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Abstract 

Background:  Autism spectrum disorders (ASD) refer to a range of neurodevelopmen-
tal conditions, which are genetically complex and heterogeneous with most of the 
genetic risk factors also found in the unaffected general population. Although all the 
currently known ASD risk genes code for proteins, long non-coding RNAs (lncRNAs) as 
essential regulators of gene expression have been implicated in ASD. Some lncRNAs 
show altered expression levels in autistic brains, but their roles in ASD pathogenesis are 
still unclear.

Results:  In this study, we have developed a new machine learning approach to 
predict candidate lncRNAs associated with ASD. Particularly, the knowledge learnt from 
protein-coding ASD risk genes was transferred to the prediction and prioritization of 
ASD-associated lncRNAs. Both developmental brain gene expression data and tran-
script sequence were found to contain relevant information for ASD risk gene predic-
tion. During the pre-training phase of model construction, an autoencoder network 
was implemented for a representation learning of the gene expression data, and a 
random-forest-based feature selection was applied to the transcript-sequence-derived 
k-mers. Our models, including logistic regression, support vector machine and ran-
dom forest, showed robust performance based on tenfold cross-validations as well as 
candidate prioritization with hypothetical loci. We then utilized the models to predict 
and prioritize a list of candidate lncRNAs, including some reported to be cis-regulators 
of known ASD risk genes, for further investigation.

Conclusions:  Our results suggest that ASD risk genes can be accurately predicted 
using developmental brain gene expression data and transcript sequence features, 
and the models may provide useful information for functional characterization of the 
candidate lncRNAs associated with ASD.
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Background
Autism spectrum disorders (ASD) refer to a broad range of neurodevelopmental condi-
tions characterized by symptoms of having difficulties in social interactions, verbal and 
non-verbal communications, and showing repetitive behaviors. Autism is genetically 
heritable, and usually begins in infancy, at the latest, in the first three years of life [1]. 
The genetic etiology of ASD is complex and highly heterogeneous with almost all genetic 
risk factors also found in the unaffected general population [2]. According to the Simons 
Foundation Autism Research Initiative (SFARI) (https​://www.sfari​.org/resou​rce/sfari​
-gene/), 913 genes and 17 recurrent copy number variation (CNV) loci have been impli-
cated in ASD, but how these diverse genomic aberrations cause ASD is poorly under-
stood. Currently, all the known ASD risk genes code for proteins, and some de novo 
mutations that likely disrupt protein-coding genes have been shown to cause ASD [3–5]. 
However, a recent analysis based on 1,790 ASD simplex families has revealed that the 
vast majority of de novo mutations are located in non-coding regions and linked with 
the IQ heterogeneity of ASD probands [3].

Long non-coding RNAs (lncRNAs), defined as transcripts greater than 200 nucleo-
tides and not encoding proteins, are emerging as essential regulators of gene expression 
[6]. While the human genome expresses a large number of lncRNAs, only some lncR-
NAs have been functionally characterized with proposed roles in gene regulation at the 
transcriptional, post-transcriptional, translational, or epigenetic levels [7–9]. LncRNAs 
can be brain-enriched, and involved in brain development, neuron function and mainte-
nance, and neurodegenerative diseases [10, 11]. Some lncRNAs show altered expression 
levels in autistic brains [11] and may constitute a new class of candidate genes contribut-
ing to ASD. However, the relatively low expression levels of lncRNAs in human cells and 
lack of protein products pose challenges for the functional characterization of lncRNAs 
using experimental techniques designed for protein-coding genes. ASD-associated lncR-
NAs may be identified through differential gene expression analysis, and several lists 
containing various numbers of lncRNAs have been reported, giving rise to the current 
situation with many unprioritized candidates for further investigation. Thus, an accurate 
model for the prediction and prioritization of ASD-associated lncRNAs can be valuable.

For ASD diagnosis, computational prediction models have been developed by using 
various types of clinical data from ASD patients, such as symptom profiles, magnetic 
resonance image (MRI) data and whole-brain structural image data [12–16]. How-
ever, these models are not applicable for the prediction of ASD risk genes. Genetic 
approaches for identifying ASD risk genes, such as genome-wide association studies 
(GWAS), copy number variation studies (CNVs) and whole exome sequencing (WES), 
are time-consuming and expensive. Recently, by using the brain gene expression profiles 
in the BrainSpan dataset, our group developed a support vector machine (SVM) model 
for the prediction and prioritization of ASD-associated candidate lncRNAs [17], as the 
expression patterns of ASD risk genes are distinct in autistic brains [18, 19]. Although 
computational models have been reported for predicting potential disease-lncRNA 
associations [20–25], the applicability to ASD risk genes has not yet been demonstrated.

