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Background
The spread of infectious diseases in populations and how to control and eliminate them 
from the population are important and necessary subjects. Mathematical models are 
introduced to study what happens when an infection enters in a population, and under 
which conditions the disease will be wiped out from population or persists in popula-
tion. The literature about mathematical epidemic models that have been constructed 
and analyzed for various types of diseases is very rich; see, for example, [1, 2]. Such mod-
els can be formulated either as continuous-time models by differential equations or as 
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discrete-time ones by difference equations. Recently, discrete models have gotten more 
interest because epidemic data are collected in discrete time intervals and numerical 
schemes also use discretization for solving differential equations. Moreover, the discrete-
time epidemic model exhibits more complex dynamics. Allen [3] studied some discrete-
time SI, SIR, and SIS epidemic models and showed that the simple discrete-time SI and 
SIR epidemic models without births or deaths mimic the behavior of the continuous-
time models, while the behavior in the discrete-time SI, SIR, and SIS models with recov-
ery or births differ from their continuous analogs. Castillo-Chavez and Yakubu [4] have 
investigated a discrete SIS model with complex dynamics. Brauer et al. [5] introduced a 
discrete-epidemic framework and highlight, emphasizing the final size of the epidemic, 
the similarities between single-outbreak comparable classical continuous-time epidemic 
models, and the discrete-time models. Farnoosh and Parsamanesh [6] investigated the 
stability and bifurcation in a discrete SIS model with bilinear incidence. The vaccination 
program implements not only on susceptible individuals but also on newcomers to the 
population. Parsamanesh and Mehrshad [7] performed a similar investigation on an SIS 
model with a temporary vaccination program with standard incidence. A discrete SIRS 
epidemic model with vaccination and a general infection probability function is inves-
tigated by Xiang et al. [8]. The vaccination performs only on susceptible individuals but 
not on the recruitment of the population. The local and global stabilities of disease-free 
equilibrium were derived as well as the local stability of the endemic equilibrium.

The discrete models have usually constructed either directly from properties of the 
disease and the population in which the propagation occurs, or by discretizing continu-
ous model by a method based on numerical analysis such as the forward/backward Euler 
method, Mickens’ non-standard method, or a mixed type formula which uses implicit 
and explicit Euler methods. For example, Roeger and Barnard [9] applied the central dif-
ference method to a continuous SIR epidemic model and showed the local stability of 
the equilibria. Liu et al. [10] presented four discrete epidemic models with the nonlinear 
incidence rate, using the forward Euler and backward Euler methods. They discussed the 
effect of two discretizations on the stability of the endemic equilibrium for these models. 
They concluded the forward Euler method makes the models have much richer dynami-
cal behavior than the continuous models while the backward Euler method preserves 
the global asymptotic stability of endemic equilibria. Aranda et al. [11] provided a dis-
crete model by discretization of the continuous-time model for transmission of Babe-
siosis disease in bovine and tick populations. They proved local stability of the equilibria 
and global stability of the disease-free equilibrium and obtained similar conclusions as 
they got in the continuous case. In particular, Mickens [12] consider the non-stand-
ard discretization for numerical methods which ensures positivity of the solutions of 
the difference equations. Recently, Izzo and Vecchio [13] obtained a discrete epidemic 
model by using a mixed type formula, which uses implicit and explicit Euler methods 
for discretization. Their discretization is similar to Mickens’ non-standard one. But their 
discretization showed some good properties for positivity, boundedness, and global 
behavior of the solution. There are some works devoted to the local stability of a dis-
crete model and few others investigated the global stability of the model. Hu et al. [14] 
established the criteria on the local stability of the disease-free equilibrium and endemic 
equilibrium for a class of SIRS epidemic model with a non-linear incidence, by using 
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the linearization method and the expression of roots of the cubic polynomial equation. 
Ma et al. [15] studied the global stability of the endemic equilibrium of a discrete SIR 
model and get sufficient conditions by using the comparison principle. Cui and Zhang 
[16] gave sufficient conditions for the global stability of a discrete SIR model derived by 
employing a non-standard finite difference scheme. Van den Driessche and Yakubu [17] 
proved the global stability and persistence for some discrete epidemic models that are 
formulated for SEIR infections, cholera in humans, and anthrax in animals, under some 
demographic assumptions. Among these models, the susceptible- infected- susceptible 
(SIS) epidemic models are one of the well-known types of epidemic models. To consider 
the effect of vaccination as an efficient strategy to control and eliminate infections, it 
is possible to add a compartment for the vaccinated individuals to the SIS model and 
obtain the SIS epidemic model with vaccination, namely SIVS epidemic model [18, 19]. 
These models may be deterministic [6] or stochastic [20], with constant [21] or variable 
[19] population size, and with standard [22] or bilinear [6, 20] incidence rate. Motivated 
by the above studies, in this paper, we consider the discrete-time SIS epidemic model 
presented in [7], but with a different recruitment rate and without disease-caused death. 
Indeed, a model with the standard incidence in which a (perfect but temporary) vaccina-
tion program has been included. For this model using a similar approach used in [7], we 
investigate the local stability and bifurcations theoretically and numerically. Moreover, 
the global stability of the disease-free equilibrium of the model is proven. Furthermore, a 
generalization of the model is given by forwarding Euler discretization, and then its sta-
bility is studied. The effect of the vaccination in the model for controlling and eliminat-
ing the disease will also be shown.

