-
tion the following combinations of feature sets: ATC + P2G, AAC_PSSM + D-FPSSM, 
ATC + P2G + AAC_PSSM + D-FPSSM, and all features combined. A detailed descrip-
tion of each individual feature is provided in the Additional file.

Classification algorithms

We have compared eight different machine learning algorithms: Naïve Bayes (NB), 
Average One Dependence Estimator (A1DE), Support vector machines with RBF ker-
nel (SMO-RBF), Support vector machines with Poly K kernel (SMO-Poly K), Support 
vector machines with PuK kernel (SMO-PuK), Nearest neighbor classifier (IBK), Bag-
ging, and Random Forest (RF). The description of each of the algorithms is provided 
in the Additional file 1.

We have implemented all ML algorithms on the Weka ML platform [35] using 
default parameters. Of note, our results (including the best performing classifier) 
could have varied greatly had we applied parameter optimization methods.
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Autoencoders

An autoencoder is an artificial neural network used for unsupervised learning. 
Its main objective is to learn hidden structures from unlabeled data by attempting 
to reproduce the input given to it through its hidden layer representations [36, 37] 
(Additional file 1: Fig. S1). It consists of simulated layers of neurons, where each neu-
ron is associated with a weight and an activation function. The simplest autoencoder 
consists of an input layer, an output layer where the reconstructed input is produced, 
and a single hidden layer between those two. So-called “deep” autoencoders have 
more than one hidden layer. In traditional neural networks, the effect of backprop-
agation decreases on the first layer with increasing number of hidden layers, while 
in deep learning neural networks, each layer is trained independently and the fea-
ture encodings from the previous layer are used to train the successive layers. Deep 
learning neural networks overcome the vanishing gradient problem known to occur 
in gradient based learning of traditional neural networks with multiple layers. In deep 
autoencoders the output of the preceding layer becomes the input of the successive 
layer. The layout of the autoencoder (i.e. its architecture), including the number of 
hidden layers, the type of activation function and the number of epochs it has to be 
trained, and the choice of regularization parameters such as l2 (also known as ridge 
regression) are prespecified. The goal is to achieve a model with minimum error 
between the actual input Xi and the reconstructed input Oi. Let n be the number of 
features used to represent the data. Then the reconstruction error ∆i is computed as

Autoencoders find application in unsupervised pre-training of deep learning neural 
networks and in anomaly detection [38]. In the present work we used autoencoders 
for negative dataset creation using its anomaly detection capability. We trained dif-
ferent autoencoder models with the positive interacting pairs only. The best trained 
autoencoder model (i.e. with minimum mean squared error and root mean squared 
error) is then used to categorize all the negative interacting pairs using the calculated 
reconstruction error values. A non-interacting pair having proximity to interacting 
pairs will have low reconstruction error. Conversely, non-interacting pairs with high 
reconstruction error are very dissimilar to interacting pairs. Based on the values of 
the reconstruction error, we categorized the non-interacting pairs into different 
groups for the training of a classifier. We used the H2O package (https​://h2o.ai) in R 
for implementing the autoencoder models.

Performance metrics

We have evaluated the ML models using a wide range of performance metrics, using 
both threshold-dependent and threshold-independent parameters. Let TP, TN, FP, 
and FN denote the number of correctly predicted CRI pairs (true positives), the num-
ber of correctly predicted non-interacting pairs (true negatives), the number of non-
interacting pairs predicted incorrectly as cytokine–receptor interacting pairs (false 

�i =
1

n

n
∑

j=1

(

Xi,j − Oi,j

)2
.

https://h2o.ai
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positives) and the number of CRI pairs predicted incorrectly as non-interacting pairs 
(false negatives), respectively. Our metrics are:

Sensitivity: Percentage of correctly predicted CRI pairs:

Specificity: Percentage of correctly predicted non-interacting pairs:

Accuracy: This metric expresses the correctly predicted cytokine–receptor and non-
interacting pairs.

Mathews correlation coefficient (MCC): It is a valuable measure for binary classification 
problems. Values range from − 1 to + 1.

Area under ROC (AUC): The AUC can be used to summarize ROC (receiver operating 
characteristic) curves by a single numerical quantity. Possible values of the AUC range 
from 0 to 1. The closer the value to 1 the better the performance of the ML model [19, 
39, 40].

g-means: This is the geometric mean of sensitivity and specificity and is calculated by the 
following formula [41]:

It gives a balanced view about the performance of the ML models for both the positive 
and negative classes.

For the evaluation of autoencoder models, we have used the following performance eval-
uation metrics:

Root mean squared error (RMSE): Also known as the root mean square deviation, the 
RMSE is calculated as the difference between the values predicted by a model and the val-
ues actually observed from the real environment that is being modeled:

where n is the number of samples, Xobs,i is the observed value and Xmodel,i is the predicted 
value.

Mean squared error (MSE):

SE = 100× TP/(TP + FN ).

SP = 100× TN/(TN + FP).

ACC = (TP + TN )× 100/(TP + FP + TN + FN ).