In this study, to build models for accurate prediction and prioritization of ASD-
associated lncRNAs, we have tested various machine learning algorithms, including 
logistic regression (LR), SVM and random forest (RF). Both developmental brain gene 

https://www.sfari.org/resource/sfari-gene/
https://www.sfari.org/resource/sfari-gene/
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expression profiles and RNA transcript sequence compositions were used as features 
for model construction. To reduce the high dimensionality of the input features, which 
might cause model overfitting, an autoencoder network, gene embedding [26], and RF-
based feature selection were tested. Lastly, we utilized the models to predict and prior-
itize ASD-associated candidate lncRNAs, which might provide a good list of targets for 
further investigation.

Results
In this study, we used both developmental brain gene expression profiles and RNA tran-
script sequence compositions as features to construct LR, SVM and RF models for ASD 
risk gene prediction (Fig.  1). To reduce the high dimensionality of input features, an 
autoencoder network was implemented for the representation learning of gene expres-
sion data, and an RF-based method was used for the selection of sequence features 
important for classification. With the combined gene expression and sequence features, 
LR, SVM and RF models were trained and evaluated using a tenfold cross-validation 
strategy.

Autoencoder‑based representation learning of developmental brain gene expression data

In a previous study from our group, an SVM model for ASD risk gene prediction was 
constructed using developmental brain gene expression data from BrainSpan [17]. In 
this study, with the updated training dataset, we first examined the performance of LR, 
SVM and RF models using the same set of gene expression features (BrainSpan_full). 
As shown in Fig. 2, the models showed comparable or slightly improved performance 

Fig. 1  Schematic diagram of model construction. The autoencoder-derived expression features and selected 
sequence features (k-mers) were combined for model construction
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when compared with the previous SVM model [17]. To improve model performance and 
avoid possible overfitting, we tested several methods to reduce the high dimensional-
ity of gene expression features. In the previous study [17], 15 gene expression features 
were selected using the wrapper method with best-first heuristic search, and then used 
to construct an SVM model with slightly improved performance. As each gene expres-
sion feature represented one developmental time point of a brain region, the 15 selected 
features were enriched for early development, particularly from 8 weeks post conception 
to one year of age [17]. In this study, however, the models showed similar or decreased 
performance with the 15 selected features when compared with the models using the 
full set of features (Fig. 2). The inconsistency of model performance with the 15 selected 
features might be due to the updated training dataset. In the previous study [17], the 
training dataset consisted of 366 ASD risk genes as positive instances and 1,762 non-
ASD disease genes as negative instances. Since many additional genes, including some of 
the negative instances in the previous dataset, have recently been identified as ASD risk 
genes, the training dataset in this study includes 604 positive instances and 1,594 nega-
tive instances. With the new dataset, the 15 selected features appear to be still informa-
tive for the RF model, but not effective for the SVM and LR models. It is possible that the 
SVM model in the previous study [17] might have been slightly overfitted by using the 
15 selected features.

Instead of feature selection, unsupervised approaches can be used for feature repre-
sentation learning and dimensionality reduction. We utilized an autoencoder network 
to learn a representation of the brain gene expression data. The autoencoder network 
includes an encoder to learn a representation of the input data, and a decoder to recon-
struct the input data from the representation [27, 28]. The representation with a reduced 
dimensionality can be used for model construction. Various dimension sizes of the rep-
resentation were tested (Fig. 3a). For each dimension size, models were evaluated using 
the average performance value from fifty repetitions of tenfold cross-validations. Based 
on the average ROC AUC, 48 was selected as the encoding size for the autoencoder 
network. Interestingly, the models trained using the encoded features achieved slightly 

Fig. 2  ROC curves (left) and PR curves (right) to compare the models trained using either the full set of 524 
expression features or the 15 features selected in a previous study [17]. Models were trained and evaluated 
using tenfold cross-validations
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better performance than the models with the full set of gene expression features (Fig. 3b 
and Additional file 1: Fig. S1).