The organization of the paper reads as follows: In the next section, the model is intro-
duced, and equilibria of the model and its basic reproduction number are obtained. Two 
next sub-sections are devoted to studying the stability of the equilibria and bifurcations 
of the model, respectively. Then by using the forward Euler method, a discrete-time 
model is obtained from a continuous version of the model, and the stability of its equi-
libria is analyzed. After a numerical discussion, finally we summarize the results.

Results
The model

Suppose that the individuals in a population are partitioned into susceptible individu-
als, infected individuals, and vaccinated individuals. Also, consider �t as the appro-
priate time increment such that the changes in the model may take place at times 
0,�t, 2�t, 3�t, . . . . The number of total individuals at time t = n�t , for some n, is 
denoted by Nt and numbers of individuals in other compartments in the same time are 
as St , It , and Vt.

All possible changes in the model and transmissions between its sub-populations 
together with their transmission rates have been shown in Fig. 1. Here, all parameters 
are assumed to be nonnegative, and N and µ are positive. Also, µ is the natural death 
rate, β is the contact rate, γ is the cure rate, ǫ is the rate of losing immunity, while q and 
p are the vaccination rate in newcomers and susceptible individuals, respectively. The 
model can be illustrated by the following system of difference equations:
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The susceptible individuals become infected at standard incidence rate βStIt/Nt . More-
over, summing equations in system (1), we see that Nt+1 = Nt , and then the population 
size will remain a constant value. Thus, by letting Vt = N − St − It , the corresponding 
difference equation is deleted and the following system of two difference equations is 
obtained:

System (2) is considered under the following conditions, which are sufficient but not 
necessary for the nonnegativity of solutions.

These conditions are extracted from system (2) and they are natural requirements for 
the model. The first, state the rate at which the susceptible individuals who die or get 
infected or become vaccinated is less than one within a unit time. The second, says the 
rate at which the infected people who die or get recovered is less than one within a unit 
time.

The equilibria of the model are solutions of the following system:

From the first equation, we must have either Ī = 0 or βS̄/N − (µ+ γ ) = 0 . When Ī = 0 , 
the equilibrium is named the disease-free equilibrium and is written as

(1)
It+1 = βStIt/Nt + [1− (µ+ γ )]It ,

St+1 = (1− q)µNt − βStIt/Nt + [1− (µ+ p)]St + γ It + ǫVt ,

Vt+1 = qµNt + pSt + [1− (µ+ ǫ)]Vt .

(2)
It+1 = βStIt/N + [1− (µ+ γ )]It ,

St+1 = [(1− q)µ+ ǫ]N − βStIt/N + [1− (µ+ p+ ǫ)]St + (γ − ǫ)It .

(3)
µ+ p+ ǫ + β < 1,

µ+ γ < 1.

Ī
[

βS̄/N − (µ+ γ )

]

= 0,

[(1− q)µ+ ǫ]N − βS̄Ī/N − (µ+ p+ ǫ)S̄ + (γ − ǫ)Ī = 0.