MCC =
(TP × TN )− (FP × FN )

√
(TP + FN )(TP + FP)(TN + FP)(TN + FN )

g-means =
√
SE × SP.

RMSE =

√

√

√

√

n
∑

i=1

(

Xobs,i − Xmodel,i

)2
/n,

MSE =
1

n

n
∑

i=1

(

Xobs,i − Xmodel,i

)2
.
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Performance evaluation

Three different evaluation methods were used to infer the generalization ability and 
the robustness of the ML models. (1) Leave one out cross validation (loocv). loocv is 
a special case of K-fold cross validation, where K is equal to the number of samples. 
In each round of evaluation, one sample is left out as a test case and all the other 
samples are used to train the model. This process is repeated until all the samples 
are evaluated once as a test case. Loocv is computationally expensive, but we decided 
to include this evaluation method since it had been used previously to evaluate the 
models in the work of Wei et  al. [22], to which we are comparing our models. (2) 
10 × 10-fold cv (tenfold cv repeated 10 times), (3) Random training and testing. Here, 
a fixed percentage of data is kept aside for training and the rest of the data is used 
for testing the model. The training and testing sets are mutually exclusive. Random 
splitting of training and testing sets leaves room for over-representation or under-
representation of patterns that belong to different classes in training and testing sets. 
As a consequence, it can give variable estimates for the prediction error. If the train-
ing set lacks a subset of patterns, the learning algorithm will be unable to identify that 
subset of patterns. Likewise, if a subset of patterns is missing in the testing set, then 
this leads to an incomplete evaluation of the ML model. In other words, if the training 
and testing sets are created using random sampling, then there is no guarantee for the 
inclusion of both common and rare patterns in the training set. To overcome these 
shortcomings of incomplete learning and unrepresentativeness, we implemented a 
diversified training/testing set.

Sampling methods for creating diversified and representative training and testing sets

A diversified training set has proper representative samples from the entire input 
space and is a necessary prerequisite for complete learning [8, 42]. Similarly, a diver-
sified testing set is needed for the true estimation of the classification error of the 
trained models. Ideally, a training set is free from both between and within class 
imbalance. In the present case, the numbers of samples of interacting and non-
interacting proteins are equal, so there is no between class imbalance. Within class 
imbalance arises due to the difference in the number of common and rare patterns 
belonging to each class. These rare patterns are also known as small disjuncts [43].

Applied to our problem this means that if the negative samples in the training set 
represent only a relatively narrow sample space, then this can bias the learning and 
result in over-optimistic or over-pessimistic performance evaluation metrics. Conse-
quently, a sampling strategy that produces a set of negative instances that effectively 
represents (as much as possible) the entire negative sample space would be highly 
advantageous for the training of ML models. Such trained models would have the 
opportunity to learn from instances belonging to many different regions of the entire 
negative instance space.

For the purpose of creating diversified and representative training and testing sets, 
we used the unsupervised K-means clustering algorithm. The aim of K-means cluster-
ing is to partition the variety of patterns (samples) into a predefined number of clus-
ters (K) based on the similarity/dissimilarity that exists among the patterns (samples) 
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[8]. Ideally, the similarity between the clusters is at a minimum, while the similarity 
within the clusters is at a maximum. K-means clustering proceeds by minimizing the 
objective function given by

where SSE is the acronym for “sum of squared errors”, Cj denotes the centroid of the jth 
cluster, Pj

i denotes the ith pattern of the jth cluster, nj denotes the number of objects in 
the jth cluster, K denotes the predetermined number of clusters, and ||·|| denotes the 
Euclidian distance.

All input features are normalized prior to the application of the K-means algorithm. 
Specifically, all the numerical values (attribute values) are normalized in the range from 
0 to 1 using the min–max normalization method [44]. We use K = 203 (i.e. equal to the 
number of positive interacting pairs) for clustering the 12,343 non-interacting pairs. 
Then, for generating a K-means sampled negative dataset, we select one instance from 
each non-interacting pair cluster for the training set. Thus, our final combined training 
and testing set consisted again of 203 negative instances (one from each cluster) and of 
all 203 positive instances.

Of note, K-means sampling could potentially favor the selection of false negatives if 
present in the negative base set. This is so because the selection for broad representa-
tiveness favors the selection of the most dissimilar feature vectors, which are most suspi-
cious of being false negatives (i.e. it is assumed that false negatives are likely to be found 
among the most dissimilar negatives). However, the likelihood of having false negatives 
is still relatively small, perhaps even smaller than the likelihood of having false positives 
[25].

Furthermore, we have implemented the uniform selection algorithm for sampling. 
Here, the representative samples are selected with the aim of uniformly covering the 
entire input space. The uniform selection algorithm, also known as Kennard-Stone algo-
rithm, is implemented as described in [45]. The algorithm proceeds by selecting the 
sample that is closest to the data mean, which is then added to the representative set. 
Using Euclidean distance as the dissimilarity metric, new samples are iteratively selected 
among those that are most dissimilar to the samples already present in the representa-
tive set.
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