We also tested the gene embedding method, Gene2vec [26], which utilized gene co-
expression patterns to generate a distributed representation of genes. With Gene2vec, 
the positive and negative instances in the training dataset for ASD risk gene predic-
tion could be embedded into n-dimension vectors for training LR, SVM and RF models 
(Additional file 1: Table S1). However, the models trained using the gene embedding fea-
tures did not perform as well as the models with either the full set of expression features 
or the autoencoder-encoded features (Additional file  1: Fig. S2). Taken together, the 
autoencoder network outperformed feature selection and gene embedding in this study, 
as it could efficiently learn a low dimension representation of the developmental brain 
gene expression data, and improve the model performance for ASD risk gene prediction.

RNA transcript sequence contains information for ASD risk gene prediction

Besides gene expression data, RNA transcript sequence may also provide relevant fea-
tures for both protein-coding and non-coding genes. In particular, k-mer frequencies, 
such as the mononucleotide, dinucleotide and trinucleotide compositions, may be used 
to represent a nucleotide sequence. In this study, we examined the performance of mod-
els using different k-mer combinations (k = 1, 2, 3 or 4). Interestingly, the use of 3-mer 
and 4-mer nucleotide compositions achieved a ROC AUC of about 0.78, much higher 
than random guess (ROC AUC = 0.50), suggesting that RNA transcript sequence con-
tains some relevant information for ASD risk gene prediction (Fig. 4a).

Since 3-mer and 4-mer nucleotide compositions gave rise to a relatively large set of 340 
features (43 + 44) for the small number of positive instances in the training dataset (604 
high-confidence ASD risk genes), we selected a subset of highly ranked k-mers based on 
the importance scores calculated by the RF model. Considering the random initializa-
tion of the RF algorithm, we trained the RF mode for ten repetitions, and the average 

Fig. 3  Model performance with unsupervised representation learning of developmental brain gene 
expression data. a Selection of the code dimension size for the autoencoder network. For each dimension 
size, models were evaluated using the average performance value from fifty repetitions of tenfold 
cross-validations. Based on the ROC AUC, 48 was selected as the code dimension size for the autoencoder 
network. b ROC curves to compare the models trained using the full set of 524 expression features and the 
48 encoded features
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importance scores were used to rank the k-mers (Additional file 2). The top 10–50 most 
important k-mers were tested for model construction. As shown in Fig.  4b, the top 
25 k-mers achieved the best model performance, and were thus selected as the optimal 
subset of RNA transcript sequence features. The results suggest that the RF-based fea-
ture selection can reduce the dimensionality of k-mer sequence features and improve 
model performance for the three learning algorithms. It is also interesting to note that 
the SVM and RF models are more accurate than the LR model for the classification of 
ASD risk genes based on the k-mer features.

Next, LR, SVM and RF models were trained using the integrated feature set consist-
ing of 48 autoencoder-derived expression features and 25 RF-selected sequence features. 
Table  1 gives the average performance measures from 50 repetitions of tenfold cross-
validations. Based on the ROC AUC and PR AUC as robust metrics for model evalua-
tion and comparison [29], the LR, SVM and RF models trained using both expression 
and sequence features showed slightly better performance than the models trained using 
only the expression features. However, RNA transcript sequence compositions appeared 
to be less informative than developmental brain gene expression values for ASD risk 
gene prediction. It is known that there is a large genetic heterogeneity in ASD, involv-
ing both locus heterogeneity and allelic heterogeneity [30]. Whether ASD risk genes 
have common nucleotide sequence features remains unknown. In this study, the model 
performance indicates that RNA transcript sequence may contain some relevant infor-
mation for ASD risk gene prediction. Particularly, 17 of the 25 RF-selected k-mers have 
significantly different frequencies (Welch two sample t-test, p-value < 0.05) between 
the RNA transcripts of ASD risk genes and non-ASD disease genes (Additional file 1: 
Table S2). These k-mers may constitute the sequence motifs important for the function 
and regulation of ASD risk genes.