Q0
= (I0, S0) =

(

0,
[(1− q)µ+ ǫ]N

µ+ p+ ǫ

)

,

Fig. 1  Flow diagram of the model together with transmission rates
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while if βS̄/N − (µ+ γ ) = 0 , we obtain

This equilibrium in which Ī �= 0 , is called the endemic equilibrium and is written as

Notice that I∗ > 0 if and only if [(1− q)µ+ ǫ]β − (µ+ p+ ǫ)(µ+ γ ) > 0 if and only if

The quantity R0 is referred to as the basic reproduction number of model (2) and is inter-
preted as the number of individuals who become infected by entering one infected indi-
vidual into a fully susceptible population; see [23]. Thus it is reasonable intuitively, as 
we showed mathematically, that when R0 < 1 , each infected individual transmits the 
infection to less than one other individual and it is expected that the infection vanishes. 
While in the case R0 > 1 , each infected individual transmits the infection to more than 
one other individual and so the infection does not wipe out. Here, the assumption of R0 
was made directly from the expression of I∗ and condition of its positivity in endemic 
equilibrium. Also, there are some methods to calculate R0 for discrete models; for exam-
ple, see [24]. We see that R0 is independent of the total population size N. Also

and

Therefore, we can state the following lemma about the existence of equilibria of the 
model.

Lemma 1  For SIVS epidemic model (2), the disease-free equilibrium Q0 always exists 
and the endemic equilibrium Q∗ also exists if R0 > 1.

Stability of the equilibria

We study stability of the system at an equilibrium by considering eigenvalues of the cor-
responding Jacobian matrix at that equilibrium. When eigenvalues are less than one, the 
system is stable.

Theorem 2  The disease-free equilibrium is stable if and only if R0 < 1.

Proof  The Jacobian matrix of model (2) at (I, S) is

Ī =
[(1− q)µ+ ǫ]N −

(µ+p+ǫ)(µ+γ )N
β

(µ+ ǫ)
.

Q∗
= (I∗, S∗) =

(

[(1− q)µ+ ǫ]βN − (µ+ p+ ǫ)(µ+ γ )N

β(µ+ ǫ)
,
(µ+ γ )N

β

)

.

R0 =
β[(1− q)µ+ ǫ]

(µ+ p+ ǫ)(µ+ γ )
> 1.

S0 =
(µ+ γ )N

β
(R0)

I∗ =
(µ+ p+ ǫ)(µ+ γ )N

(µ+ ǫ)β
(R0 − 1).



Page 6 of 15Parsamanesh et al. BMC Bioinformatics          (2020) 21:525 

Therefore, the Jacobian matrix at Q0 is given by

The eigenvalues of J (Q0) are �1 = 1− (µ+ γ )+ (µ+ γ )R0 and �2 = 1− (µ+ p+ ǫ) . 
obviously, |�2| < 1 by assumptions (3) and |�1| < 1 if and only if R0 < 1 . � �

Theorem  3  When R0 > 1 , the endemic equilibrium Q∗ is stable and otherwise is 
unstable.

Proof  At Q∗ , we have βS∗/N = (µ+ γ ) and so

Thus we get

and by assuming

we can rewrite them as

The characteristic equation of J∗ is of the form P(�) = �
2
− tr(J∗)�+ det(J∗) and 

according to the Jury conditions, all eigenvalues of J∗ are from module less than one if 
and only if (see [25])

First, 1+ det(J∗) < 2 holds if and only if −b1 + b2 < 0 . Besides, βI∗/N > (µ+ ǫ)βI∗/N  
and so (µ+ p+ ǫ)+ βI∗/N > (µ+ ǫ)βI∗/N  , that is, b1 > b2 and thus the condition 
1+ det(J∗) < 2 holds.

Second, for tr(J∗) > 0 we must show that tr(J∗) < 1+ det(J∗) , which holds since it is 
equivalent to b2 > 0 . If tr(J∗) < 0 , then we have to prove −tr(J∗) < 1+ det(J∗) , which 
holds if and only if 4 − 2b1 + b2 > 0 . Indeed

(4)J (I , S) =

(

1− (µ+ γ )+ βS/N βI/N
−βS/N + (γ − ǫ) 1− (µ+ p+ ǫ)− βI/N

)

.

J (Q0) =

(

1− (µ+ γ )+ (µ+ γ )R0 0

−(µ+ γ )R0 + (γ − ǫ) 1− (µ+ p+ ǫ)

)

.