Model validation for ASD candidate gene prioritization

To further evaluate the models for their capability to predict ASD risk genes, we used 
a previously described method [17] to prioritize a known ASD risk gene among a list 
of candidate genes. For each known ASD risk gene, a gene list (called a hypotheti-
cal locus) containing the ASD risk gene and its flanking genes was generated. A model 

Fig. 4  RNA transcript sequence contains relevant information for ASD risk gene prediction. a Model 
performance with different k-mer combinations (k = 1, 2, 3 or 4). Based on the ROC AUC, 3-mers and 4-mers 
were selected as the sequence features. b Model performance with different numbers of selected k-mers. The 
3-mers and 4-mers were ranked according to the importance scores provided by the RF model, and the top 
25 k-mers were selected for model construction
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was constructed using the training dataset without the target ASD risk gene, and then 
evaluated by its ability to prioritize the candidate genes in the hypothetical locus. Dif-
ferent numbers of flanking genes (100, 200, and 400) centered around the known ASD 
risk gene were tested. We assumed that a high-performance model would prioritize the 
known ASD risk genes in higher percentile ranks.

As shown in Fig. 5, for all three models, the known ASD risk genes were prioritized 
mostly above the 85th percentile in the hypothetical loci, and the distributions differed 
from the random distribution. The number of ASD risk genes increased with the percen-
tile rank, and only a few ASD risk genes were located in the lower percentiles. Moreover, 
the models showed robust performance for the prioritization of ASD risk genes when 
the size of candidate gene list was increased from 101 to 401. As shown in Table 2, the 
mean percentile rank for the LR and SVM models increased with the size of the hypo-
thetical loci, consistent with the assumption that ASD risk genes would remain to be 
highly prioritized in an expanded gene list. Compared with the LR and SVM models, 

Table 1  Model performance with  both  developmental brain gene expression features 
and RNA transcript sequence features

*The mean ROC AUC, PR AUC, overall accuracy, sensitivity, specificity and Matthews Correlation Coefficient (MCC) of the 
models from 50 repetitions of tenfold cross-validations are shown

Model Metric* Expression features Expression 
and sequence 
features

LR ROC AUC​ 0.8289 ± 0.0030 0.8313 ± 0.0024

PR AUC​ 0.7096 ± 0.0051 0.7177 ± 0.0044

Accuracy 0.7615 ± 0.0059 0.7563 ± 0.0054

Sensitivity 0.7377 ± 0.0071 0.7498 ± 0.0074

Specificity 0.7719 ± 0.0087 0.7602 ± 0.0087

MCC 0.4723 ± 0.0095 0.4697 ± 0.0079

SVM ROC AUC​ 0.8232 ± 0.0049 0.8217 ± 0.0066

PR AUC​ 0.7085 ± 0.0056 0.7159 ± 0.0081

Accuracy 0.7746 ± 0.0052 0.7745 ± 0.0076

Sensitivity 0.7111 ± 0.0115 0.7035 ± 0.0156

Specificity 0.7999 ± 0.0094 0.8023 ± 0.0134

MCC 0.4826 ± 0.0087 0.4789 ± 0.0123

RF ROC AUC​ 0.8187 ± 0.0052 0.8258 ± 0.0053

PR AUC​ 0.6908 ± 0.0075 0.7008 ± 0.0113

Accuracy 0.7767 ± 0.0196 0.7699 ± 0.0188

Sensitivity 0.6478 ± 0.0468 0.6981 ± 0.0497

Specificity 0.8271 ± 0.0433 0.7986 ± 0.0401

MCC 0.4644 ± 0.0207 0.4711 ± 0.0200

Table 2  The mean percentile rank of known ASD risk genes for the LR, SVM and RF models.

Model Size of the hypothetical loci

101 201 401

LR 80.86 80.94 81.42

SVM 73.94 76.07 77.93

RF 83.85 83.21 83.18
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the RF model appeared to be more accurate with a higher mean percentile rank, and the 
ASD risk genes classified as positive instances by the RF model were predominantly in 
the 95th percentile or above (Fig. 5). Therefore, with demonstrated robustness and high 
predictive performance, our models can provide an efficient way for genome-wide pre-
diction of genes associated with ASD.

Prediction and prioritization of candidate lncRNAs associated with ASD

LncRNAs have relatively higher levels of expression in the human brain than other 
body tissues, and have been shown to be involved in neurodevelopment [6, 31]. How-
ever, the role of lncRNAs in ASD is still unclear. To identify good candidate lncRNAs, 
we used the models to prioritize a list of human lncRNAs with detectable expres-
sion signals in the BrainSpan dataset. Both the developmental brain gene expres-
sion features and RNA transcript sequence features of lncRNAs were utilized for the 
prediction. Overall, with the probability threshold set at 0.5, 1,124 (11.88%) of 9,463 
lncRNAs were predicted to be associated with ASD by at least one of the three mod-
els (Additional file 3). Among the 1,124 lncRNAs, 420 (37.37%) were also identified 
in the previous study [17]. However, only 57 lncRNAs were predicted to be associ-
ated with ASD by all three models, and the top five candidate lncRNAs highly pri-
oritized to be associated with ASD are shown in Table 3. XIST is an X-chromosome 
transcript that initiates X-chromosome inactivation and only expressed in females. It 
has been suggested that naturally occurring sexually dimorphic processes may modu-
late the impact of risk variants and contribute to the sex-skewed prevalence of ASD 
[32]. AC132217.1 and AC011603.4 are transcribed from the genomic loci of the pro-
tein-coding genes IGF2 and DDN, respectively, and the two lncRNAs are highly co-
expressed with their cognate protein-coding genes in the BrainSpan dataset (Table 3). 
Interestingly, both IGF2 and DDN have been implicated in the learning-dependent 

Table 3  Top five candidate lncRNAs highly prioritized to be associated with ASD.

*The protein-coding genes co-expressed with the candidate lncRNAs in the BrainSpan dataset are indicated. Pearson 
Correlation Coefficient (PCC) > 0.95 was used to select the co-expressed gene pairs.

**Traits reported to be associated with the genomic loci from which the candidate lncRNAs are transcribed. Information was 
retrieved from GWAS Catalog (https​://www.ebi.ac.uk/gwas/).

Gene ID Gene symbol Annotation Co-expressed 
protein-coding genes 
in the BrainSpan 
dataset
(PCC>0.95)*

Traits reported 
in GWAS Catalog**

ENSG00000229807 XIST X inactive specific 
transcript

\ \

ENSG00000240801 AC132217.1 3’ overlapping ncRNA 
IGF2

IGF2 Birth weight

ENSG00000228971 LINC02607 Long intergenic non-
protein coding RNA 
2607

\ Intelligence, cognitive 
performance

ENSG00000258283 AC011603.4 Antisense to DDN DDN Intelligence, cogni-
tive ability, Bipolar 
disorder

ENSG00000221857 AC020907.2 Novel transcript GNPTG, NDRG2, 
TNFSF12, TNFSF12-
TNFSF13

\

https://www.ebi.ac.uk/gwas/
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process in mice. IGF2 encodes insulin-like growth factor II, which is a cognitive 
enhancer and can reverse autism-like phenotypes in mice [33]. DDN encodes a post-
synaptic density enriched protein, Dendrin, and the synaptic scaffold protein Kibra 
modulates learning and memory via binding to Dendrin [34]. Moreover, three of the 
top five candidate lncRNAs are transcribed from the genomic loci reported to be 
associated with some autism-related traits, including birth weight, intelligence and 
cognitive ability, in human GWAS studies.

LncRNAs can act as both trans- and cis- regulators of gene expression [35, 36], and 
may be involved in ASD by regulating protein-coding genes. We thus analyzed the rel-
ative genomic locations between the candidate lncRNAs and known ASD risk genes. 
Overall, the candidate lncRNAs showed a similar genomic distribution with ASD risk 

Fig. 5  Histogram of ASD risk genes grouped by percentile rank for different lengths of hypothetical loci. For 
each hypothetical locus centered around the target ASD risk gene, the percentile rank of the known ASD 
gene was calculated based on the model output. Random distribution is shown in a dashed line (ASD risk 
genes equally distributed among 20 bins)
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genes (Additional file 1: Fig. S3). Particularly, 44 of the candidate lncRNAs are tran-
scribed from the genomic loci of ASD risk genes, including 29 antisense lncRNAs 
of their cognate ASD risk genes (Additional file 3). For instance, the ASD risk gene 
SATB2 is evolutionarily conserved and encodes a DNA-binding protein involved in 
transcriptional regulation and chromatin remodeling, and mutations in SATB2 have 
been reported to be associated with cleft palate, facial dysmorphism and intellectual 
disability [37]. The lncRNA SATB2-AS1 (ENSG00000225953), consistently predicted 
to be an ASD-associated lncRNA by all three models, has been shown to cis-activate 
SATB2 transcription via mediating histone H3K4me3 deposition and DNA demeth-
ylation of the promoter region of SATB2 in colorectal cancer [38]. The lncRNA RP11-
545N8.3 (ENSG00000259125), predicted to be associated with ASD by the LR model, 
is a conserved antisense lncRNA transcribed from the locus of ASD risk gene LRP1, 
and can directly bind to chromatin-associated protein HMGB2 to inhibit transcrip-
tional activation of LRP1 [39]. As the knowledge about the functional roles of lncR-
NAs in ASD is currently limited, the list of lncRNAs predicted to be associated with 
ASD by the models can provide good targets for further investigation.