J∗ = J (Q∗) =

(

1 βI∗/N
−(µ+ ǫ) 1− (µ+ p+ ǫ)− βI∗/N

)

.

tr(J∗) = 2− (µ+ p+ ǫ)− βI∗/N ,

det(J∗) = 1− (µ+ p+ ǫ)− βI∗/N + (µ+ ǫ)βI∗/N ,

b1 = (µ+ p+ ǫ)+ βI∗/N ,

b2 = (µ+ ǫ)βI∗/N ,

tr(J∗) = 2− b1,

det(J∗) = 1− b1 + b2.

(5)|tr(J∗)| < 1+ det(J∗) < 2.

4 − 2b1 + b2 = 4 + (µ+ ǫ)βI∗/N − 2[(µ+ p+ ǫ)+ βI∗/N ]

> 2+ (µ+ ǫ)βI∗/N − 2βI∗/N

> (µ+ ǫ)βI∗/N > 0,
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since µ+ p+ ǫ < 1 and βI∗/N < 1 . Therefore, when R0 > 1 , the Jury conditions are 
satisfied and the proof is completed. Now, in the next theorem we prove the global sta-
bility of the disease-free equilibrium.�  �

Theorem 4  The disease-free equilibrium of model (2) is globally asymptotically stable if 
R0 ≤ 1.

Proof  First we divide the equations in system (2) by total population size N and letting 
st = St/N  and it = It/N  , we obtain the following equivalent system

The basic reproduction number of this system is Reqv
0

=
β

µ+γ
 . Now, considering the 

function W (it) = it , we see that W > 0 , and W = 0 if and only if i = 0 , that is at disease-
free equilibrium of (6). On the other hand, we have

and thus when Reqv
0

≤ 1 , we have W (it+1)−W (it) ≤ 0 . Therefore W is a Lyapunov 
function [26] and the disease-free equilibrium of system (6) and as a result Q0 is globally 
asymptotically stable. � �

Bifurcations of the model

In a discrete-time system, bifurcations occur at the equilibria of the given system when 
there exist some eigenvalues of the Jacobian matrix with module one. Indeed, for an 
eigenvalue � , if � = 1 , then a transcritical bifurcation (or flip bifurcation) occurs and 
when � = −1 , a period-doubling bifurcation occurs; see [2, 25]. While a Neimark–Sacker 
bifurcation, which is the same as the Hopf bifurcation in continuous systems [27], occurs 
if there is a pair of conjugate complex eigenvalues with module one, |�| = 1.

As we saw, the eigenvalues of J (Q0) are �1 = 1− (µ+ γ )+ (µ+ γ )R0 and 
�2 = 1− (µ+ p+ ǫ) . Also, �1 = 1 if and only if R0 = 1 and thus a transcritical bifurca-
tion occurs at Q0 when R0 = 1 . On the other hand, �1 = −1 if and only if R0 = 1−

2
µ+γ

 , 
but this is impossible because µ+ γ < 1 and R0 becomes a negative value. This shows 
that a period-doubling bifurcation does not occur at Q0 . Also, the eigenvalues of J (Q0) 
are both real, and therefore a Neimark-Sacker bifurcation does not take place, too. Thus 
we have the following theorem.

(6)
it+1 = βst it + [1− (µ+ γ )]it ,

st+1 = [(1− q)µ+ ǫ] − βst it + [1− (µ+ p+ ǫ)]st + (γ − ǫ)it .

W (it+1) = it+1 = βst it + [1− (µ+ γ )]it

= βst it +W (it)− (µ+ γ )it

= (µ+ γ )

( βst

µ+ γ
− 1

)

it +W (it)

≤ (R
eqv
0

− 1)it +W (it),
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Theorem  5  At disease-free equilibrium, Q0 of SIVS epidemic model (2), transcritical 
bifurcation happens if R0 = 1 while a period-doubling bifurcation and a Neimark-Sacker 
bifurcation do not take place.

Now, we consider bifurcations at the endemic state. The following theorem is 
devoted to this purpose.

Theorem  6  None of transcritical, period-doubling, and Neimark-Sacker bifurcations 
occur at endemic equilibrium Q∗ for SIVS model (2).

Proof  We have � = 1 is an eigenvalue of Jacobian matrix J (Q∗) if it is a root of the cor-
responding characteristic equation, 1− tr(J∗)+ det(J∗) = 0 . This holds if and only if 
b2 = 0 , if and only if βI∗/N = 0 , if and only if R0 = 1 , since

But by Lemma 1, Q∗ exists when R0 > 1 . However, � = −1 is an eigenvalue of J (Q∗) if 
P(−1) = 0 . This is satisfied if and only if 4 − 2b1 + b2 = 0 that can be written as

or equivalently

Now, notice that as we concluded previously, P(−1) > 0 when R0 > 1 . Also, R0 = 1 
implies βI∗/N = 0 and this results in 2− (µ+ p+ ǫ) = 0 which is impossible. These 
discussions state that a period-doubling bifurcation does not happen at Q∗.

If we write the characteristic equation of J∗ as P(�) = �
2
+ a1�+ a2 , we see that

Hence, the roots of P(�) are both real and thus a Neimark-Sacker bifurcation cannot 
appear at Q∗ .�  �

Remark 1  If we omit the restriction β < 1 from the system and allow β to take values 
greater than or equal to one, then from (7), we get

Thus a period-doubling bifurcation occurs at Q∗ for β ≥ 1 if

βI∗/N =
(µ+ p+ ǫ)(µ+ γ )

(µ+ ǫ)
(R0 − 1).

4 − 2(µ+ p+ ǫ)− βI∗/N [2− (µ+ ǫ)] = 0,

(7)2[2− (µ+ p+ ǫ)] − βI∗/N [2− (µ+ ǫ)] = 0.

a21 − 4a2 = (−2+ b1)
2
− 4(1− b1 + b2)

= b21 − 4b2

= (µ+ p+ ǫ)2 + 2(µ+ p+ ǫ)βI∗/N + (βI∗/N )2 − 4(µ+ ǫ)βI∗/N

> (µ+ p+ ǫ)2 − 2(µ+ p+ ǫ)βI∗/N

+ (βI∗/N )2 = [(µ+ p+ ǫ)+ βI∗/N ]
2 > 0.

βI∗/N =
2[2− (µ+ p+ ǫ)]

2− (µ+ ǫ)
.
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The model obtained by the forward Euler discretization

The model described in Fig. 1 can be stated as a continuous-time model by the follow-
ing system of ordinary differential equations (see [28, 29]):

We see that Ṅ = dN/dt = 0 and therefore the population size is constant. Similar to 
the discrete-time model, we get the following two-dimensional system by substituting 
V = N − S − I and omitting variable V from the system:

Now in this section, we discretize and analyze model (9) by using the forward Euler 
method. Substituting Ṡ = (St+1 − St)/� and İ = (It+1 − It)/� , where � is the fixed step 
size of the discretization, we obtain the discrete version of model as follows:

It can be seen that the equilibria of this model and the corresponding basic reproduction 
number are similar to model (2). The disease-free equilibrium of discretized model, Q0

d , 
always exists while, its endemic equilibrium, Q∗

d , exists only when R0 > 1.

Theorem 7  When R0 < 1 , the disease-free equilibrium of model (10) is stable if

Proof  The Jacobian matrix of the model at (I, S) is given by

and at the disease-free equilibrium, it is

Thus the eigenvalues of J (Q0
d) are �1 = 1+�(µ+ γ )(R0 − 1) and 

�2 = 1−�(µ+ p+ ǫ) . Therefore, |�1| < 1 if and only if � < 2
(µ+γ )(1−R0)

 , and |�2| < 1 if 
and only if � < 2

(µ+p+ǫ)
 .�  �

R0 = 1+

(

2[2− (µ+ p+ ǫ)]

2− (µ+ ǫ)

)( µ+ ǫ

(µ+ p+ ǫ)(µ+ γ )

)

.

(8)
İ = βSI/N − (µ+ γ )I ,

Ṡ = (1− q)µN − βSI/N − (µ+ p)S + γ I + ǫV ,

V̇ = qµN + pS − (µ+ ǫ)V .

(9)
İ = βSI/N − (µ+ γ )I ,

Ṡ = [(1− q)µ+ ǫ]N − βSI/N − (µ+ p+ ǫ)]S + (γ − ǫ)I .

(10)
It+1 = It +�

(

βStIt/N − (µ+ γ )It

)

,

St+1 = St +�

(

[(1− q)µ+ ǫ]N − βStIt/N − (µ+ p+ ǫ)St + (γ − ǫ)It

)

.

� < 2/min{(µ+ p+ ǫ), (µ+ γ )(1−R0)}.