Discussion
In this study, we have demonstrated that machine learning models built using develop-
mental brain gene expression patterns and RNA transcript sequence compositions as 
features can accurately predict ASD risk genes. The knowledge learnt from known ASD 
risk genes (protein-coding) can be transferred to lncRNAs for prediction. Using only 
gene expression profiles during normal brain development as features, an SVM model 
was previously proposed for ASD risk gene prediction [17]. Our results suggest that 
RNA transcript sequence also contains some relevant information for ASD risk gene 
prediction. Compared with the previous study [17], we have developed a more compre-
hensive approach for model construction, including deep learning techniques and mul-
tiple classification algorithms, and obtained accurate models with superior performance 
for ASD risk gene prediction. Thus, we have utilized the models to predict and prioritize 
a list of candidate lncRNAs that may be involved in ASD. Notably, some highly prior-
itized candidate lncRNAs are co-expressed with known ASD risk genes (protein-coding) 
during brain development. Since it is still unclear whether and how lncRNAs contribute 
to ASD risk, our findings can provide valuable information for functional characteriza-
tion of the candidate lncRNAs associated with ASD.

One limitation of this study is that the models make predictions highly based on the 
gene expression profiles in the BrainSpan dataset, which has been collected from post-
mortem normal brain tissue samples, not autistic brain samples. This drawback of the 
current training dataset may limit the model performance. We hope that high-quality 
gene expression profiles of autistic brains can become publicly available in the future to 
facilitate the further development of accurate models for ASD risk gene prediction.

Conclusions
In sum, we have developed an efficient machine learning approach for genome-wide 
prediction of candidate lncRNAs associated with ASD. Both developmental brain gene 
expression data and RNA transcript sequence were utilized as features to construct 
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accurate and robust models with different machine learning algorithms. To reduce input 
dimensionality and avoid model overfitting, we tested an autoencoder network for rep-
resentation learning of gene expression data and a random-forest-based method for 
sequence feature selection. The high predictive performance of the models was demon-
strated by their capability to accurately predict ASD risk genes in hypothetical loci. We 
then applied the models to predict and prioritize a list of candidate lncRNAs for further 
investigation.

Methods
Datasets

In this study, the positive instances included 604 high-confidence ASD risk genes col-
lected from the Simons Foundation Autism Research Initiative (SFARI) database (https​
://www.sfari​.org/resou​rce/sfari​-gene/) in the gene category S/1/2/3, and the negative 
instances were 1,594 non-ASD disease genes compiled by a previous study [17] and 
curated for no implication in ASD.

Gene expression and RNA sequence features

Gene expression profiles were obtained from the BrainSpan Atlas of the Developing 
Human Brain (https​://www.brain​span.org). BrainSpan provides a developmental tran-
scriptome dataset consisting of 524 samples with developmental time points ranging 
from 8  weeks postconception to 40  years old from 26 brain structures, and the gene 
expression values are represented in reads per kilobase of transcript per million mapped 
reads (RPKM) [40]. A log2(RPKM + 1) transformation of the gene expression values was 
performed as described previously [17].

To derive nucleotide sequence features, protein-coding transcript sequences were 
extracted from the GENCODE FASTA file (GRCh38) (https​://www.genco​degen​es.org/
human​/). For each RNA sequence, the frequencies of k-mers were calculated and nor-
malized by the sequence length. The min–max transformation was performed to nor-
malize the k-mer features as well as the combined set of gene expression and sequence 
features.