(11)J (I , S) =

(

1+�(βS/N − (µ+ γ )) �βI/N
�(−βS/N + (γ − ǫ)) 1−�((µ+ p+ ǫ)+ βI/N )

)

.

J (Q0
d) =

(

1+�((µ+ γ )R0 − (µ+ γ )) 0

�(−(µ+ γ )R0 + (γ − ǫ)) 1−�(µ+ p+ ǫ)

)

.
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Theorem 8  When R0 > 1 , the endemic equilibrium of model (10) is stable if � < �∗ , 
where �∗ is the smallest  root of b2x2 − 2b1x + 4 , in which b1 = (µ+ p+ ǫ)+ βI∗/N  
and b2 = (µ+ ǫ)βI∗/N .

Proof  The Jacobian matrix at endemic equilibrium is

According to Jury conditions (Schur–Cohn criterion), the matrix J∗d is stable (i.e., the 
roots of its characteristic equation Pd(�) = �

2
+ a1�+ a2 lie inside the unit disk) if and 

only if the following conditions hold (see [30]): 

	(i)	 1− a2 > 0,
	(ii)	 P(1) = 1+ a1 + a2 > 0,
	(iii)	 P(−1) = 1− a1 + a2 > 0.

Here, a1 = −tr(J∗d ) and a2 = det(J∗d ) . We see, tr(J∗d ) = 2−�b1 and 
det(J∗d ) = 1−�b1 +�2b2 . Thus condition (i) holds if and only if �b1 −�2b2 > 0 , 
or equivalently � < b1

b2
 . Condition (ii), P(1) = 1− tr(J∗d )+ det(J∗d ) > 0 , holds if 

and only if b2�2 > 0 , which holds because b2 = (µ+ ǫ)βI∗/N > 0 . Condition (iii), 
P(−1) = 1+ tr(J∗d )+ det(J∗d ) > 0 , holds if and only if b2�2

− 2b1�+ 4 > 0 . Since

thus b2�2
− 2b1�+ 4 > 0 has two roots of the form 

b1±

√

b2
1
−4b2

b2
 . Now, if we denote two 

roots as r1 and r2 (suppose r1 < r2 ), then P(−1) is positive when � < r1 or � > r2 , since 
b2 > 0 . Moreover, we can easily see that b1 −

√

b2
1
− 4b2 > 0 , and thus r1 > 0 . There-

fore we can state, conditions (i)–(iii) hold if � < r1 , because we also have r1 < b1
b2

 .�  �

Remark 2  Model (2) was formulated straightly by considering a population and its 
transmissions. Also, the model can be concluded from discretized model (10) for � = 1 
and assumptions (3).

Discussion
In this section, we consider numerically theoretical results obtained in the paper. For 
this purpose assume that the parameters in the model are as q = 0.4 , p = 0.2 , γ = 0.15 , 
µ = 0.1 , and ǫ = 0.25 . Moreover, consider units of time and population as one day and 
one million individuals, respectively. Let the number of initial individuals in each sub-
populations be as I0 = 0.4 , S0 = 0.8 , and V0 = 0.5 . We take the contact rate β as the 
bifurcation parameter and get the bifurcation diagram as it is shown in Fig. 2. We see 
that at β = 0.443 , the dynamic of the system changes: The disease-free equilibrium that 
was stable for values β < 0.443 becomes unstable and instead the endemic equilibrium 
becomes stable. Indeed, at β = 0.4435 , we have R0 = 1 and a transcritical bifurcation 
occurs. Moreover, it is seen that at β = 2.428 , the endemic equilibrium becomes unstable 

J∗d = J (Q∗

d) =

(

1 �βI∗/N
−�(µ+ ǫ) 1−�((µ+ p+ ǫ)− βI∗/N )

)

.

b21 − 4b2 = ((µ+ p+ ǫ)+ βI∗/N )2 − 4(µ+ ǫ)βI∗/N

= ((µ+ ǫ)− βI∗/N )2 + p(p+ 2(µ+ ǫ)+ 2βI∗/N ) > 0,
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Fig. 2  Bifurcation diagram for It in terms of β ∈ [0, 4]

Fig. 3  Lyapunov exponents of the Jacobian matrix in terms of β ∈ [0, 3.5]

Fig. 4  Solutions of the model for various values of β , I(t):’-.’ GREEN, S(t):’-’ BLUE, V(t):’- -’ RED
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and a period-doubling bifurcation happens and after that, the system remains unstable. 
This value for β also is obtained according to Remark 1 as β = 2.4279 . Figure 3 shows 
the Lyapunov exponents of the Jacobian matrix for the same values of β . Here also it is 
observable that for values β = 0.443, 2.428 , and 3.235, the Lyapunov exponent is positive 
as seen in the bifurcation diagram. Figure 4 presents solutions of the system for various 
values of β and the behavior of the solutions is the same as we expect from the bifurca-
tion diagram and the Lyapunov exponents. For β = 0.4 , we have R0 = 0.9018 < 1 and as 
we expect from Theorem 2, the disease will vanish. While, for values β = 0.55 , β = 2.45 , 
and β = 2.5 , we have R0 = 1.2400 , R0 = 5.5236 , and R0 = 5.6364 , respectively, that all 

Fig. 5  Partial solutions of infected population It for values β = 2.5, 3.3 and 3.48

Fig. 6  Bifurcation diagram for It in terms of � in model (10)
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are greater than one and according to Theorem  3, the infection remains at a positive 
level. In addition, Fig. 5 displays some parts of solutions of infected population It for dif-
ferent values of β . It is observable that the behavior of solutions corresponds to those are 
in the bifurcation diagram. The effect of the discretization of the continuous-time model 
(9) by applying the forward Euler method has been considered in Fig. 6. The bifurcation 
diagram shows the dynamics of the infected population in the discretized model (10) 
when the step size � varies. The contact rate has been supposed as β = 2.7 and other 
parameters are the same as preceding simulations. As it was established in Theorem 8, 
the endemic equilibrium Q∗

d is stable for � < �∗
= 0.8946 while for greater values of � , 

the endemic equilibrium becomes unstable.

Conclusions
In this paper, we introduced and studied an SIS epidemic model that includes a vaccina-
tion program. The equilibria of the model were detected: The disease-free equilibrium 
Q0 in which the infection will be extinct, and the endemic equilibrium Q∗ in which the 
disease will persist in the population. It was proved that under some assumptions on 
parameters for positivity of solutions, Q0 and Q∗ are stable if R0 < 1 and R0 > 1 , respec-
tively. It was proven Q0 is also globally asymptotically stable when R0 ≤ 1 . Thus the basic 
reproduction number R0 plays important role in determining the dynamics of the 
model. To clear the effect of vaccination, a sensitivity analysis is performed on R0 to 
determine how sensitive the model is to changes in the value of parameters that are 
related to vaccination. The normalized forward sensitivity index of R0 concerning 
parameter x has been defined in [31] as �R0

x =
x
R0

×
∂R0
∂x

 . The sensitivity indices for vac-
cination proportions p and q are calculated as �

R0
q =

−qµ
(1−q)µ+ε

< 0 and 
�

R0
p =

−p
µ+p+ε

< 0 . These indices are both negative meanings R0 is inversely related with 
p and q; an increase in parameters will cause a decrease in value of R0 , that is more vac-
cinated individuals, the infection becomes more controllable. On the other hands, The 
basic reproduction number for the corresponding model without vaccination (i.e. 
p = q = 0 ) is R0 =

β
µ+γ

 . Thus R0 =

(

(1−q)µ+ε
µ+p+ε

)

R̃0 and R0 < R̃0 . When R̃0 > 1 , then 

the vaccination must be used such that R0 < 1 to eliminate an infection.
Furthermore, the bifurcations of the model were investigated and it was proved that 

when R0 = 1 system has a transcritical bifurcation and although the Neimark–Sacker 
bifurcation does not appear, it may have a period-doubling bifurcation if we ignore the 
restriction β < 1 . To study the discretization of the continuous version of the model, we 
applied the forward Euler method and analyzed the effect of step size of the discretiza-
tion on the dynamics of the model. We established the sufficient condition for stabil-
ity of disease-free equilibrium Q0

d and endemic equilibrium Q∗

d in the discretized model. 
Finally, we examine the results obtained in the paper in numerical example by consider-
ing the bifurcation diagram, the Lyapunov exponents of the Jacobian matrix, and graphs 
of solutions for values of β and � . It was observed that the numerical discussions verify 
the theoretical results.

Abbreviations
SI(S): Susceptible-infected(-susceptible); SIR(S): Susceptible-infected-removed(-susceptible); SIVS: Susceptible-infected-
susceptible epidemic model with vaccination.
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