Autoencoder

To reduce the dimensionality of gene expression features, an autoencoder network was 
implemented (Fig.  1). The network included an encoder layer to transform the high-
dimensional data, xin , into a low-dimensional code, xcode , and a decoder layer to recover 
the data from the code:

The nonlinear function, rectified linear unit (ReLU), was used in both the encoder layer 
and the decoder layer. ReLU outputs a positive value and 0 otherwise (negative values 
clamped to 0). The dimension size of xcode was tested from 16 to 524. The mean squared 
error (MSE) and the root mean square prop (RMSprop) were used as the loss function and 

(1)f (ReLU)xin = xcode

(2)f (ReLU)xcoden = xin

https://www.sfari.org/resource/sfari-gene/
https://www.sfari.org/resource/sfari-gene/
https://www.brainspan.org
https://www.gencodegenes.org/human/
https://www.gencodegenes.org/human/
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the optimizer, respectively. The autoencoder network was trained for 100 epochs with a 
batch size of 64.

Embedding

To reduce the dimensionality of gene expression features, we also tested an embedding 
technique, Gene2vec, which could utilize gene co-expression patterns to generate a distrib-
uted representation of each gene [26]. First, gene co-expression was measured by Pearson 
Correlation Coefficient (PCC) using the BrainSpan dataset. Second, co-expressed gene 
pairs were selected and served as the training data for Gene2vec to learn a n-dimension 
vector representation for each gene in the BrainSpan dataset. Third, the positive and nega-
tive instances in the training dataset for ASD risk gene prediction were represented by the 
n-dimension vectors to train LR, SVM and RF models. For Gene2vec, a number of param-
eters were tested. PCC > 0.5 and PCC > 0.9 were tested to select co-expressed gene pairs. As 
the number of iterations (i) and dimensionality (n) of the embedding were the two major 
hyper-parameters for Gene2vec [26], i was tested in the range from 1 to 10, and n was 
tested in the range from 50 to 300.

Model construction

Different machine learning algorithms, including logistic regression (LR), support vector 
machine (SVM) and random forest (RF), were tested, and the Scikit-learn Python library 
[41] was used for model construction. Since the training dataset had a 1:2.6391 ratio of posi-
tive to negative instances, the class weight for negative/positive was set to 1/2.6391. Various 
training parameters were tuned for higher model performance (Additional file 1: Table S3).

Model evaluation

Models were trained and evaluated using a tenfold cross-validation strategy. The dataset 
with 604 positive instances and 1,594 negative instances was randomly and equally divided 
into ten subsets, and the 1:2.6391 ratio of positive to negative instances was maintained in 
each subset. Models were evaluated by holding out each subset in turn for testing and train-
ing on the remaining nine subsets. The average of the ten evaluation results was taken as 
the final model performance. The following metrics were used for model evaluation: 

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Sensitivity =
TP

TP + FN

(5)Specificity =
TN

TN + FP

(6)Precision =
TP

TP + FP
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In the above formulas, TP is the number of true positives; TN is the number of true 

negatives; FP is the number of false positives; FN is the number of false negatives. The 
Matthews correlation coefficient (MCC) measures the correlation between predictions 
and actual labels. The receiver operating characteristic curve (ROC) is the plot of the 
true positive rate against the false positive rate with different model output thresholds. A 
perfect model has an area under the ROC (ROC AUC) of 1.0, whereas random guess has 
an ROC AUC of 0.5. The precision-recall (PR) curve is the plot of precision against recall 
(sensitivity) with different model output thresholds. A perfect model has an area under 
the PR (PR AUC) of 1.0, whereas random guess has an PR AUC of 0.5.

Model validation using hypothetical loci

To examine the capability of models to prioritize candidate ASD risk genes, we used the 
method described previously [17]. Briefly, for each known ASD risk gene in the training 
dataset, N  neighboring genes ( N  = 101, 201 and 401) centered on the ASD risk gene 
on the same chromosome were extracted from the GENCODE GRCh38 comprehensive 
gene annotation file (https​://www.genco​degen​es.org/human​/) to create a hypothetical 
locus. A model was constructed using the training dataset without the target ASD risk 
gene, and then used to predict and prioritize the candidate genes in the hypothetical 
locus. Model performance was evaluated by the percentile rank calculated for the target 
ASD risk gene within the corresponding hypothetical locus:

Here, L represents the number of genes with probabilities less than the target ASD risk 
gene, N  is the number of all genes within the hypothetical locus.
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(7)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(8)Percentile rank =
L

N
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